
1cs533d-winter-2005

Shallow water equations

! From last time, using eta for depth=h+H:

! We’ll discretize this using “splitting”
• Handle the material derivative first, then the

right-hand side terms next
• Intermediate depth and velocity from just the

advection part

!

D"

Dt
= #"$ % u

Du

Dt
= #g$h

2cs533d-winter-2005

Advection

! Let’s discretize just the material derivative
(advection equation):

! For a Lagrangian scheme this is trivial: just
move the particle that stores q, don’t
change the value of q at all

! For Eulerian schemes it’s not so simple

!

qt + u " #q = 0 or
Dq

Dt
= 0

!

q x(t), t() = q x
0
,0()

3cs533d-winter-2005

Scalar advection in 1D

! Let’s simplify even more, to just one
dimension: qt+uqx=0

! Further assume u=constant

! And let’s ignore boundary conditions for
now
• E.g. use a periodic boundary

! True solution just translates q around at
speed u - shouldn’t change shape

4cs533d-winter-2005

First try: central differences

! Centred-differences give better accuracy
• More terms cancel in Taylor series

! Example:

• 2nd order accurate in space

! Eigenvalues are pure imaginary - rules out
Forward Euler and RK2 in time

! But what does the solution look like?

!

"qi
"t

= #u
qi+1 # qi#1
2$x

%

&
'

(

)
*

5cs533d-winter-2005

Testing a pulse

! We know things have to work out nicely in the
limit (second order accurate)
• I.e. when the grid is fine enough

• What does that mean? -- when the sampled function
looks smooth on the grid

! In graphics, it’s just redundant to use a grid that
fine
• we can fill in smooth variations with interpolation later

! So we’re always concerned about coarse grids
== not very smooth data

! Discontinuous pulse is a nice test case

6cs533d-winter-2005

A pulse (initial conditions)

7cs533d-winter-2005

Centered finite differences

! A few time steps (RK4, small !t) later
• u=1, so pulse should just move right without changing shape

8cs533d-winter-2005

Centred finite differences

! A little bit later…

9cs533d-winter-2005

Centred finite differences

! A fair bit later

10cs533d-winter-2005

What went wrong?

! Lots of ways to interpret this error

! Example - phase analysis
• Take a look at what happens to a sinusoid wave

numerically

• The amplitude stays constant (good), but the wave
speed depends on wave number (bad) - we get
dispersion

• So the sinusoids that initially sum up to be a square
pulse move at different speeds and separate out
! We see the low frequency ones moving faster…

• But this analysis won’t help so much in multi-
dimensions, variable u…

11cs533d-winter-2005

Modified PDE’s

! Another way to interpret error - try to account for
it in the physics

! Look at truncation error more carefully:

! Up to high order error, we numerically solve

!

qi+1 = qi + "x
#q

#x
+
"x

2

2

2q

#x 2
+
"x

3

6

3q

#x 3
+O "x

4()

qi$1 = qi $"x
#q

#x
+
"x

2

2

2q

#x 2
$
"x

3

6

3q

#x 3
+O "x

4()

qi+1 $ qi$1

2"x
=
#q

#x
+
"x

2

6

3q

#x 3
+O "x

3()

!

qt + uqx = "
u#x

2

6
qxxx

12cs533d-winter-2005

Interpretation

! Extra term is “dispersion”
• Does exactly what phase analysis tells us

• Behaves a bit like surface tension…

! We want a numerical method with a different
sort of truncation error
• Any centred scheme ends up giving an odd truncation

error --- dispersion

! Let’s look at one-sided schemes

!

qt + uqx = "
u#x

6

6
qxxx

13cs533d-winter-2005

Upwind differencing

! Think physically:
• True solution is that q just translates at

velocity u

! Information flows with u

! So to determine future values of q at a grid
point, need to look “upwind” -- where the
information will blow from
• Values of q “downwind” only have any

relevance if we know q is smooth -- and we’re
assuming it isn’t

14cs533d-winter-2005

1st order upwind

! Basic idea: look at sign of u to figure out
which direction we should get information

! If u<0 then "q/"x#(qi+1-qi)/!x

! If u>0 then "q/"x#(qi-qi-1)/!x

! Only 1st order accurate though
• Let’s see how it does on the pulse…

15cs533d-winter-2005 16cs533d-winter-2005

17cs533d-winter-2005 18cs533d-winter-2005

19cs533d-winter-2005

Modified PDE again

! Let’s see what the modified PDE is this time

! For u<0 then we have

! And for u>0 we have (basically flip sign of !x)

! Putting them together, 1st order upwind
numerical solves (to 2nd order accuracy)

!

qi+1 = qi + "x
#q

#x
+
"x

2

2

2q

#x 2
+O "x

3()

qi+1 $ qi

"x
=
#q

#x
+
"x

2

2q

#x 2
+O "x

2()

!

qt + uqx = "
u#x

2
qxx

!

qt + uqx =
u"x

2
qxx

!

qt + uqx =
u"x

2
qxx

20cs533d-winter-2005

Interpretation

! The extra term (that disappears as we refine the
grid) is diffusion or viscosity

! So sharp pulse gets blurred out into a hump, and
eventually melts to nothing

! It looks a lot better, but still not great
• Again, we want to pack as much detail as possible

onto our coarse grid

• With this scheme, the detail melts away to nothing
pretty fast

! Note: unless grid is really fine, the numerical
viscosity is much larger than physical viscosity -
so might as well not use the latter

21cs533d-winter-2005

Fixing upwind method

! Natural answer - reduce the error by going to
higher order - but life isn’t so simple

! High order difference formulas can overshoot in
extrapolating
• If we difference over a discontinuity

• Stability becomes a real problem

! Go nonlinear (even though problem is linear)
• “limiters” - use high order unless you detect a

(near-)overshoot, then go back to 1st order upwind

• “ENO” - try a few different high order formulas, pick
smoothest

22cs533d-winter-2005

Hamilton-Jacobi Equations

! In fact, the advection step is a simple example of
a Hamilton-Jacobi equation (HJ)
• qt+H(q,qx)=0

! Come up in lots of places
• Level sets…

! Lots of research on them, and numerical
methods to solve them
• E.g. 5th order HJ-WENO

! We don’t want to get into that complication

23cs533d-winter-2005

Other problems

! Even if we use top-notch numerical
methods for HJ, we have problems
• Time step limit: CFL condition

! Have to pick time step small enough that
information physically moves less than a grid cell:
!t<!x/u

• Schemes can get messy at boundaries

• Discontinuous data still gets smoothed out to
some extent (high resolution schemes drop to
first order upwinding)

24cs533d-winter-2005

Exploiting Lagrangian view

! But wait! This was trivial for Lagrangian (particle)
methods!

! We still want to stick an Eulerian grid for now,
but somehow exploit the fact that
• If we know q at some point x at time t, we just follow a

particle through the flow starting at x to see where
that value of q ends up

!

q x(t + "t),t + "t() = q x(t), t()

dx

dt
= u x(), x(t) = x

0

25cs533d-winter-2005

Looking backwards

! Problem with tracing particles - we want values at grid
nodes at the end of the step
• Particles could end up anywhere

! But… we can look backwards in time

! Same formulas as before - but new interpretation
• To get value of q at a grid point, follow a particle backwards

through flow to wherever it started

!

qijk = q x(t "#t),t "#t()

dx

dt
= u x(), x(t) = xijk

26cs533d-winter-2005

Semi-Lagrangian method

! Developed in weather prediction, going back to
the 50’s

! Also dubbed “stable fluids” in graphics
(reinvention by Stam ‘99)

! To find new value of q at a grid point, trace
particle backwards from grid point (with velocity
u) for -!t and interpolate from old values of q

! Two questions
• How do we trace?

• How do we interpolate?

27cs533d-winter-2005

Tracing

! The errors we make in tracing backwards
aren’t too big a deal
• We don’t compound them - stability isn’t an

issue

• How accurate we are in tracing doesn’t effect
shape of q much, just location
! Whether we get too much blurring, oscillations, or

a nice result is really up to interpolation

! Thus look at “Forward” Euler and RK2

28cs533d-winter-2005

Tracing: 1st order

! We’re at grid node (i,j,k) at position xijk

! Trace backwards through flow for -!t

• Note - using u value at grid point (what we know
already) like Forward Euler.

! Then can get new q value (with interpolation)!

xold = xijk "#t uijk

!

qijk
n+1 = qn xold()

= qn xijk "#tuijk()

29cs533d-winter-2005

Interpolation

! “First” order accurate: nearest neighbour
• Just pick q value at grid node closest to xold

• Doesn’t work for slow fluid (small time steps) --
nothing changes!

• When we divide by grid spacing to put in terms of
advection equation, drops to zero’th order accuracy

! “Second” order accurate: linear or bilinear (2D)
• Ends up first order in advection equation

• Still fast, easy to handle boundary conditions…

• How well does it work?

30cs533d-winter-2005

Linear interpolation

! Error in linear interpolation is proportional to

! Modified PDE ends up something like…

• We have numerical viscosity, things will smear out

• For reasonable time steps, k looks like 1/!t ~ 1/!x

! [Equivalent to 1st order upwind for CFL !t]

! In practice, too much smearing for inviscid fluids

!

"x
2 #

2
q

#x 2

!

Dq

Dt
= k "t()"x 2

2q

#x 2

31cs533d-winter-2005

Nice properties of lerping

! Linear interpolation is completely stable
• Interpolated value of q must lie between the

old values of q on the grid

• Thus with each time step, max(q) cannot
increase, and min(q) cannot decrease

! Thus we end up with a fully stable
algorithm - take !t as big as you want
• Great for interactive applications

• Also simplifies whole issue of picking time
steps

32cs533d-winter-2005

Cubic interpolation

! To fix the problem of excessive smearing,
go to higher order

! E.g. use cubic splines
• Finding interpolating C2 cubic spline is a little

painful, an alternative is the

• C1 Catmull-Rom (cubic Hermite) spline
! [derive]

! Introduces overshoot problems
• Stability isn’t so easy to guarantee anymore

33cs533d-winter-2005

Min-mod limited Catmull-Rom

! See Fedkiw, Stam, Jensen ‘01

! Trick is to check if either slope at the endpoints
of the interval has the wrong sign
• If so, clamp the slope to zero

• Still use cubic Hermite formulas with more reliable
slopes

! This has same stability guarantee as linear
interpolation
• But in smoother parts of flow, higher order accurate

• Called “high resolution”

! Still has issues with boundary conditions…

34cs533d-winter-2005

Back to Shallow Water

! So we can now handle advection of both
water depth and each component of water
velocity

! Left with the divergence and gradient
terms

!

"#

"t
= $#

"u

"x
+
"w

"z

%

&
'

(

)
*

"u

"t
= $g

"h

"x
"w

"t
= $g

"h

"z

35cs533d-winter-2005

MAC grid

! We like central differences - more
accurate, unbiased

! So natural to use a staggered grid for
velocity and height variables
• Called MAC grid after the Marker-and-Cell

method (Harlow and Welch ‘65) that
introduced it

! Heights at cell centres

! u-velocities at x-faces of cells
! w-velocities at z-faces of cells

36cs533d-winter-2005

Spatial Discretization

! So on the MAC grid:

!

"#ij

"t
= $#ij

u
i+ 12, j

$ u
i$ 12, j

%x
+
w
i, j+ 12

$ w
i, j$ 12

%z

&

'
(

)

*
+

"u
i+ 12, j

"t
= $g

hi+1, j $ hi, j
%x

"w
i, j+ 12

"t
= $g

hi, j+1 $ hi, j
%z

