Assignment questions...

Let's work out the formulas...

cs533d-winter-2005	1			cs533d-winter-2005	2

The equations

$$\int_{\Omega} \phi_j \sum_i \rho \ddot{x}_i \phi_i - \int_{\Omega} \phi_j f_{body} + \int_{\Omega} \sigma \nabla \phi_j = 0$$
$$\sum_i \int_{\Omega} \rho \phi_j \phi_i \ddot{x}_i = \int_{\Omega} \phi_j f_{body} - \int_{\Omega} \sigma \nabla \phi_j$$

•Note that ϕ_i is zero on all but the triangles surrounding j, so integrals simplify •Also: naturally split integration into separate triangles

Change in momentum term

 $\sum_{i} m_{ji} \ddot{x}_{i}$

- Let $m_{ij} = \int \rho \phi_i \phi_j$
- Then the first term is just
- ◆ Let M=[m_{ii}]: then first term is
- M is called the mass matrix
 - M*x* Obviously symmetric (actually SPD)
 - Not diagonal!
- Note that once we have the forces (the other integrals), we need to invert M to get accelerations

cs533d-winter-2005

Body force term

- ♦ Usually just gravity: f_{body}=ρg
- v Rather than do the integral with density all over again, use the fact that ϕ_1 sum to 1
 - They form a "partition of unity"
 - They represent constant functions exactly just about necessary for convergence
- Then body force term is gM1
- More specifically, can just add g to the accelerations; don't bother with integrals or mass matrix at all

Stress term

- Calculate constant strain and strain rate (so constant stress) for each triangle separately
- Note ∇φ_i is constant too
- $\upsilon~$ So just take $\sigma \nabla \phi_{j}$ times triangle area
- v [derive what $\nabla \phi_i$ is]
- υ Magic: exact same as FVM!
 - In fact, proof of convergence of FVM is often (in other settings too) proved by showing it's equivalent or close to some kind of FEM

cs533d-winter-2005

3

The algorithm

- Loop over triangles
 - Loop over corners
 - Compute integral terms
 only need to compute M once though it's constant
 - End up with row of M and a "force"
- Solve Ma=f
- Plug this a into time integration scheme

Lumped Mass

- Inverting mass matrix unsatisfactory
 - For particles and FVM, each particle had a mass, so we just did a division
 - Here mass is spread out, need to do a big linear solve even for explicit time stepping
- Idea of lumping: replace M with the "lumped mass matrix"
 - · A diagonal matrix with the same row sums
 - Inverting diagonal matrix is just divisions so diagonal entries of lumped mass matrix are the particle masses
 - · Equivalent to FVM with centroid-based volumes

cs533d-winter-2005 8

Consistent vs. Lumped

- Original mass matrix called "consistent"
- Turns out its strongly diagonal dominant (fairly easy to solve)
- Multiplying by mass matrix = smoothing
- Inverting mass matrix = sharpening
- Rule of thumb:
 - Implicit time stepping use consistent M (counteract over-smoothing, solving system anyways)
 - Explicit time stepping use lumped M (avoid solving systems, don't need extra sharpening)

cs533d-winter-2005 9

Locking

- Simple linear basis actually has a major problem: locking
 But graphics people still use them all the time...
- Notion of numerical stiffness
 - Instead of thinking of numerical method as just getting an approximate solution to a real problem,
 - Think of numerical method as exactly solving a problem that's nearby
 - For elasticity, we're exactly solving the equations for a material with slightly different (and not quite homogeneous/isotropic) stiffness
- Locking comes up when numerical stiffness is MUCH higher than real stiffness

cs533d-winter-2005 10

Locking and linear elements

- Look at nearly incompressible materials
- Can a linear triangle mesh deform incompressibly?
 [derive problem]
- Then linear elements will resist far too much: numerical stiffness much too high
- Numerical material "locks"
- FEM isn't really a black box!
- Solutions:
 - Don't do incompressibility
 - Use other sorts of elements (quads, higher order)

Quadrature

- Formulas for linear triangle elements and constant density simple to work out
- Formulas for subdivision surfaces (or high-order polynomials, or splines, or wavelets...) and varying density are NASTY
- Instead use "quadrature"
 - I.e. numerical approximation to integrals
- Generalizations of midpoint rule
 - E.g. Gaussian quadrature (for intervals, triangles, tets) or tensor products (for quads, hexes)
- Make sure to match order of accuracy [or not]

7

cs533d-winter-2005

Accuracy

Hyper-elasticity

- At least for SPD linear problems (e.g. linear elasticity) FEM selects function from finite space that is "closest" to solution
 - Measured in a least-squares, energy-norm sense
- Thus it's all about how well you can approximate functions with the finite space you chose
 - Linear or bilinear elements: O(h²)
 - · Higher order polynomials, splines, etc.: better

cs533d-winter-2005 13

- Another common way to look at elasticity
 Useful for handling weird nonlinear compressibility laws, for reduced dimension models, and more
- Instead of defining stress, define an elastic potential energy
 - Strain energy density W=W(A)
 - W=0 for no deformation, W>0 for deformation
- Total potential energy is integral of W over object
- This is called hyper-elasticity or Green elasticity
- For most (the ones that make sense)
- stress-strain relationships can define W
- E.g. linear relationship: $W=\sigma:\epsilon=trace(\sigma^{T}\epsilon)$

cs533d-winter-2005 14

Variational Derivatives

- Force is the negative gradient of potential
 Just like gravity
- What does this mean for a continuum?
 W=W(∂X/∂p), how do you do -d/dX?
- Variational derivative: $W_{total}[X + \varepsilon Y] = \int W\left(\frac{\partial X}{\partial p} + \varepsilon \frac{\partial Y}{\partial p}\right)$
 - So variational derivative is -∇•∂W/∂A
 - And f=∇•∂W/∂A
 - Then stress is ∂W/∂A

cs533d-winter-2005 15

Numerics

- Simpler approach: find discrete W_{total} as a sum of W's for each element
 - Evaluate just like FEM, or any way you want
- Take gradient w.r.t. positions {x_i}
 - Ends up being a Galerkin method
- Also note that an implicit method might need Jacobian = negative Hessian of energy
 - Must be symmetric, and at least near stable configurations must be negative definite

cs533d-winter-2005 16

Curve / Springs

- Take W(A)=1/2 E(IAI-1)² L for each segment
 Note factor of L: this is approximation to an integral over
- segment in object space of length L
 A=(x_{i+1}-x_i)/L is the deformation gradient for piecewise
- Inear elements
 Then take derivative w.r.t. x_i to get this element's contribution to force on i
- Lo and behold [exercise] get exactly the original spring force
- Note: defining stress and strain would be more complicated, because of the dimension differences
 - A is 3x1, not square