Notes

 Some example values for common materials: (VEBY approximate)

	maic)	
 Aluminum: 	E=70 GPa	v=0.34
 Concrete: 	E=23 GPa	v=0.2
 Diamond: 	E=950 GPa	v=0.2
 Glass: 	E=50 GPa	v=0.25
 Nylon: 	E=3 GPa	v=0.4
 Rubber: 	E=1.7 MPa	v=0.49
 Steel: 	E=200 GPa	v=0.3

Steel:

cs533d-winter-2005 1

Putting it together

$$E\varepsilon_{11} = \sigma_{11} - v\sigma_{22} - v\sigma_{33}$$
$$E\varepsilon_{22} = -v\sigma_{11} + \sigma_{22} - v\sigma_{33}$$
$$E\varepsilon_{33} = -v\sigma_{11} - v\sigma_{22} + \sigma_{33}$$

- Can invert this to get normal stress, but what about shear stress?
 - Diagonalization...
- When the dust settles,

$$E\varepsilon_{ij} = (1 + v)\sigma_{ij} \quad i \neq j$$

cs533d-winter-2005

Inverting...

$$\sigma = E\left(\frac{1}{1+\nu}I + \frac{\nu}{(1+\nu)(1-2\nu)}1 \otimes 1\right)\varepsilon$$

- For convenience, relabel these expressions
 - λ and μ are called the Lamé coefficients
 - [incompressibility]

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$$
$$\mu = \frac{E}{2(1+\nu)}$$

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$$

cs533d-winter-2005

3

Linear elasticity

 Putting it together and assuming constant coefficients, simplifies to

$$\begin{split} \rho \dot{v} &= f_{body} + \lambda \nabla \varepsilon_{kk} + 2\mu \nabla \cdot \varepsilon \\ &= f_{body} + \lambda \nabla \cdot \nabla x + \mu \big(\nabla \cdot \nabla x + \nabla \nabla \cdot x \big) \end{split}$$

♦ A PDE!

We'll talk about solving it later

cs533d-winter-2005

4

Rayleigh damping

- We'll need to look at strain rate
 - · How fast object is deforming
 - · We want a damping force that resists change in deformation
- Just the time derivative of strain
- For Rayleigh damping of linear elasticity

$$\sigma_{ij}^{damp} = \phi \dot{\varepsilon}_{kk} \delta_{ij} + 2\psi \dot{\varepsilon}_{ij}$$

Problems

- Linear elasticity is very nice for small deformation
 - Linear form means lots of tricks allowed for speed-up, simpler to code, ...
- But it's useless for large deformation, or even zero deformation but large rotation
 - (without hacks)
 - · Cauchy strain's simplification sees large rotation as deformation...
- Thus we need to go back to Green strain

(Almost) Linear Elasticity

- Use the same constitutive model as before, but with Green strain tensor
- This is the simplest general-purpose elasticity model
- Animation probably doesn't need anything more complicated
 - · Except perhaps for dealing with incompressible materials

cs533d-winter-2005 7

2D Elasticity

- Let's simplify life before starting numerical methods
- The world isn't 2D of course, but want to track only deformation in the plane
- Have to model why
 - Plane strain: very thick material, ε₃=0 [explain, derive σ_{3} .]
 - Plane stress: very thin material, σ_3 =0 [explain, derive ε_3 , and new law, note change in incompressibility singularity]

cs533d-winter-2005

Finite Volume Method

- Simplest approach: finite volumes
 - · We picked arbitrary control volumes before
 - · Now pick fractions of triangles from a triangle mesh Split each triangle into 3 parts, one for each corner
 - E.g. Voronoi regions
 - Be consistent with mass!
 - · Assume A is constant in each triangle (piecewise linear deformation)
 - [work out]
 - Note that exact choice of control volumes not critical constant times normal integrates to zero

cs533d-winter-2005 9

cs533d-winter-2005

Finite Element Method

- #1 most popular method for elasticity problems (and many others too)
- FEM originally began with simple idea:
 - Can solve idealized problems (e.g. that strain is constant over a triangle)
 - Call one of these problems an element
- · Can stick together elements to get better approximation
- Since then has evolved into a rigourous mathematical algorithm, a general purpose black-box method • Well, almost black-box...

cs533d-winter-2005 10

Modern Approach

- υ Galerkin framework (the most common)
- v Find vector space of functions that solution (e.g. X(p)) lives in
 - E.g. bounded weak 1st derivative: H¹
- υ Say the PDE is L[X]=0 everywhere ("strong")
- The "weak" statement is ∫ Y(p)L[X(p)]dp=0 for every Y in vector space
- v Issue: L might involve second derivatives • E.g. one for strain, then one for div sigma
 - So L, and the strong form, difficult to define for H1
- υ Integration by parts saves the day

Weak Momentum Equation

- Ignore time derivatives treat acceleration as an independent quantity
 - · We discretize space first, then use "method of lines": plug in any time integrator

$$\begin{split} L[X] &= \rho \ddot{X} - f_{body} - \nabla \cdot \sigma \\ &\int_{\Omega} Y L[X] = \int_{\Omega} Y (\rho \ddot{X} - f_{body} - \nabla \cdot \sigma) \\ &= \int_{\Omega} Y \rho \ddot{X} - \int_{\Omega} Y f_{body} - \int_{\Omega} Y \nabla \cdot \sigma \\ &= \int_{\Omega} Y \rho \ddot{X} - \int_{\Omega} Y f_{body} + \int_{\Omega} \sigma \nabla Y \end{split}$$

cs533d-winter-2005 12

Making it finite

- The Galerkin FEM just takes the weak equation, and restricts the vector space to a finite-dimensional one
 - E.g. Continuous piecewise linear constant gradient over each triangle in mesh, just like we used for Finite Volume Method
- This means instead of infinitely many test functions Y to consider, we only need to check a finite basis
- The method is defined by the basis
 - Very general: plug in whatever you want polynomials, splines, wavelets, RBF's, ...

Linear Triangle Elements

- Simplest choice
- Take basis {φ_i} where
 φ_i(p)=1 at p_i and 0 at all the other p_j's
 It's a "hat" function
- υ Then $X(p)=\sum_i x_i \phi_i(p)$ is the continuous piecewise linear function that interpolates particle positions
- υ Similarly interpolate velocity and acceleration
- $\upsilon~$ Plug this choice of X and an arbitrary Y= φ_j (for any j) into the weak form of the equation
- υ Get a system of equations (3 eq. for each j)

cs533d-winter-2005 13

The equations

$$\int_{\Omega} \phi_j \sum_i \rho \ddot{x}_i \phi_i - \int_{\Omega} \phi_j f_{body} + \int_{\Omega} \sigma \nabla \phi_j = 0$$
$$\sum_i \int_{\Omega} \rho \phi_j \phi_i \ddot{x}_i = \int_{\Omega} \phi_j f_{body} - \int_{\Omega} \sigma \nabla \phi_j$$

•Note that ϕ_j is zero on all but the triangles surrounding j, so integrals simplify •Also: naturally split integration into separate triangles

cs533d-winter-2005 15

cs533d-winter-2005 14