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Notes

! Some example values for common materials:
(VERY approximate)
• Aluminum: E=70 GPa !=0.34

• Concrete: E=23 GPa !=0.2

• Diamond: E=950 GPa !=0.2

• Glass: E=50 GPa !=0.25

• Nylon: E=3 GPa !=0.4

• Rubber: E=1.7 MPa !=0.49…

• Steel: E=200 GPa !=0.3
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Putting it together

! Can invert this to get normal stress, but
what about shear stress?
• Diagonalization…

! When the dust settles,
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Inverting…

! For convenience, relabel these
expressions
• " and µ are called

the Lamé
coefficients

• [incompressibility]
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Linear elasticity

! Putting it together and assuming constant
coefficients, simplifies to

! A PDE!
• We’ll talk about solving it later

! 

" ˙ v = fbody + #$%kk + 2µ$ &%

= fbody + #$ &$x + µ $ &$x +$$ & x( )
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Rayleigh damping

! We’ll need to look at strain rate
• How fast object is deforming

• We want a damping force that resists change
in deformation

! Just the time derivative of strain

! For Rayleigh damping of linear elasticity

! 

" ij

damp
= # ˙ $ kk%ij + 2& ˙ $ ij
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Problems

! Linear elasticity is very nice for small
deformation
• Linear form means lots of tricks allowed for

speed-up, simpler to code, …

! But it’s useless for large deformation, or
even zero deformation but large rotation
• (without hacks)
• Cauchy strain’s simplification sees large

rotation as deformation…

! Thus we need to go back to Green strain
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(Almost) Linear Elasticity

! Use the same constitutive model as before,
but with Green strain tensor

! This is the simplest general-purpose
elasticity model

! Animation probably doesn’t need anything
more complicated
• Except perhaps for dealing with

incompressible materials
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2D Elasticity

! Let’s simplify life before starting numerical
methods

! The world isn’t 2D of course, but want to track
only deformation in the plane

! Have to model why
• Plane strain: very thick material, $3•=0

[explain, derive %3•]

• Plane stress: very thin material, %3•=0
[explain, derive $3• and new law, note change in
incompressibility singularity]
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Finite Volume Method

! Simplest approach: finite volumes
• We picked arbitrary control volumes before

• Now pick fractions of triangles from a triangle mesh
! Split each triangle into 3 parts, one for each corner

! E.g. Voronoi regions

! Be consistent with mass!

• Assume A is constant in each triangle (piecewise
linear deformation)

• [work out]

• Note that exact choice of control volumes not critical -
constant times normal integrates to zero
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Finite Element Method

! #1 most popular method for elasticity problems (and
many others too)

! FEM originally began with simple idea:
• Can solve idealized problems (e.g. that strain is constant over a

triangle)

• Call one of these problems an element

• Can stick together elements to get better approximation

! Since then has evolved into a rigourous mathematical
algorithm, a general purpose black-box method
• Well, almost black-box…
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Modern Approach

# Galerkin framework (the most common)

# Find vector space of functions that solution (e.g. X(p))
lives in
• E.g. bounded weak 1st derivative: H1

# Say the PDE is L[X]=0 everywhere (“strong”)

# The “weak” statement is ! Y(p)L[X(p)]dp=0
for every Y in vector space

# Issue: L might involve second derivatives
• E.g. one for strain, then one for div sigma

• So L, and the strong form, difficult to define for H1

# Integration by parts saves the day
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Weak Momentum Equation

! Ignore time derivatives - treat acceleration
as an independent quantity
• We discretize space first, then use “method of

lines”: plug in any time integrator

! 
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Making it finite

! The Galerkin FEM just takes the weak equation, and
restricts the vector space to a finite-dimensional one
• E.g. Continuous piecewise linear - constant gradient over each

triangle in mesh, just like we used for Finite Volume Method

! This means instead of infinitely many test functions Y to
consider, we only need to check a finite basis

! The method is defined by the basis
• Very general: plug in whatever you want - polynomials, splines,

wavelets, RBF’s, …
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Linear Triangle Elements

! Simplest choice

! Take basis {&i} where
&i(p)=1 at pi and 0 at all the other pj’s

• It’s a “hat” function

# Then X(p)="i xi&i(p) is the continuous piecewise
linear function that interpolates particle positions

# Similarly interpolate velocity and acceleration

# Plug this choice of X and an arbitrary Y= &j (for
any j) into the weak form of the equation

# Get a system of equations (3 eq. for each j)
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The equations
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•Note that &j is zero on all but the triangles

surrounding j, so integrals simplify

•Also: naturally split integration into separate

triangles


