
1cs533d-winter-2005

Notes

2cs533d-winter-2005

Numerical Implementation 1

! Get candidate x(t+!t)

! Check to see if x(t+!t) is inside object
(interference)

! If so
• Get normal n at t+!t

• Get new velocity v from collision response
formulas and average v

• Replay x(t+!t)=x(t)+!tv

3cs533d-winter-2005

Robustness?

! If a particle penetrates an object at end of
candidate time step, we fix that

! But new position (after collision processing)
could penetrate another object!

! Maybe this is fine-let it go until next time step

! But then collision formulas are on shaky
ground…

! Switch to repulsion impulse if x(t) and x(t+!t)
both penetrate
• Find !vN proportional to final penetration depth, apply

friction as usual

4cs533d-winter-2005

Making it more robust

! Other alternative:
• After collision, check if new x(t+!t) also

penetrates

• If so, assume a 2nd collision happened during
the time step: process that one

• Check again, repeat until no penetration

• To avoid infinite loop make sure you lose
kinetic energy (don’t take perfectly elastic
bounces, at least not after first time through)

• Let’s write that down:

5cs533d-winter-2005

Numerical Implementation 2

! Get candidate x(t+!t)

! While x(t+!t) is inside object (interference)
• Get normal n at t+!t

• Get new velocity v from collision response formulas
and average v

• Replay x(t+!t)=x(t) + !t v

! Now can guarantee that if we start outside
objects, we end up outside objects

6cs533d-winter-2005

Micro-Collisions

! These are “micro-collision” algorithms

! Contact is modeled as a sequence of small
collisions
• We’re replacing a continuous contact force with a

sequence of collision impulses

! Is this a good idea?
• [block on incline example]

! More philosophical question: how can contact
possibly begin without fully inelastic collision?

7cs533d-winter-2005

Improving Micro-Collisions

! Really need to treat contact and collision
differently, even if we use the same friction
formulas

! Idea:
• Collision occurs at start of time step

• Contact occurs during whole duration of time
step

8cs533d-winter-2005

Numerical Implementation 3

! Start at x(t) with velocity v(t), get candidate
position x(t+!t)

! Check if x(t+!t) penetrates object
• If so, process elastic collision using v(t) from start of

step, not average velocity

• Replay from x(t) with modified v(t)

• Could add !t!v to x(t+!t) instead of re-integrating

• Repeat check a few (e.g. 3) times if you want

! While x(t+!t) penetrates object
• Process inelastic contact (!=0) using average v

• Replay x(t+!t)=x(t)+!t v

9cs533d-winter-2005

Why does this work?

! If object resting on plane y=0, v(t)=0 though
gravity will pull it down by t+!t

! In the new algorithm, elastic bounce works with
pre-gravity velocity v(t)=0
• So no bounce

! Then contact, which is inelastic, simply adds just
enough !v to get back to v(t+!t)=0
• Then x(t+!t)=0 too

! NOTE: if !=0 anyways, no point in doing special
first step - this algorithm is equivalent to the
previous one

10cs533d-winter-2005

Moving objects

! Same algorithms, and almost same formulas:
• Need to look at relative velocity

vparticle-vobject

instead of just particle velocity

• As before, decompose into normal and tangential
parts, process the collision, and reassemble a relative
velocity

• Add object velocity to relative velocity to get final
particle velocity

! Be careful when particles collide:
• Same relative !v but account for equal and opposite

forces/impulses with different masses…

11cs533d-winter-2005

Moving Objects…

!Also, be careful with
interference/collision detection
•Want to check for interference at end of

time step, so use object positions there

• Objects moving during time step mean
more complicated trajectory intersection
for collisions

12cs533d-winter-2005

Collision Detection

! We have basic time integration for
particles in place now

! Assumed we could just do interference
detection, but…

! Detecting collisions over particle
trajectories can be dropped in for more
robustness - algorithms don’t change
• But use the normal at the collision time

13cs533d-winter-2005

Geometry

! The plane is easy
• Interference: y<0

• Collision: y became negative

• Normal: constant (0,1,0)

! Can work out other analytic cases (e.g. sphere)
! More generally: triangle meshes and level sets
• Heightfields sometimes useful - permit a few

simplifications in speeding up tests - but special case

• Splines and subdivision surfaces generally too
complicated, and not worth the effort

• Blobbies, metaballs, and other implicits are usually
not as well behaved as level sets

• Point-set surfaces: becoming a hot topic

14cs533d-winter-2005

Implicit Surfaces

! Define surface as where some scalar function of
x,y,z is zero:
• {x,y,z | F(x,y,z)=0}

! Interior (can only do closed surfaces!) is where
function is negative
• {x,y,z | F(x,y,z)<0}

! Outside is where it’s positive
• {x,y,z | F(x,y,z)>0}

! Ground is F=y

! Example: F=x2+y2+z2-1 is the unit sphere

15cs533d-winter-2005

Testing Implicit Surfaces

! Interference is simple:
• Is F(x,y,z)<0?

! Collision is a little trickier:
• Assume constant velocity

x(t+h)=x(t)+hv

• Then solve for h: F(x(t+h))=0

• This is the same as ray-tracing implicit surfaces…

• But if moving, then need to solve
F(x(t+h), t+h)=0

• Try to bound when collision can occur (find a sign
change in F) then use secant search

16cs533d-winter-2005

Implicit Surface Normals

! Outward normal at surface is just

! Most obvious thing to use for normal at a point
inside the object (or anywhere in space) is the
same formula
• Gradient is steepest-descent direction, so hopefully

points to closest spot on surface: direction to closest
surface point is parallel to normal there

• We really want the implicit function to be monotone as
we move towards/away from the surface

!

n =
"F

"F

17cs533d-winter-2005

Building Implicit Surfaces

! Planes and spheres are useful, but want to be
able to represent (approximate) any object

! Obviously can write down any sort of functions,
but want better control
• Exercise: write down functions for some common

shapes (e.g. cylinder?)

! Constructive Solid Geometry (CSG)
• Look at set operations on two objects

! [Complement, Union, Intersection, …]

• Using primitive F()’s, build up one massive F()

• But only sharp edges…

18cs533d-winter-2005

Getting back to particles

! “Metaballs”, “blobbies”, …

! Take your particle system, and write an implicit
function:

• Kernel function f is something smooth like a Gaussian

• Strength " and radius r of each particle (and its
position x) are up to you

• Threshold t is also up to you (controls how thick the
object is)

!

F(x) = " i f
x # xi
ri

$

%
&

'

(
)

i

* # t

!

f (x) = e
"x

2

19cs533d-winter-2005

Problems with these

! They work beautifully for some things!
• Some machine parts, water droplets, goo, …

! But, the more complex the surface, the more
expensive F() is to evaluate
• Need to get into more complicated data structures to

speed up to acceptable

! Hard to directly approximate any given geometry

! Monotonicity - how reliable is the normal?

20cs533d-winter-2005

Signed Distance

! Note infinitely many different F represent the
same surface

! What’s the nicest F we can pick?

! Obviously want smooth enough for gradient
(almost everywhere)

! It would be nice if gradient really did point to
closest point on surface

! Really nice (for repulsions etc.) if value indicated
how far from surface

! The answer: signed distance

21cs533d-winter-2005

Defining Signed Distance

! Generally use the letter # instead of F

$ Magnitude is the distance from the
surface
• Note that function is zero only at surface

$ Sign of #(x) indicates inside (<0) or
outside(>0)

$ [examples: plane, sphere, 1d]

!

"(x)

22cs533d-winter-2005

Closest Point Property

! Gradient is steepest-ascent direction
• Therefore, in direction of closest point on

surface (shortest distance between two points
is a straight line)

! The closest point is by definition distance
|#| away

$ So closest point on surface from x is

!

x "#(x)
$#

$#

23cs533d-winter-2005

Unit Gradient Property

! Look along line from closest point on
surface to x

! Value is distance along line

! Therefore directional derivative is 1:

! But plug in the formula for n [work out]

! So gradient is unit length:

!

"# $ n =1

!

"# =1

24cs533d-winter-2005

Aside: Eikonal equation

! There’s a PDE!
• Called the Eikonal equation

• Important for all sorts of things

• Later in the course: figure out signed distance
function by solving the PDE…

! See Ian Mitchell’s course on level sets for
a lot more detail

!

"# =1

25cs533d-winter-2005

Aside: Spherical particles

! We have been assuming our particles were just
points

! With signed distance, can simulate nonzero
radius spheres
• Sphere of radius r intersects object if and only if #(x)<r

• i.e. if and only if #(x)-r<0

• So looks just like points and an “expanded” version of
the original implicit surface - normals are exactly the
same, …

26cs533d-winter-2005

Level Sets

! Use a discretized approximation of #

$ Instead of carrying around an exact formula store
samples of # on a grid (or other structure)

$ Interpolate between grid points to get full definition (fast
to evaluate!)
• Almost always use trilinear [work out]

$ If the grid is fine enough, can approximate any well-
behaved closed surface
• But if the features of the geometry are the same size as the grid

spacing or smaller, expect BAD behaviour

$ Note that properties of signed distance only hold
approximately!

27cs533d-winter-2005

Building Level Sets

! We’ll get into level sets more later on
• Lots of tools for constructing them from other

representations, for sculpting them directly, or
simulating them…

! For now: can assume given

! Or CSG: union and intersection with min and
max
[show 1d]
• Just do it grid point by grid point

• Note that weird stuff could happen at sub-grid
resolution (with trilinear interpolation)

! Or evaluate from analytical formula
28cs533d-winter-2005

Normals

! We do have a function F defined everywhere (with
interpolation)
• Could take its gradient and normalize

• But (with trilinear) it’s not smooth enough

! Instead use numerical approximation for gradient:

• Then, use trilinear interpolation to get (continuous) approximate
gradient anywhere

• Or instead apply finite difference formula to 6 trilinearly
interpolated points (mathematically equivalent)

• Normalize to get unit-length normal

!

gi, j ,k =
"i+1, j,k #"i#1, j,k

2$x
,
"i, j+1,k #"i, j#1,k

2$y
,
"i, j,k+1 #"i, j,k#1

2$z

%

&
'

(

)
*

29cs533d-winter-2005

Evaluating outside the grid

! Check if evaluation point x is outside the grid

! If outside - that’s enough for interference test

! But repulsion forces etc. may need an actual value

! Most reasonable extrapolation:
• A = distance to closest point on grid

• B = # at that point

• Lower bound on distance, correct asymptotically and continuous
(if level set doesn’t come to boundary of grid):

• Or upper bound on distance:

!

sign(B) A
2

+ B
2

!

B + sign(B)A

