Notes

Time scales

- Finish up time integration methods today
- Assignment 1 is mostly out
 - Later today will make it compile etc.

- ◆ [work out]
- For position dependence, characteristic time interval is

$$\Delta t = O\left(\frac{1}{\sqrt{K}}\right)$$

• For velocity dependence, characteristic time interval is (1)

$$\Delta t = O\left(\frac{1}{D}\right)$$

Note: matches symplectic Euler stability limits
 If you care about resolving these time scales, there's not much point in going to implicit methods

cs533d-winter-2005 2

Mixed Implicit/Explicit

cs533d-winter-2005

cs533d-winter-2005

3

- For some problems, that square root can mean velocity limit much stricter
- Or, we know we want to properly resolve the position-based oscillations, but don't care about damping
- Go explicit on position, implicit on velocity
 - Cuts the number of equations to solve in half
 - Often, a(x,v) is linear in v, though nonlinear in x; this way we avoid Newton iteration

Newmark Methods

A general class of methods

$$\begin{aligned} x_{n+1} &= x_n + \Delta t v_n + \frac{1}{2} \Delta t^2 \big[(1 - 2\beta) a_n + 2\beta a_{n+1} \big] \\ v_{n+1} &= v_n + \Delta t \big[(1 - \gamma) a_n + \gamma a_{n+1} \big] \end{aligned}$$

- Includes Trapezoidal Rule for example (β=1/4, γ=1/2)
- υ The other major member of the family is Central Differencing (β =0, γ =1/2)
 - This is mixed Implicit/Explicit

cs533d-winter-2005

Central Differencing

• Rewrite it with intermediate velocity:

$$v_{n+\frac{1}{2}} = v_n + \frac{1}{2}\Delta t a(x_n, v_n)$$

$$x_{n+1} = x_n + \Delta t v_{n+\frac{1}{2}}$$

$$v_{n+1} = v_{n+\frac{1}{2}} + \frac{1}{2}\Delta t a(x_{n+1}, v_{n+1})$$

- Looks like a hybrid of:
 - Midpoint (for position), and
 - Trapezoidal Rule (for velocity split into Forward and Backward Euler half steps)

Central: Performance

- Constant acceleration: great
 - 2nd order accurate
- Position dependence: good
 Conditionally stable, no damping
- Velocity dependence: good
 - Stable, but only conditionally monotone
- Can we change the Trapezoidal Rule to Backward Euler and get unconditional monotonicity?

Staggered Implicit/Explicit

 Like the staggered Symplectic Euler, but use B.E. in velocity instead of F.E.:

> $v_{n+\frac{1}{2}} = v_{n-\frac{1}{2}} + \frac{1}{2}(t_{n+1} - t_{n-1})a(x_n, v_{n+\frac{1}{2}})$ $x_{n+1} = x_n + \Delta t v_{n+\frac{1}{2}}$

- Constant acceleration: great
- Position dependence: good (conditionally stable, no damping)
- Velocity dependence: great (unconditionally monotone)

cs533d-winter-2005 7

cs533d-winter-2005

9

Summary (2nd order)

- Depends a lot on the problem · What's important: gravity, position, velocity?
- Explicit methods from last class are probably bad
- Symplectic Euler is a great fully explicit method (particularly with staggering)
 - Switch to implicit velocity step for more stability, if damping time step limit is the bottleneck
- Implicit Compromise method Fully stable, nice behaviour

cs533d-winter-2005

Example Motions

Simple Velocity Fields

- Can superimpose (add) to get more complexity
- Constants: v(x)=constant
- Expansion/contraction: $v(x)=k(x-x_0)$ Maybe make k a function of distance lx-x₀l
- Rotation: $v(x) = \omega \times (x x_0)$
 - Maybe scale by a function of distance lx-x₀l or magnitude $|\omega \times (x - x_0)|$

cs533d-winter-2005

10

Noise

- Common way to perturb fields that are too perfect and clean
- Noise (in graphics) = a smooth, non-periodic field with clear lengthscale
- Read Perlin, "Improving Noise", SIGGRAPH'02 · Hash grid points into an array of random slopes that define a cubic Hermite spline
- Can also use a Fourier construction
 - Band limited signal
 - · Better, more control, but (possibly much) more expensive
 - FFT check out www.fftw.org for one good implementation cs533d-winter-2005

Example Forces

- Gravity: F_{gravity}=mg (a=g)
- If you want to do orbits

$$F_{gravity} = -GmM_0 \frac{x - x_0}{\left|x - x_0\right|^3}$$

- Note x₀ could be a fixed point (e.g. the Sun) or another particle
 - · But make sure to add the opposite and equal force to the other particle if so!

- Air drag: F_{drag}=-Dv
 - If there's a wind blowing with velocity v_w then F_{drag} =-D(v-v_w)
- D should be a function of the cross-section exposed to wind
 - Think paper, leaves, different sized objects, ...
- Depends in a difficult way on shape too
 - Hack away!

cs533d-winter-2005 13

cs533d-winter-2005

15

Spring Forces

- ♦ Springs: F_{spring}=-K(x-x₀)
 - x₀ is the attachment point of the spring
 - Could be a fixed point in the scene
 - ...or somewhere on a character's body
 - ...or the mouse cursor
 - ...or another particle (but please add equal and oppposite force!)

cs533d-winter-2005 14

Nonzero Rest Length Spring

 Need to measure the "strain": the fraction the spring has stretched from its rest length L

$$F_{spring} = -K \left(\frac{|x - x_0|}{L} - 1 \right) \frac{|x - x_0|}{|x - x_0|}$$

Spring Damping

- Simple damping: F_{damp}=-D(v-v₀)
 - But this damps rotation too!
- ♦ Better spring damping: F_{damp}=-D(v-v₀)•u u
 - Here u is $(x-x_0)/|x-x_0|$, the spring direction

1

- [work out 1d case]
- Critical damping

$$D = 2\sqrt{mK}$$

cs533d-winter-2005 16

Collision and Contact

Collision and Contact

- We can integrate particles forward in time, have some ideas for velocity or force fields
- But what do we do when a particle hits an object?
- No simple answer, depends on problem as always
- General breakdown:
 - Interference vs. collision detection
 - What sort of collision response: (in)elastic, friction
 - Robustness: do we allow particles to actually be inside an object?

Interference vs. Collision

- Interference (=penetration)
 - Simply detect if particle has ended up inside object, push it out if so
 - Works fine if $v\Delta t < \frac{1}{2}w$ [w=object width]
 - Otherwise could miss interaction, or push dramatically the wrong way
 - The ground, thick objects and slow particles
- Collision
 - Check if particle trajectory intersects object
 - Can be more complicated, especially if object is moving too...
- For now, let's stick with the ground (y=0)

cs533d-winter-2005 19

cs533d-winter-2005 21

Repulsion Forces

- Simplest idea (conceptually)
 - Add a force repelling particles from objects when they get close (or when they penetrate)
 - Then just integrate: business as usualRelated to penalty method:
 - instead of directly enforcing constraint (particles stay outside of objects), add forces to encourage constraint
- For the ground:
 - Frepulsion=-Ky when y<0 [think about gravity!]
 - ...or -K(y-y0)-Dv when y<y0 [still not robust]
 - ...or K(1/y-1/y0)-Dv when y<y0

cs533d-winter-2005 20

Repulsion forces

- Difficult to tune:
 - Too large extent: visible artifact
 - Too small extent: particles jump straight through, not robust (or time step restriction)
 - Too strong: stiff time step restriction, or have to go with implicit method - but Newton will not converge if we guess past a singular repulsion force
 - Too weak: won't stop particles
- Rule-of-thumb: don't use them unless they really are part of physics
 - Magnetic field, aerodynamic effects, ...

Collision and Contact

- Collision is when a particle hits an object
 - Instantaneous change of velocity (discontinuous)
- Contact is when particle stays on object surface for positive time
 - · Velocity is continuous
 - · Force is only discontinuous at start

cs533d-winter-2005 22

Frictionless Collision Response

- At point of contact, find normal n
 - For ground, n=(0,1,0)
- Decompose velocity into
 - normal component v_N=(v•n)n and
 tangential component v_x=v-v_y.
- tangential component v_T=v-v_N
 Normal response: v_N^{after} = -εv_N^{before}, ε∈[0,1]
- ε=0 is fully inelastic
 - ε=1 is elastic
- υ Tangential response
 - Frictionless: $v_T^{after} = v_T^{before}$
- v Then reassemble velocity v=v_N+v_T

Contact Friction

- Some normal force is keeping v_N=0
- Coulomb's law ("dry" friction)
 - If sliding, then kinetic friction:

$$F_{friction} = -\mu_k \left| F_{normal} \right| \frac{V_T}{|v_l|}$$

• If static ($v_T=0$) then stay static as long as

 $|F_{friction}| \le \mu_s |F_{normal}|$

"Wet" friction = damping

$$F_{friction} = -D|F_{normal}|v_T$$

Collision Friction

- Impulse assumption:
 - · Collision takes place over a very small time interval (with very large forces)
 - · Assume forces don't vary significantly over that interval---then can replace forces in friction laws with impulses
 - · This is a little controversial, and for articulated rigid bodies can be demonstrably false
 - But nevertheless...
 - Normal impulse is just mΔv_N=m(1+ε)v_N
 - Tangential impulse is mΔv_T

cs533d-winter-2005 25

cs533d-winter-2005 27

Wet Collision Friction

- So replacing force with impulse: $m\Delta v_T = -D |m\Delta v_N| v_T$
- Divide through by m, use $v_T^{after} = v_T^{before} + \Delta v_T$

 $v_T^{after} = v_T^{before} - D |\Delta v_N| v_T^{before}$ $= (1 - D | \Delta v_N |) v_T^{before}$

- Clearly could have monotonicity/stability issue
- Fix by capping at $v_{\tau}=0$, or better approximation for time interval D Avy hefore e.g.

$$v_T^{after} = e^{-D|\Delta v_N|} v_T^{before}$$

cs533d-winter-2005 26

Dry Collision Friction

- Coulomb friction: assume $\mu_s = \mu_k$ • (though in general, $\mu_s \ge \mu_k$)
- $m\Delta v_{T} = -\mu |m\Delta v_{N}| \frac{v_{T}^{before}}{|v_{T}^{before}|}$ υ Sliding:
- ♦ Static: $|m\Delta v_T| \le \mu |m\Delta v_N|$
- Divide through by m to find change in tangential velocity

Simplifying...

- Use $v_T^{after} = v_T^{before} + \Delta v_T$
- Static case is $v_T^{after} = 0 \implies \Delta v_T = -v_T^{before}$ when $|v_T^{before}| \le \mu \Delta v_N$

hefore

Sliding case is

$$v_T^{after} = v_T^{before} - \mu |\Delta v_N| \frac{v_T^{before}}{|v_T^{before}|}$$

Common quantities!

cs533d-winter-2005 28

Dry Collision Friction Formula

- Combine into a max
 - First case is static where v_{T} drops to zero if inequality is obeyed
 - Second case is sliding, where v_{T} reduced in magnitude (but doesn't change signed direction)

$$v_T^{after} = \max\left(0, 1 - \frac{\mu |\Delta v_N|}{|v_T^{before}|}\right) v_T^{before}$$

Where are we?

- So we now have a simplified physics model for
 - Frictionless, dry friction, and wet friction collision
 - Some idea of what contact is
- So now let's start on numerical methods to simulate this

"Exact" Collisions

- For very simple systems (linear or maybe parabolic trajectories, polygonal objects)
 - Find exact collision time (solve equations)
 - Advance particle to collision time
 - Apply formula to change velocity (usually dry friction, unless there is lubricant)
 - Keep advancing particle until end of frame or next collision
- Can extend to more general cases with conservative ETA's, or root-finding techniques
- Expensive for lots of coupled particles!

cs533d-winter-2005 31

Fixed collision time stepping

- Even "exact" collisions are not so accurate in general
 - [hit or miss example]
- So instead fix ∆t_{collision} and don't worry about exact collision times
 - Could be one frame, or 1/8th of a frame, or ...
- Instead just need to know did a collision happen during ∆t_{collision}
 - If so, process it with formulas

cs533d-winter-2005 32

Relationship with regular time integration

- Forgetting collisions, advance from x(t) to x(t+∆t_{collision})
 Could use just one time step, or subdivide into lots of small time steps
- We approximate velocity (for collision processing) as constant over time step:

$$v = \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

 If no collisions, forget this average v, and keep going with underlying integration

cs533d-winter-2005 33

Numerical Implementation 1

- Get candidate x(t+∆t)
- Check to see if x(t+∆t) is inside object (interference)
- ♦ If so
 - Get normal n at t+∆t
 - Get new velocity v from collision response formulas and average v
 - Replay x(t+Δt)=x(t)+Δtv

cs533d-winter-2005 34