
1cs533d-winter-2005

Notes

! Finish up time integration methods today

! Assignment 1 is mostly out
• Later today will make it compile etc.

2cs533d-winter-2005

Time scales

! [work out]
! For position dependence, characteristic time

interval is

! For velocity dependence, characteristic time
interval is

! Note: matches symplectic Euler stability limits
• If you care about resolving these time scales, there’s

not much point in going to implicit methods

!

"t =O
1

K

$
%

&

'
(

!

"t =O
1

D

$
%

&

'
(

3cs533d-winter-2005

Mixed Implicit/Explicit

! For some problems, that square root can
mean velocity limit much stricter

! Or, we know we want to properly resolve
the position-based oscillations, but don’t
care about damping

! Go explicit on position, implicit on velocity
• Cuts the number of equations to solve in half

• Often, a(x,v) is linear in v, though nonlinear in
x; this way we avoid Newton iteration

4cs533d-winter-2005

Newmark Methods

! A general class of methods

! Includes Trapezoidal Rule for example
(!=1/4, "=1/2)

The other major member of the family is Central
Differencing (!=0, "=1/2)

• This is mixed Implicit/Explicit

!

x
n+1 = x

n
+ "tv

n
+ 1

2
"t 2 1# 2$()an + 2$a

n+1[]
v
n+1 = v

n
+ "t 1# %()an + %a

n+1[]

5cs533d-winter-2005

Central Differencing

! Rewrite it with intermediate velocity:

! Looks like a hybrid of:
• Midpoint (for position), and

• Trapezoidal Rule (for velocity - split into
Forward and Backward Euler half steps)

!

v
n+ 12

= v
n

+ 1

2
"ta x

n
,v

n()
x
n+1 = x

n
+ "tv

n+ 12

v
n+1 = v

n+ 12
+ 1

2
"ta x

n+1,vn+1()

6cs533d-winter-2005

Central: Performance

! Constant acceleration: great
• 2nd order accurate

! Position dependence: good
• Conditionally stable, no damping

! Velocity dependence: good
• Stable, but only conditionally monotone

! Can we change the Trapezoidal Rule to
Backward Euler and get unconditional
monotonicity?

7cs533d-winter-2005

Staggered Implicit/Explicit

! Like the staggered Symplectic Euler, but use
B.E. in velocity instead of F.E.:

! Constant acceleration: great

! Position dependence: good (conditionally stable,
no damping)

! Velocity dependence: great (unconditionally
monotone)

!

v
n+ 12

= v
n" 12

+ 1

2
(t
n+1 " tn"1)a xn,vn+ 12()

x
n+1 = x

n
+ #tv

n+ 12

8cs533d-winter-2005

Summary (2nd order)

! Depends a lot on the problem
• What’s important: gravity, position, velocity?

! Explicit methods from last class are probably
bad

! Symplectic Euler is a great fully explicit method
(particularly with staggering)
• Switch to implicit velocity step for more stability, if

damping time step limit is the bottleneck

! Implicit Compromise method
• Fully stable, nice behaviour

9cs533d-winter-2005

Example Motions

10cs533d-winter-2005

Simple Velocity Fields

! Can superimpose (add) to get more
complexity

! Constants: v(x)=constant

! Expansion/contraction: v(x)=k(x-x0)
• Maybe make k a function of distance |x-x0|

! Rotation:
• Maybe scale by a function of distance |x-x0| or

magnitude

!

v(x) =" # x $ x
0()

!

" # x $ x
0()

11cs533d-winter-2005

Noise

! Common way to perturb fields that are too
perfect and clean

! Noise (in graphics) =
a smooth, non-periodic field with clear length-
scale

! Read Perlin, “Improving Noise”, SIGGRAPH’02
• Hash grid points into an array of random slopes that

define a cubic Hermite spline

! Can also use a Fourier construction
• Band limited signal

• Better, more control, but (possibly much) more
expensive

• FFT - check out www.fftw.org for one good
implementation 12cs533d-winter-2005

Example Forces

! Gravity: Fgravity=mg (a=g)

! If you want to do orbits

! Note x0 could be a fixed point (e.g. the Sun) or
another particle
• But make sure to add the opposite and equal force to

the other particle if so!
!

Fgravity = "GmM
0

x " x
0

x " x
0

3

13cs533d-winter-2005

Drag Forces

! Air drag: Fdrag=-Dv
• If there’s a wind blowing with velocity vw then

Fdrag=-D(v-vw)

! D should be a function of the cross-section
exposed to wind
• Think paper, leaves, different sized objects, …

! Depends in a difficult way on shape too
• Hack away!

14cs533d-winter-2005

Spring Forces

! Springs: Fspring=-K(x-x0)
• x0 is the attachment point of the spring

• Could be a fixed point in the scene

• …or somewhere on a character’s body

• …or the mouse cursor

• …or another particle (but please add equal
and oppposite force!)

15cs533d-winter-2005

Nonzero Rest Length Spring

! Need to measure the “strain”:
the fraction the spring has stretched from
its rest length L

!

Fspring = "K
x " x

0

L
"1

$
%

&

'
(
x " x

0

x " x
0

16cs533d-winter-2005

Spring Damping

! Simple damping: Fdamp=-D(v-v0)
• But this damps rotation too!

! Better spring damping:
 Fdamp=-D(v-v0)•u u
• Here u is (x-x0)/|x-x0|, the spring direction

! [work out 1d case]

! Critical damping

!

D = 2 mK

17cs533d-winter-2005

Collision and Contact

18cs533d-winter-2005

Collision and Contact

! We can integrate particles forward in time, have
some ideas for velocity or force fields

! But what do we do when a particle hits an
object?

! No simple answer, depends on problem as
always

! General breakdown:
• Interference vs. collision detection

• What sort of collision response: (in)elastic, friction

• Robustness: do we allow particles to actually be
inside an object?

19cs533d-winter-2005

! Interference (=penetration)
• Simply detect if particle has ended up inside object,

push it out if so

• Works fine if [w=object width]
• Otherwise could miss interaction, or push dramatically

the wrong way

• The ground, thick objects and slow particles

! Collision
• Check if particle trajectory intersects object

• Can be more complicated, especially if object is
moving too…

! For now, let’s stick with the ground (y=0)

!

v"t < 1

2
w

Interference vs. Collision

20cs533d-winter-2005

Repulsion Forces

! Simplest idea (conceptually)
• Add a force repelling particles from objects when they

get close (or when they penetrate)

• Then just integrate: business as usual
• Related to penalty method:

instead of directly enforcing constraint (particles stay
outside of objects), add forces to encourage
constraint

! For the ground:
• Frepulsion=-Ky when y<0 [think about gravity!]

• …or -K(y-y0)-Dv when y<y0 [still not robust]
• …or K(1/y-1/y0)-Dv when y<y0

21cs533d-winter-2005

Repulsion forces

! Difficult to tune:
• Too large extent: visible artifact

• Too small extent: particles jump straight through, not
robust (or time step restriction)

• Too strong: stiff time step restriction, or have to go
with implicit method - but Newton will not converge if
we guess past a singular repulsion force

• Too weak: won’t stop particles

! Rule-of-thumb: don’t use them unless they really
are part of physics
• Magnetic field, aerodynamic effects, …

22cs533d-winter-2005

Collision and Contact

! Collision is when a particle hits an object
• Instantaneous change of velocity

(discontinuous)

! Contact is when particle stays on object
surface for positive time
• Velocity is continuous

• Force is only discontinuous at start

23cs533d-winter-2005

! At point of contact, find normal n
• For ground, n=(0,1,0)

! Decompose velocity into
• normal component vN=(v•n)n and

• tangential component vT=v-vN

! Normal response:
• $=0 is fully inelastic

• $=1 is elastic

Tangential response
• Frictionless:

Then reassemble velocity v=vN+vT

!

vN
after = "#vN

before
, # $ 0,1[]

!

vT
after

= vT
before

Frictionless Collision Response

24cs533d-winter-2005

Contact Friction

! Some normal force is keeping vN=0

! Coulomb’s law (“dry” friction)
• If sliding, then kinetic friction:

• If static (vT=0) then stay static as long as

! “Wet” friction = damping!

Ffriction = "µk Fnormal
vT

vT

!

Ffriction " µs Fnormal

!

Ffriction = "DFnormal vT

25cs533d-winter-2005

Collision Friction

! Impulse assumption:
• Collision takes place over a very small time interval

(with very large forces)

• Assume forces don’t vary significantly over that
interval---then can replace forces in friction laws with
impulses

• This is a little controversial, and for articulated rigid
bodies can be demonstrably false

• But nevertheless…

• Normal impulse is just m!vN=m(1+$)vN

• Tangential impulse is m!vT

26cs533d-winter-2005

! So replacing force with impulse:

! Divide through by m, use

! Clearly could have monotonicity/stability issue
! Fix by capping at vT=0, or better approximation

for time interval
e.g.

!

m"v
T

= #Dm"v
N
v
T

!

vT
after

= vT
before

+ "vT

!

vT
after = vT

before
"D#vN vT

before

= 1"D#vN()vT
before

!

vT
after

= e
"D #vN vT

before

Wet Collision Friction

27cs533d-winter-2005

!

m"vT = #µm"vN
vT
before

vT
before

!

m"v
T
µm"v

N

Dry Collision Friction

! Coulomb friction: assume µs = µk

• (though in general, µs " µk)

Sliding:

! Static:

! Divide through by m to find change in
tangential velocity

28cs533d-winter-2005

Simplifying…

! Use

! Static case is
when

! Sliding case is

! Common quantities!

!

vT
after

= vT
before

+ "vT

!

vT
after

= 0 " #vT = $vT
before

!

vT
before

" µ#vN

!

vT
after = vT

before
"µ#vN

vT
before

vT
before

29cs533d-winter-2005

Dry Collision Friction Formula

! Combine into a max
• First case is static where vT drops to zero if

inequality is obeyed

• Second case is sliding, where vT reduced in
magnitude (but doesn’t change signed
direction)

!

vT
after =max 0,1"

µ#vN
vT
before

$

%

&
&

'

(

)
) vT

before

30cs533d-winter-2005

Where are we?

! So we now have a simplified physics
model for
• Frictionless, dry friction, and wet friction

collision

• Some idea of what contact is

! So now let’s start on numerical methods to
simulate this

31cs533d-winter-2005

“Exact” Collisions

! For very simple systems (linear or maybe
parabolic trajectories, polygonal objects)
• Find exact collision time (solve equations)

• Advance particle to collision time

• Apply formula to change velocity
(usually dry friction, unless there is lubricant)

• Keep advancing particle until end of frame or next
collision

! Can extend to more general cases with
conservative ETA’s, or root-finding techniques

! Expensive for lots of coupled particles!

32cs533d-winter-2005

Fixed collision time stepping

! Even “exact” collisions are not so accurate in
general
• [hit or miss example]

! So instead fix !tcollision and don’t worry about
exact collision times
• Could be one frame, or 1/8th of a frame, or …

! Instead just need to know did a collision happen
during !tcollision

• If so, process it with formulas

33cs533d-winter-2005

Relationship with regular time
integration

! Forgetting collisions, advance from x(t) to x(t+!tcollision)
• Could use just one time step, or subdivide into lots of small time

steps

! We approximate velocity (for collision processing) as
constant over time step:

! If no collisions, forget this average v, and keep going
with underlying integration

!

v =
x(t + "t) # x(t)

"t

34cs533d-winter-2005

Numerical Implementation 1

! Get candidate x(t+!t)

! Check to see if x(t+!t) is inside object
(interference)

! If so
• Get normal n at t+!t

• Get new velocity v from collision response
formulas and average v

• Replay x(t+!t)=x(t)+!tv

