- Please read
 - O'Brien and Hodgins, "Graphical modeling and animation of brittle fracture", SIGGRAPH '99
 - O'Brien, Bargteil and Hodgins, "Graphical modeling and animation of ductile fracture", SIGGRAPH '02, pp. 291--294.

cs533d-winter-2005

cs533d-winter-2005

3

Discrete Mean Curvature

- [draw triangle pair]
- υ κ for that chunk varies as $K \sim \frac{1}{h_1 + h_2}$
- So integral of κ^2 varies as

$$\begin{split} W &= \sum_{e} \frac{\theta^{2}}{\left(h_{1} + h_{2}\right)^{2}} \left(\left| \Delta_{1} \right| + \left| \Delta_{2} \right| \right) \\ &\sim \sum_{e} \frac{\theta^{2} |e|^{2}}{\left| \Delta_{1} \right| + \left| \Delta_{2} \right|} \end{split}$$

- Edge length, triangle areas, normals are all easy to calculate
- $\upsilon_{-}\theta$ needs inverse trig functions
- $\upsilon~$ But θ^2 behaves a lot like 1-cos($\theta/2)$ over interval [-\pi,\pi] [draw picture]

cs533d-winter-2005 2

Bending Force

 Force on x_i due to bending element involving i is then

$$F_{i} = -B\frac{\partial W}{\partial x_{i}} \sim -B\frac{|e|^{2}}{|\Delta_{1}| + |\Delta_{2}|}\sin\left(\frac{\theta}{2}\right)\frac{\partial \theta}{\partial x_{i}}$$

 Treat first terms as a constant (precompute in the rest configuration)

$$\sin\frac{\theta}{2} = \pm \sqrt{\frac{1}{2} \left(1 - n_1 \cdot n_2\right)}$$

- Sign should be the same as $\sin \theta = n_1 \times n_2 \cdot \hat{e}$
- Still need to compute ∂θ/∂x_i

Gradient of Theta

- Can use implicit differentiation on cos(theta)=n₁•n₂
 - Not too much fun
 - Automatic differentiation: Grinspun et al. "Discrete Shells, SCAN'03
 - Modal analysis: Bridson et al., "Simulation of clothing...", SCA'03

cs533d-winter-2005

Damping hyper-elasticity

- ◆ Suppose W is of the form C C / 2
 - C is a vector or function that is zero at undeformed state
- Then $F = -\partial C / \partial X \cdot C$
 - C says how much force, $\partial C/\partial X$ gives the direction
- Damping should be in the same direction, and proportional to ∂C/∂t:

 $\mathsf{F} = -\partial \mathsf{C} / \partial \mathsf{X} \cdot \partial \mathsf{C} / \partial \mathsf{t}$

Can simplify with chain rule:
F = -∂C/∂X • (∂C/∂X v)

Hacking in strain limits

- Especially useful for cloth:
 - Biphasic nature: won't easily extend past a certain point
- Sweep through elements (e.g. springs)
 - If strain is beyond given limit, apply force to return it to closest limit
 - Also damp out strain rate to zero
- No stability limit for fairly stiff behaviour
- See X. Provot, "Deformation constraints in a mass-spring model to describe rigid cloth behavior", Graphics Interface '95

Elastic Collisions

Simplest approach

- Treat it just as a particle system:
 - Check if (surface) particles hit objects
 - Process collisions independently if so
- Inelastic collisions (and simplified resolution) algorithm) are perfectly appropriate
 - Elasticity/damping inside object itself provides the rebound...
- Problems:
 - Coupling with uncollided particles?
 - Thin objects (like cloth or hair)?
 - Deformable vs. deformable?

cs533d-winter-2005

Coupling with rest of object

- Velocity smoothing:
 - Figure out collision velocity, call it v_{n+1/2} $x_{n+1} = x_n + \Delta t v_{n+1/2}$

 - Then do an implicit velocity update: $v_{n+1}=v_{n+1/2} + \Delta t/2 a(x_{n+1},v_{n+1})$ See Bridson et al., "Robust treatment of collisions...", SIGGRAPH '02
- Stronger velocity smoothing
 - Constrain normal velocity of colliding nodes
 - See Irving et al., "Invertible finite elements...", SCA **'04**
- Couple into full implicit solve (position as well) See Baraff & Witkin, "Large steps in cloth simulation", SIGGRAPH '98

Thin objects

- Collision detection is essential
 - Otherwise particles will jump through objects
 - Triangle mesh vs. mesh requires point vs. face AND edge vs. edge
 - Otherwise we can have significant tangling

cs533d-winter-2005 10

Distributing impulses

- If an edge collides, how do we distribute impulse between two endpoints?
- If a triangle collides, how do we distribute impulse between three corners?
- Weight with barycentric coordinates
 - And require that interpolated point change in velocity is what is required
- See Bridson et al., "Robust treatment...", SIGGRAPH '02

Scalable collision processing

- Cloth: fixing one collision can cause others
 - Easy to find situations where 1000+ iterations reauired
- Rigid impact zones: X. Provot, "Collision and self-collision handling in cloth model dedicated to design garment" Graphics Interface 1997 And Bridson Ph.D. thesis 2003
- When two regions collide, merge region and project velocities onto rigid or affine motions
- Efficiently resolves everything (but overdamped)
- Use as the last resort

cs533d-winter-2005

cs533d-winter-2005

9

7

But not enough

Additional repulsions

- Avoid alligator teeth problem triangle locking - with three steps:
 - Apply soft repulsion forces (at level comparable to geometry approximation)
 - Detect collisions, apply impulses
 - · Rigid impact zones

cs533d-winter-2005 13

Plasticity & Fracture

- If material deforms too much, becomes permanently deformed: plasticity
 - Yield condition: when permanent deformation starts happening ("if stress is large enough")
 - Elastic strain: deformation that can disappear in the absence of applied force
 - Plastic strain: permanent deformation accumulated since initial state
 - Total strain: total deformation since initial state
 - Plastic flow: when yield condition is met, how elastic strain is converted into plastic strain
- Fracture: if material deforms too much, breaks
 - Fracture condition: "if stress is large enough"

cs533d-winter-2005 15

Plasticity & Fracture

For springs (1D)

- Go back to Terzopoulos and Fleischer
- Plasticity: change the rest length if the stress (tension) is too high
 - Maybe different yielding for compression and tension
 - Work hardening: make the yield condition more stringent as material plastically flows
 - Creep: let rest length settle towards current length at a given rate
- Fracture: break the spring if the stress is too high
 - Without plasticity: "brittle"
 - With plasticity first: "ductile"

cs533d-winter-2005 16

cs533d-winter-2005 14