Hyper-elasticity

- More reading on web site
 - Baraff & Witkin's classic cloth paper
 - Grinspun et al. on bending
 - Optional: Teran et al. on FVM in graphics

- Another common way to look at elasticity
 Useful for handling weird nonlinear compressibility laws, for reduced dimension models, and more
- Instead of defining stress, define an elastic potential energy
 - Strain energy density W=W(A)
 - W=0 for no deformation, W>0 for deformation
- Total potential energy is integral of W over object
- This is called hyper-elasticity or Green elasticity
- For most (the ones that make sense) stress-strain relationships can define W
- E.g. linear relationship: $\dot{W}=\sigma:\epsilon=trace(\sigma^{T}\epsilon)$

cs533d-winter-2005

Variational Derivatives

- Force is the negative gradient of potential
 Just like gravity
- What does this mean for a continuum?
 W=W(∂X/∂p), how do you do -d/dX?
- Variational derivative: $W_{total}[X + \varepsilon Y] = \int W \left(\frac{\partial X}{\partial p} + \varepsilon \frac{\partial Y}{\partial p}\right)$
 - So variational derivative is -∇•∂W/∂A
 - And f=∇•∂W/∂A
 - Then stress is ∂W/∂A

3

cs533d-winter-2005

Numerics

- Simpler approach: find discrete W_{total} as a sum of W's for each element
 - Evaluate just like FEM, or any way you want
- Take gradient w.r.t. positions {x_i}
 - Ends up being a Galerkin method
- Also note that an implicit method might need Jacobian = negative Hessian of energy
 - Must be symmetric, and at least near stable configurations must be negative definite

cs533d-winter-2005

Curve / Springs

- Take W(A)=1/2 E(IAI-1)² L for each segment
 Note factor of L: this is approximation to an integral over
- A=(x_{i+1}-x_i)/L is the deformation gradient for piecewise
- Then take derivative w.r.t. x_i to get this element's
- contribution to force on i
 Lo and behold [exercise] get exactly the original spring force
- Note: defining stress and strain would be more complicated, because of the dimension differences
 - A is 3x1, not square

Surface elasticity

- ♦ For linear stress-strain, can use W(A)=σ:G= σ_{ij}G_{ij}
- υ The simplest model from before gives $W=\lambda G_{kk}{}^2+\mu G_{ij}G_{ij}$
- υ Remember G=1/2(A^TA-I)
- υ Tedious to differentiate, but doable
 - Tensors and chain rule over and over
- υ Let's leave it that
 - In practice, springs with speed-of-sound heuristic are good enough most of the time

Bending energy

- Bending is very difficult to get a handle on without variational approach
- Bending strain energy density: W=1/2 B κ²
- υ Here κ is mean curvature
 - · Look at circles that fit surface
 - · Maximum radius R and minimum radius r
 - $\kappa = (1/R + 1/r)/2$
 - · Can define directly from second derivatives of X(p)
 - Uh-oh second derivatives? [FEM nastier]
 - W is 2nd order, stress is 3rd order, force is 4th order derivatives!

cs533d-winter-2005 7

Fourth order problems

- · Linearize and simplify drastically, look for steady-state solution (F=0): spline equations
 - · Essentially 4th derivatives are zero
 - · Solutions are (bi-)cubics
- Model (nonsteady) problem: x_{tt}=-x_{pppp}
 Assume solution x(p,t) = e^{√-lk(p-ct)}
 - Wave of spatial frequency k, moving at speed c
 - [solve for wave parameters]
 - · Dispersion relation: small waves move really fast
 - CFL limit (and stability): for fine grids, BAD ٠
 - · Thankfully, we rarely get that fine

cs533d-winter-2005

8

Implicit/Explicit Methods

- Implicit bending is painful
- In graphics, usually unnecessary
 - · Dominant forces on the grid resolution we use tend to be the 2nd order terms: stretching etc.
- But nice to go implicit to avoid time step restriction for stretching terms
- No problem: treat some terms (bending) explicitly, others (stretching) implicitly
 - $v_{n+1} = v_n + \Delta t / m(F_1(x_n, v_n) + F_2(x_{n+1}, v_{n+1}))$
 - All bending is in F_1 , half the elastic stretch in F_1 , half the elastic stretch in F_2 , all the damping in F_2

cs533d-winter-2005 9

Discrete Mean Curvature

- ◆ [draw triangle pair]
- υ κ for that chunk varies as $h_1 + h_2$
- So integral of κ² varies as

$$W = \sum_{e} \frac{\theta^2}{\left(h_1 + h_2\right)^2} \left(\left| \Delta_1 \right| + \left| \Delta_2 \right| \right)$$
$$\sim \sum_{e} \frac{\theta^2 |e|^2}{\left| \Delta_1 \right| + \left| \Delta_2 \right|}$$

 θ

- Edge length, triangle areas, normals are all easy to calculate
- υ θ needs inverse trig functions
- υ But θ^2 behaves a lot like 1-cos($\theta/2$) over interval [- π,π] [draw picture]

cs533d-winter-2005 10