
1cs533d-term1-2005

Notes

! Assignment 1 due today

2cs533d-term1-2005

Geometry

! The plane is easy
• Interference: y<0

• Collision: y became negative

• Normal: constant (0,1,0)

! Can work out other analytic cases (e.g. sphere)
! More generally: triangle meshes and level sets
• Heightfields sometimes useful - permit a few

simplifications in speeding up tests - but special case

• Splines and subdivision surfaces generally too
complicated, and not worth the effort

• Blobbies, metaballs, and other implicits are usually
not as well behaved as level sets

• Point-set surfaces: becoming a hot topic

3cs533d-term1-2005

Implicit Surfaces

! Define surface as where some scalar function of
x,y,z is zero:
• {x,y,z | F(x,y,z)=0}

! Interior (can only do closed surfaces!) is where
function is negative
• {x,y,z | F(x,y,z)<0}

! Outside is where it!s positive
• {x,y,z | F(x,y,z)>0}

! Ground is F=y

! Example: F=x2+y2+z2-1 is the unit sphere

4cs533d-term1-2005

Testing Implicit Surfaces

! Interference is simple:
• Is F(x,y,z)<0?

! Collision is a little trickier:
• Assume constant velocity

x(t+h)=x(t)+hv

• Then solve for h: F(x(t+h))=0

• This is the same as ray-tracing implicit surfaces…

• But if moving, then need to solve
F(x(t+h), t+h)=0

• Try to bound when collision can occur (find a sign
change in F) then use secant search

5cs533d-term1-2005

Implicit Surface Normals

! Outward normal at surface is just

! Most obvious thing to use for normal at a point
inside the object (or anywhere in space) is the
same formula
• Gradient is steepest-descent direction, so hopefully

points to closest spot on surface: direction to closest
surface point is parallel to normal there

• We really want the implicit function to be monotone as
we move towards/away from the surface

�

n =
!F

!F

6cs533d-term1-2005

Building Implicit Surfaces

! Planes and spheres are useful, but want to be
able to represent (approximate) any object

! Obviously can write down any sort of functions,
but want better control
• Exercise: write down functions for some common

shapes (e.g. cylinder?)

! Constructive Solid Geometry (CSG)
• Look at set operations on two objects

! [Complement, Union, Intersection, …]

• Using primitive F()!s, build up one massive F()

• But only sharp edges…

7cs533d-term1-2005

Getting back to particles

! “Metaballs”, “blobbies”, …
! Take your particle system, and write an implicit

function:

• Kernel function f is something smooth like a Gaussian

• Strength ! and radius r of each particle (and its
position x) are up to you

• Threshold t is also up to you (controls how thick the
object is)

! See make_blobbies for one choice…

�

F(x) = ! i f
x " xi
ri

$
%

&

'
(

i

) " t

�

f (x) = e
!x

2

8cs533d-term1-2005

Problems with these

! They work beautifully for some things!
• Some machine parts, water droplets, goo, …

! But, the more complex the surface, the more
expensive F() is to evaluate
• Need to get into more complicated data structures to

speed up to acceptable

! Hard to directly approximate any given geometry

! Monotonicity - how reliable is the normal?

9cs533d-term1-2005

Signed Distance

! Note infinitely many different F represent the
same surface

! What!s the nicest F we can pick?

! Obviously want smooth enough for gradient
(almost everywhere)

! It would be nice if gradient really did point to
closest point on surface

! Really nice (for repulsions etc.) if value indicated
how far from surface

! The answer: signed distance

10cs533d-term1-2005

Defining Signed Distance

! Generally use the letter " instead of F

Magnitude is the distance from the
surface
• Note that function is zero only at surface

Sign of "(x) indicates inside (<0) or
outside(>0)

[examples: plane, sphere, 1d]

�

!(x)

11cs533d-term1-2005

Closest Point Property

! Gradient is steepest-ascent direction
• Therefore, in direction of closest point on

surface (shortest distance between two points
is a straight line)

! The closest point is by definition distance
|"| away

So closest point on surface from x is

�

x !"(x)
#"

#"
12cs533d-term1-2005

Unit Gradient Property

! Look along line from closest point on
surface to x

! Value is distance along line

! Therefore directional derivative is 1:

! But plug in the formula for n [work out]

! So gradient is unit length:

�

!" # n =1

�

!" =1

13cs533d-term1-2005

Aside: Eikonal equation

! There!s a PDE!
• Called the Eikonal equation

• Important for all sorts of things

• Later in the course: figure out signed distance
function by solving the PDE…

�

!" =1

14cs533d-term1-2005

Aside: Spherical particles

! We have been assuming our particles
were just points

! With signed distance, can simulate
nonzero radius spheres
• Sphere of radius r intersects object if and only

if "(x)<r

• i.e. if and only if "(x)-r<0

• So looks just like points and an “expanded”
version of the original implicit surface -
normals are exactly the same, …

15cs533d-term1-2005

Level Sets

! Use a discretized approximation of "

Instead of carrying around an exact formula
store samples of " on a grid (or other structure)

Interpolate between grid points to get full
definition (fast to evaluate!)
• Almost always use trilinear [work out]

If the grid is fine enough, can approximate any
well-behaved closed surface
• But if the features of the geometry are the same size

as the grid spacing or smaller, expect BAD behaviour

Note that properties of signed distance only hold
approximately!

16cs533d-term1-2005

Building Level Sets

! We!ll get into level sets more later on
• Lots of tools for constructing them from other

representations, for sculpting them directly, or
simulating them…

! For now: can assume given

! Or CSG: union and intersection with min and
max [show 1d]
• Just do it grid point by grid point

• Note that weird stuff could happen at sub-grid
resolution (with trilinear interpolation)

! Or evaluate from analytical formula

17cs533d-term1-2005

Normals

! We do have a function F defined everywhere (with
interpolation)
• Could take its gradient and normalize

• But (with trilinear) it!s not smooth enough

! Instead use numerical approximation for gradient:

• Then, use trilinear interpolation to get (continuous) approximate
gradient anywhere

• Or instead apply finite difference formula to 6 trilinearly
interpolated points (mathematically equivalent)

• Normalize to get unit-length normal

�

gi, j ,k =
!i+1, j,k "!i"1, j,k

2#x
,
!i, j+1,k "!i, j"1,k

2#y
,
!i, j,k+1

"!i, j,k"1
2#z

$

%
&

'

(
)

18cs533d-term1-2005

Evaluating outside the grid

! Check if evaluation point x is outside the grid

! If outside - that!s enough for interference test

! But repulsion forces etc. may need an actual value

! Most reasonable extrapolation:
• A = distance to closest point on grid

• B = " at that point

• Lower bound on distance, correct asymptotically and continuous
(if level set doesn!t come to boundary of grid):

• Or upper bound on distance:

�

sign(B) A
2

+ B
2

�

B + sign(B)A

19cs533d-term1-2005

Triangles

! Given x1, x2, x3 the plane normal is

! Interference with a closed mesh
• Cast a ray to infinity, parity of number of

intersections gives inside/outside

! So intersection is more fundamental
• The same problem as in ray-tracing

�

n =
(x

2
! x

1
) " (x

3
! x

1
)

(x
2
! x

1
) " (x

3
! x

1
)

20cs533d-term1-2005

Triangle intersection

! The best approach: reduce to simple predicates
• Spend the effort making them exact, accurate, or at

least consistent

• Then it!s just some logic on top

• Common idea in computational geometry

! In this case, predicate is sign of signed volume
(is a tetrahedra inside-out?)

�

orient x0,x1,x2,x3() = sign det

x1 ! x0 y1 ! y0 z1 ! z0
x2 ! x0 y2 ! y0 z2 ! z0
x3 ! x0 y3 ! y0 z3 ! z0

"

$
$

%

&

'
'

21cs533d-term1-2005

Using orient()

! Line-triangle
• If line includes x4 and x5 then intersection if

orient(1,2,4,5)=orient(2,3,4,5)=orient(3,1,4,5)

• I.e. does the line pass to the left (right) of each
directed triangle edge?

• If normalized, the values of the determinants give the
barycentric coordinates of plane intersection point

! Segment-triangle
• Before checking line as above, also check if

orient(1,2,3,4) != orient(1,2,3,5)

• I.e. are the two endpoints on different sides of the
triangle?

22cs533d-term1-2005

Other Standard Approach

! Find where line intersects plane of triangle
! Check if it!s on the segment
! Find if that point is inside the triangle
• Use barycentric coordinates

! Slightly slower, but worse: less robust
• round-off error in intermediate result: the intersection

point

• What happens for a triangle mesh?

! Note the predicate approach, even with floating-
point, can handle meshes well
• Consistent evaluation of predicates for neighbouring

triangles

23cs533d-term1-2005

Distance to Triangle

! If surface is open, define interference in terms of
distance to mesh

! Typical approach: find closest point on triangle, then
distance to that point
• Direction to closest point also parallel to natural normal

! First step: barycentric coordinates
• Normalized signed volume determinants equivalent to solving

least squares problem of closest point in plane

! If coordinates all in [0,1] we!re done

! Otherwise negative coords identify possible closest
edges

! Find closest points on edges

24cs533d-term1-2005

Testing Against Meshes

! Can check every triangle if only a few, but
too slow usually

! Use an acceleration structure:
• Spatial decomposition:

background grid, hash grid, octree, kd-tree,
BSP-tree, …

• Bounding volume hierarchy:
axis-aligned boxes, spheres, oriented boxes,
…

25cs533d-term1-2005

Moving Triangles

! Collision detection: find a time at which particle
lies inside triangle

! Need a model for what triangle looks like at
intermediate times
• Simplest: vertices move with constant velocity,

triangle always just connects them up

! Solve for intermediate time when four points are
coplanar (determinant is zero)
• Gives a cubic equation to solve

! Then check barycentric coordinates at that time
• See e.g. X. Provot, “Collision and self-collision

handling in cloth model dedicated to design garment",
Graphics Interface!97

26cs533d-term1-2005

For Later…

! We now can do all the basic particle vs.
object tests for repulsions and collisions

! Once we get into simulating solid objects,
we!ll need to do object vs. object instead
of just particle vs. object

! Core ideas remain the same

