

Wet Collision Friction

- So replacing force with impulse: $m\Delta v_T = -D|m\Delta v_N|v_T$
- Divide through by m, use $v_T^{after} = v_T^{before} + \Delta v_T$

$$v_T^{system} = v_T^{system} - D|\Delta v_N|v_T^{system}$$
$$= (1 - D|\Delta v_N|)v_T^{before}$$

- Clearly could have monotonicity/stability issue
- ◆ Fix by capping at v_T=0, or better approximation for time interval
 e.g.
 v_T^{after} = e<sup>-D|∆v_N|v_T^{before}

 </sup>

Dry Collision Friction

- Coulomb friction: assume $\mu_s = \mu_k$
 - (though in general, $\mu_s \ge \mu_k$)

• Sliding:
$$m\Delta v_T = -\mu |m\Delta v_N| \frac{v_T^{before}}{|v_T^{before}|}$$

◆ Static: $|m\Delta v_T| \le \mu |m\Delta v_N|$

 Divide through by m to find change in tangential velocity

cs533d-term1-2005

cs533d-term1-2005

Simplifying...

- Use $v_T^{after} = v_T^{before} + \Delta v_T$
- Static case is $v_T^{after} = 0 \implies \Delta v_T = -v_T^{before}$ when $|v_T^{before}| \le \mu |\Delta v_N|$
- Sliding case is $v_T^{after} = v_T^{before} - \mu |\Delta v_N| \frac{v_T^{before}}{|v_T^{before}|}$
- Common quantities!

cs533d-term1-2005

cs533d-term1-2005

• Combine into a max • First case is static where v_T drops to zero if inequality is obeyed • Second case is sliding, where v_T reduced in magnitude (but doesn't change signed direction) $v_T^{after} = \max\left(0, 1 - \frac{\mu |\Delta v_N|}{|v_T^{before}|}\right) v_T^{before}$

"Exact" Collisions

- For very simple systems (linear or maybe parabolic trajectories, polygonal objects)
 - Find exact collision time (solve equations)
 - Advance particle to collision time
 - Apply formula to change velocity (usually dry friction, unless there is lubricant)
 - Keep advancing particle until end of frame or next collision
- Can extend to more general cases with conservative ETA's, or root-finding techniques
- Expensive for lots of coupled particles!

cs533d-term1-2005

Fixed collision time stepping

- Even "exact" collisions are not so accurate in general
 - [hit or miss example]
- So instead fix Δt_{collision} and don't worry about exact collision times
 - Could be one frame, or 1/8th of a frame, or ...
- Instead just need to know did a collision happen during Δt_{collision}
 - If so, process it with formulas

cs533d-term1-2005 10

Relationship with regular time integration

- Forgetting collisions, advance from x(t) to x(t+Δt_{collision})
 - Could use just one time step, or subdivide into lots of small time steps
- We approximate velocity (for collision processing) as constant over time step:

$$v = \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

If no collisions, just keep going with underlying integration

Numerical Implementation 1

- Get candidate x(t+∆t)
- Check to see if x(t+∆t) is inside object (interference)
- ♦ If so
 - Get normal n at t+∆t
 - Get new velocity v from collision response formulas applied to average v=(x(t+Δt)-x(t))/Δt
 - Integrate $x(t+\Delta t)=x(t+\Delta t)_{old} + \Delta t \Delta v$

Robustness?

- If a particle penetrates an object at end of candidate time step, we fix that
- But new position (after collision processing) could penetrate another object!
- Maybe this is fine-let it go until next time step
- But then collision formulas are on shaky ground...
- Switch to repulsion impulse if x(t) and x(t+Δt) both penetrate
 - Find Δv_{N} proportional to final penetration depth, apply friction as usual

cs533d-term1-2005 13

Making it more robust

- Other alternative:
 - After collision, check if new x(t+Δt) also penetrates
 - If so, assume a 2nd collision happened during the time step: process that one
 - Check again, repeat until no penetration
 - To avoid infinite loop make sure you lose kinetic energy (don't take perfectly elastic bounces, at least not after first time through)
 - Let's write that down:

cs533d-term1-2005 14

Numerical Implementation 2

- Get candidate $x(t+\Delta t)$
- While x(t+∆t) is inside object (interference)
 - Get normal n at t+∆t
 - Get new velocity v from collision response formulas and average v
 - Integrate collision: $x(t+\Delta t)=x(t+\Delta t)_{old}+\Delta t\Delta v$
- Now can guarantee that if we start outside objects, we end up outside objects

Micro-Collisions

- These are "micro-collision" algorithms
- Contact is modeled as a sequence of small collisions
 - We're replacing a continuous contact force with a sequence of collision impulses
- Is this a good idea?
 - [block on incline example]
- More philosophical question: how can contact possibly begin without fully inelastic collision?

15

Improving Micro-Collisions

- Really need to treat contact and collision differently, even if we use the same friction formulas
- ♦ Idea:
 - Collision occurs at start of time step
 - Contact occurs during whole duration of time step

cs533d-term1-2005 17

Numerical Implementation 3

- Start at x(t) with velocity v(t), get candidate position x(t+∆t)
- Check if x(t+∆t) penetrates object
 - If so, process elastic collision using v(t) from start of step, not average velocity
 - Replay from x(t) with modified v(t) or simply add ΔtΔv to x(t+Δt) instead of re-integrating
 - Repeat check a few (e.g. 3) times if you want
- While x(t+∆t) penetrates object
 - Process inelastic contact (ε=0) using average v
 - Integrate +Δt Δv

cs533d-term1-2005 18

Why does this work?

- If object resting on plane y=0, v(t)=0 though gravity will pull it down by the end of the timestep, t+∆t
- In the new algorithm, elastic bounce works with pre-gravity velocity v(t)=0
 - So no bounce
- Then contact, which is inelastic, simply adds just enough Δv to get back to v(t+Δt)=0
 - Then $x(t+\Delta t)=0$ too
- NOTE: if ε=0 anyways, no point in doing special first step - this algorithm is equivalent to the previous one

Moving objects

- Same algorithms, and almost same formulas:
 - Need to look at relative velocity V_{particle}-V_{object} instead of just particle velocity
 - As before, decompose into normal and tangential parts, process the collision, and reassemble a relative velocity
 - Add object velocity to relative velocity to get final particle velocity
- Be careful when particles collide:
 - Same relative Δv but account for equal and opposite forces/impulses with different masses...

Moving Objects...

- Also, be careful with interference/collision detection
 - Want to check for interference at end of time step, so use object positions there
 - Objects moving during time step mean more complicated trajectory intersection for collisions

Collision Detection

- We have basic time integration for particles in place now
- Assumed we could just do interference detection, but...
- Detecting collisions over particle trajectories can be dropped in for more robustness - algorithms don't change
 - But use the normal at the collision time

cs533d-term1-2005 21