
1cs533d-term1-2005

Notes

! Typo in test.rib --- fixed on the web now
(PointsPolygon --> PointsPolygons)

2cs533d-term1-2005

Contact Friction

! Some normal force is keeping vN=0

! Coulomb!s law (“dry” friction)
• If sliding, then kinetic friction:

• If static (vT=0) then stay static as long as

! “Wet” friction = damping�

Ffriction = !µk Fnormal
vT

vT

�

Ffriction ! µs Fnormal

�

Ffriction = !DFnormal vT

3cs533d-term1-2005

Collision Friction

! Impulse assumption:
• Collision takes place over a very small time interval

(with very large forces)

• Assume forces don!t vary significantly over that
interval---then can replace forces in friction laws with
impulses

• This is a little controversial, and for articulated rigid
bodies can be demonstrably false, but nevertheless…

• Normal impulse is just m"vN=m(1+!)vN

• Tangential impulse is m"vT

4cs533d-term1-2005

! So replacing force with impulse:

! Divide through by m, use

! Clearly could have monotonicity/stability issue
! Fix by capping at vT=0, or better approximation

for time interval
e.g.

�

m!v
T

= "Dm!v
N
v
T

�

vT
after

= vT
before

+ !vT

�

vT
after

= vT
before

!D"vN vT
before

= 1!D"vN()vT
before

�

vT
after

= e
!D "vN vT

before

Wet Collision Friction

5cs533d-term1-2005

�

m!vT = "µm!vN
vT
before

vT
before

�

m!v
T
" µm!v

N

Dry Collision Friction

! Coulomb friction: assume µs = µk

• (though in general, µs # µk)

" Sliding:

! Static:

! Divide through by m to find change in
tangential velocity

6cs533d-term1-2005

Simplifying…

! Use

! Static case is
when

! Sliding case is

! Common quantities!

�

vT
after

= vT
before

+ !vT

�

vT
after

= 0 ! "vT = #vT
before

�

vT
before

! µ"vN

�

vT
after

= vT
before

! µ"vN
vT
before

vT
before

7cs533d-term1-2005

Dry Collision Friction Formula

! Combine into a max
• First case is static where vT drops to zero if

inequality is obeyed

• Second case is sliding, where vT reduced in
magnitude (but doesn!t change signed
direction)

�

vT
after

=max 0,1!
µ"vN
vT
before

$

%
%

&

'

(
(
vT
before

8cs533d-term1-2005

Where are we?

! So we now have a simplified physics
model for
• Frictionless, dry friction, and wet friction

collision

• Some idea of what contact is

! So now let!s start on numerical methods to
simulate this

9cs533d-term1-2005

“Exact” Collisions

! For very simple systems (linear or maybe
parabolic trajectories, polygonal objects)
• Find exact collision time (solve equations)

• Advance particle to collision time

• Apply formula to change velocity
(usually dry friction, unless there is lubricant)

• Keep advancing particle until end of frame or next
collision

! Can extend to more general cases with
conservative ETA!s, or root-finding techniques

! Expensive for lots of coupled particles!

10cs533d-term1-2005

Fixed collision time stepping

! Even “exact” collisions are not so accurate in
general
• [hit or miss example]

! So instead fix "tcollision and don!t worry about
exact collision times
• Could be one frame, or 1/8th of a frame, or …

! Instead just need to know did a collision happen
during "tcollision

• If so, process it with formulas

11cs533d-term1-2005

Relationship with regular time
integration

! Forgetting collisions, advance from x(t) to x(t+"tcollision)
• Could use just one time step, or subdivide into lots of small time

steps

! We approximate velocity (for collision processing) as
constant over time step:

! If no collisions, just keep going with underlying
integration

�

v =
x(t + !t) " x(t)

!t

12cs533d-term1-2005

Numerical Implementation 1

! Get candidate x(t+"t)

! Check to see if x(t+"t) is inside object
(interference)

! If so
• Get normal n at t+"t

• Get new velocity v from collision response
formulas applied to average v=(x(t+"t)-x(t))/"t

• Integrate x(t+"t)=x(t+"t)old +"t"v

13cs533d-term1-2005

Robustness?

! If a particle penetrates an object at end of
candidate time step, we fix that

! But new position (after collision processing)
could penetrate another object!

! Maybe this is fine-let it go until next time step

! But then collision formulas are on shaky
ground…

! Switch to repulsion impulse if x(t) and x(t+"t)
both penetrate
• Find "vN proportional to final penetration depth, apply

friction as usual

14cs533d-term1-2005

Making it more robust

! Other alternative:
• After collision, check if new x(t+"t) also

penetrates

• If so, assume a 2nd collision happened during
the time step: process that one

• Check again, repeat until no penetration

• To avoid infinite loop make sure you lose
kinetic energy (don!t take perfectly elastic
bounces, at least not after first time through)

• Let!s write that down:

15cs533d-term1-2005

Numerical Implementation 2

! Get candidate x(t+"t)

! While x(t+"t) is inside object (interference)
• Get normal n at t+"t

• Get new velocity v from collision response formulas
and average v

• Integrate collision: x(t+"t)=x(t+"t)old +"t"v

! Now can guarantee that if we start outside
objects, we end up outside objects

16cs533d-term1-2005

Micro-Collisions

! These are “micro-collision” algorithms

! Contact is modeled as a sequence of small
collisions
• We!re replacing a continuous contact force with a

sequence of collision impulses

! Is this a good idea?
• [block on incline example]

! More philosophical question: how can contact
possibly begin without fully inelastic collision?

17cs533d-term1-2005

Improving Micro-Collisions

! Really need to treat contact and collision
differently, even if we use the same friction
formulas

! Idea:
• Collision occurs at start of time step

• Contact occurs during whole duration of time
step

18cs533d-term1-2005

Numerical Implementation 3

! Start at x(t) with velocity v(t), get candidate
position x(t+"t)

! Check if x(t+"t) penetrates object
• If so, process elastic collision using v(t) from start of

step, not average velocity

• Replay from x(t) with modified v(t) or simply
add "t"v to x(t+"t) instead of re-integrating

• Repeat check a few (e.g. 3) times if you want

! While x(t+"t) penetrates object

• Process inelastic contact (!=0) using average v

• Integrate +"t "v

19cs533d-term1-2005

Why does this work?

! If object resting on plane y=0, v(t)=0 though
gravity will pull it down by the end of the
timestep, t+"t

! In the new algorithm, elastic bounce works with
pre-gravity velocity v(t)=0
• So no bounce

! Then contact, which is inelastic, simply adds just
enough "v to get back to v(t+"t)=0
• Then x(t+"t)=0 too

! NOTE: if !=0 anyways, no point in doing special
first step - this algorithm is equivalent to the
previous one

20cs533d-term1-2005

Moving objects

! Same algorithms, and almost same formulas:
• Need to look at relative velocity

vparticle-vobject
instead of just particle velocity

• As before, decompose into normal and tangential
parts, process the collision, and reassemble a relative
velocity

• Add object velocity to relative velocity to get final
particle velocity

! Be careful when particles collide:
• Same relative "v but account for equal and opposite

forces/impulses with different masses…

21cs533d-term1-2005

Moving Objects…

!Also, be careful with
interference/collision detection
•Want to check for interference at end of

time step, so use object positions there

• Objects moving during time step mean
more complicated trajectory intersection
for collisions

22cs533d-term1-2005

Collision Detection

! We have basic time integration for
particles in place now

! Assumed we could just do interference
detection, but…

! Detecting collisions over particle
trajectories can be dropped in for more
robustness - algorithms don!t change
• But use the normal at the collision time

