Notes

+ Typo in test.rib --- fixed on the web now
(PointsPolygon --> PointsPolygons)

¢s533d-term1-2005

1

Contact Friction

& Some normal force is keeping vy=0

+ Coulomb’s law (“dry” friction)

* |f sliding, then kinetic friction:
Vr

|

e |f static (v;=0) then stay static as long as

I prcion| < 11,

normal

F Jriction — My

friction Fm)rmul

* “Wet” friction = damping

Ffrictinn = _D F

normal

Vr

©s533d-term1-2005

Collision Friction

+ Impulse assumption:

® Collision takes place over a very small time interval
(with very large forces)

* Assume forces don’t vary significantly over that
interval---then can replace forces in friction laws with
impulses

® This is a little controversial, and for articulated rigid
bodies can be demonstrably false, but nevertheless...

® Normal impulse is just mAvy=m(1+¢)vy
® Tangential impulse is mAvy

¢s533d-term1-2005

3

Wet Collision Friction

+ So replacing force with impulse:
mAv, = —D‘mAv vVr

after before

+ Divide through by m, use v;/~ =v;”"" + Ay,

after __ before __ before
v =y D|Av N|vT

~ (1 Diw, |yt

+ Clearly could have monotonicity/stability issue
+ Fix by capping at v;=0, or better approximation
for time interval

e.g. v;fter — e—D‘AvN ‘V?efore

©s533d-term1-2005

Dry Collision Friction

+ Coulomb friction: assume p =
® (though in general, g =1,)
before

v Sliding: Ay, = —tlmA |

VT
before
b7

¢ Static: |mAv,|< ylmAv,|

+ Divide through by m to find change in
tangential velocity

¢s533d-term1-2005

5

Simplifying...

after before

e Use vr =vi " +Av,
o Static case is v¥' =0 = Av, =—v}%"
When before
br

< ‘LL‘AVN‘

+ Sliding case is

before
after __ _ before _ ‘ ‘ T
vT _VT ‘LLAVN‘ before

vT

+ Common quantities!

©s533d-term1-2005

Dry Collision Friction Formula

o Combine into a max
* First case is static where v, drops to zero if
inequality is obeyed
® Second case is sliding, where vy reduced in

magnitude (but doesn’t change signed
direction)

‘LL|AVN | before
before T
&

after
Vr

=max| 0,1 —

¢s533d-term1-2005

7

Where are we?

+ So we now have a simplified physics
model for

® Frictionless, dry friction, and wet friction
collision

®* Some idea of what contact is

¢ So now let’s start on numerical methods to
simulate this

©s533d-term1-2005

“Exact” Collisions

+ For very simple systems (linear or maybe
parabolic trajectories, polygonal objects)
* Find exact collision time (solve equations)
* Advance particle to collision time

* Apply formula to change velocity
(usually dry friction, unless there is lubricant)

® Keep advancing particle until end of frame or next
collision

+ Can extend to more general cases with
conservative ETA’s, or root-finding techniques

+ Expensive for lots of coupled particles!

¢s533d-term1-2005

9

Fixed collision time stepping

¢ Even “exact” collisions are not so accurate in
general
¢ [hit or miss example]

+ So instead fix At,sio, @and don’t worry about
exact collision times
® Could be one frame, or 1/8th of a frame, or ...

+ Instead just need to know did a collision happen
during At,gision
® If so, process it with formulas

©s533d-term1-2005

10

Relationship with regular time
integration

+ Forgetting collisions, advance from x(t) to x(t+At,jision)

® Could use just one time step, or subdivide into lots of small time
steps

+ We approximate velocity (for collision processing) as
constant over time step:
b= x(t+Ar)—x(1)

At

+ If no collisions, just keep going with underlying
integration

¢s533d-term1-2005

1

Numerical Implementation 1

+ Get candidate x(t+At)

& Check to see if x(t+At) is inside object
(interference)

e If so
® Get normal n at t+At

® Get new velocity v from collision response
formulas applied to average v=(x(t+At)-x(t))/At

® Integrate x(t+At)=x(t+At) 4 +AtAv

©s533d-term1-2005

12

Robustness?

+ If a particle penetrates an object at end of
candidate time step, we fix that

+ But new position (after collision processing)
could penetrate another object!

+ Maybe this is fine-let it go until next time step

+ But then collision formulas are on shaky
ground...
+ Switch to repulsion impulse if x(t) and x(t+At)
both penetrate
* Find Avy proportional to final penetration depth, apply
friction as usual

¢s533d-term1-2005

13

Making it more robust

¢ Other alternative:

¢ After collision, check if new x(t+At) also
penetrates

* |If so, assume a 2nd collision happened during
the time step: process that one

® Check again, repeat until no penetration

® To avoid infinite loop make sure you lose
kinetic energy (don’t take perfectly elastic
bounces, at least not after first time through)

® | et’s write that down:

©s533d-term1-2005

14

Numerical Implementation 2

+ Get candidate x(t+At)

+ While x(t+At) is inside object (interference)
® Get normal n at t+At

® Get new velocity v from collision response formulas
and average v

* Integrate collision: X(t+At)=x(t+At) 4 +AtAv

+ Now can guarantee that if we start outside
objects, we end up outside objects

¢s533d-term1-2005

15

Micro-Collisions

+ These are “micro-collision” algorithms
+ Contact is modeled as a sequence of small
collisions

® We’re replacing a continuous contact force with a
sequence of collision impulses

Is this a good idea?
¢ [block on incline example]

+ More philosophical question: how can contact
possibly begin without fully inelastic collision?

©s533d-term1-2005

16

Improving Micro-Collisions

+ Really need to treat contact and collision
differently, even if we use the same friction
formulas

¢ |dea:
® Collision occurs at start of time step

® Contact occurs during whole duration of time
step

©s533d-term1-2005 17

Numerical Implementation 3

« Start at x(t) with velocity v(t), get candidate
position x(t+At)
+ Check if x(t+At) penetrates object

* |f so, process elastic collision using v(t) from start of
step, not average velocity

® Replay from x(t) with modified v(t) or simply
add AtAv to x(t+At) instead of re-integrating
® Repeat check a few (e.g. 3) times if you want
+ While x(t+At) penetrates object
® Process inelastic contact (¢=0) using average v
® |ntegrate +At Av

©s533d-term1-2005

Why does this work?

+ If object resting on plane y=0, v(t)=0 though
gravity will pull it down by the end of the
timestep, t+At

+ In the new algorithm, elastic bounce works with
pre-gravity velocity v(t)=0

® So no bounce

& Then contact, which is inelastic, simply adds just
enough Av to get back to v(t+At)=0

® Then x(t+At)=0 too

+ NOTE: if e=0 anyways, no point in doing special
first step - this algorithm is equivalent to the
previous one

¢s533d-term1-2005 19

Moving objects

& Same algorithms, and almost same formulas:

* Need to look at relative velocity
Yparticle'vob'e,ct . .
instead of Just particle velocity

® As before, decompose into normal and tangential
parts, process the collision, and reassemble a relative

velocity

® Add object velocity to relative velocity to get final
particle velocity

+ Be careful when patrticles collide:

® Same relative Av but account for equal and opposite
forces/impulses with different masses...

©s533d-term1-2005

20

Moving Objects...

¢ Also, be careful with
interference/collision detection

® Want to check for interference at end of
time step, so use object positions there

® Objects moving during time step mean
more complicated trajectory intersection
for collisions

©s533d-term1-2005 21

Collision Detection

+ We have basic time integration for
particles in place now

& Assumed we could just do interference
detection, but...

+ Detecting collisions over particle
trajectories can be dropped in for more
robustness - algorithms don’t change

® But use the normal at the collision time

©s533d-term1-2005

22

