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Notes
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Poisson Ratio

! Real materials are essentially incompressible
(for large deformation - neglecting foams and
other weird composites…)

! For small deformation, materials are usually
somewhat incompressible

! Imagine stretching block in one direction
• Measure the contraction in the perpendicular

directions

• Ratio is !, Poisson!s ratio

! [draw experiment;                ]
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What is Poisson’s ratio?

! Has to be between -1 and 0.5

! 0.5 is exactly incompressible
• [derive]

! Negative is weird, but possible [origami]

! Rubber: close to 0.5

! Steel: more like 0.33

! Metals: usually 0.25-0.35

! What should cork be?
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Putting it together

! Can invert this to get normal stress, but
what about shear stress?
• Diagonalization…

! When the dust settles,
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Inverting…

! For convenience, relabel these
expressions

• " and µ are called
the Lamé
coefficients

• [incompressibility]
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Linear elasticity

! Putting it together and assuming constant
coefficients, simplifies to

! A PDE!
• We!ll talk about solving it later
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Rayleigh damping

! We!ll need to look at strain rate
• How fast object is deforming

• We want a damping force that resists change
in deformation

! Just the time derivative of strain

! For Rayleigh damping of linear elasticity
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Problems

! Linear elasticity is very nice for small
deformation
• Linear form means lots of tricks allowed for

speed-up, simpler to code, …

! But it!s useless for large deformation, or
even zero deformation but large rotation
• (without hacks)
• Cauchy strain!s simplification sees large

rotation as deformation…

! Thus we need to go back to Green strain
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(Almost) Linear Elasticity

! Use the same constitutive model as before,
but with Green strain tensor

! This is the simplest general-purpose
elasticity model

! Animation probably doesn!t need anything
more complicated
• Except perhaps for dealing with

incompressible materials
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2D Elasticity

! Let!s simplify life before starting numerical
methods

! The world isn!t 2D of course, but want to track
only deformation in the plane

! Have to model why

• Plane strain: very thick material, #3•=0
[explain, derive $3•]

• Plane stress: very thin material, $3•=0
[explain, derive #3• and new law, note change in
incompressibility singularity]
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Finite Volume Method

! Simplest approach: finite volumes
• We picked arbitrary control volumes before

• Now pick fractions of triangles from a triangle mesh
! Split each triangle into 3 parts, one for each corner

! E.g. Voronoi regions

! Be consistent with mass!

• Assume A is constant in each triangle (piecewise
linear deformation)

• [work out]

• Note that exact choice of control volumes not critical -
constant times normal integrates to zero
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Finite Element Method

! #1 most popular method for elasticity problems (and
many others too)

! FEM originally began with simple idea:
• Can solve idealized problems (e.g. that strain is constant over a

triangle)

• Call one of these problems an element

• Can stick together elements to get better approximation

! Since then has evolved into a rigourous mathematical
algorithm, a general purpose black-box method
• Well, almost black-box…
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Modern Approach

% Galerkin framework (the most common)

% Find vector space of functions that solution (e.g. X(p))
lives in
• E.g. bounded weak 1st derivative: H1

% Say the PDE is L[X]=0 everywhere (“strong”)

% The “weak” statement is " Y(p)L[X(p)]dp=0
for every Y in vector space

% Issue: L might involve second derivatives
• E.g. one for strain, then one for div sigma

• So L, and the strong form, difficult to define for H1

% Integration by parts saves the day
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Weak Momentum Equation

! Ignore time derivatives - treat acceleration
as an independent quantity
• We discretize space first, then use “method of

lines”: plug in any time integrator
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Making it finite

! The Galerkin FEM just takes the weak equation,
and restricts the vector space to a finite-
dimensional one
• E.g. Continuous piecewise linear - constant gradient

over each triangle in mesh, just like we used for Finite
Volume Method

! This means instead of infinitely many test
functions Y to consider, we only need to check a
finite basis

! The method is defined by the basis
• Very general: plug in whatever you want -

polynomials, splines, wavelets, RBF!s, …
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Linear Triangle Elements

! Simplest choice

! Take basis {&i} where
&i(p)=1 at pi and 0 at all the other pj!s
• It!s a “hat” function

% Then X(p)=#i xi&i(p) is the continuous piecewise linear
function that interpolates particle positions

% Similarly interpolate velocity and acceleration

% Plug this choice of X and an arbitrary Y= &j (for any j) into
the weak form of the equation

% Get a system of equations (3 eq. for each j)
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The equations
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•Note that &j is zero on all but the triangles

surrounding j, so integrals simplify

•Also: naturally split integration into separate

triangles


