
1cs533d-term1-2005

Notes

! Smoke:
• Fedkiw, Stam, Jensen, SIGGRAPH!01

! Water:
• Foster, Fedkiw, SIGGRAPH!01

• Enright, Fedkiw, Marschner, SIGGRAPH!02

! Fire:
• Nguyen, Fedkiw, Jensen, SIGGRAPH!02

2cs533d-term1-2005

Recall: plain CG

! CG is guaranteed to converge faster than
steepest descent
• Global optimality property

! But… convergence is determined by
distribution of eigenvalues
• Widely spread out eigenvalues means

sloooow solution

! How can we make it efficient?

3cs533d-term1-2005

Speeding it up

! CG generally takes as many iterations as your grid is
large
• E.g. if 30x70x40 expect to take 70 iterations (or proportional to it)
• Though a good initial guess may reduce that a lot

! Basic issue: pressure is globally coupled - information
needs to travel from one end of the grid to the other
• Each step of CG can only go one grid point: matrix-vector

multiply is core of CG

! Idea of a “preconditioner”: if we can get a routine which
approximately computes A-1, call it M, then solve
MAx=Mb
• If M has global coupling, can get information around faster
• Alternatively, improve search direction by multiplying by M to

point it closer to negative error
• Alternatively, cluster eigenvalues

4cs533d-term1-2005

Preconditioners

! Lots and lots of work on how to pick an M

! Examples: FFT, SSOR, ADI, multigrid,
sparse approximate inverses

! We!ll take a look at Incomplete Cholesky
factorization

! But first, how do we change CG to take
account of M?
• M has to be SPD, but MA might not be…

5cs533d-term1-2005

PCG

! r=b-Ap, z=Mr, s=z

! "=zTr, check if already solved

! Loop:
• t=As

• #= "/(sTt)

• x+= #s, r-= #t , check for convergence

• z=Mr

• "new=zTr

• $= "new /"

• s=z+ $s

• "="new

6cs533d-term1-2005

Cholesky

! True Gaussian elimination, which is called
Cholesky factorization in the SPD case, gives
A=LLT

! L is a lower triangular matrix

! Then solving Ap=b can be done by
• Lx=p, LTp=x

• Each solve is easy to do - triangular

! But can!t do that here since L has many more
nonzeros than A -- EXPENSIVE!

7cs533d-term1-2005

Incomplete Cholesky

! We only need approximate result for preconditioner

! So do Cholesky factorization, but throw away new
nonzeros (set them to zero)

! Result is not exact, but pretty good
• Instead of O(n) iterations (for an n3 grid) we get O(n1/2) iterations

! Can actually do better:
• Modified Incomplete Cholesky
• Same algorithm, only when we throw away nonzeros, we add

them to the diagonal - better behaviour with low frequency
components of pressure

• Gets us down to O(n1/4) iterations

8cs533d-term1-2005

IC(0)

! Incomplete Cholesky level 0: IC(0) is where we
make sure L=0 wherever A=0

! For this A (7-point Laplacian) with the regular
grid ordering, things are nice

! Write A=F+D+FT where F is strictly lower
triangular and D is diagonal

! Then IC(0) ends up being of the form
L=(FE-1+E) where E is diagonal
• We only need to compute and store E!

9cs533d-term1-2005

Computing IC(0)

! Need to find diagonal E so that (LLT)ij=Aij

wherever Aij"0

! Expand out:
• LLT=F+FT+E2+FE-2FT

! Again, for this special case, can show that last
term only contributes to diagonal and elements
where Aij=0

! So we get the off-diagonal correct for free

! Let!s take a look at diagonal entry for grid point
ijk

10cs533d-term1-2005

Diagonal Entry

! Assume we order increasing in i, j, k

! Note F=A for lower diagonal elements

! Want this to match A!s diagonal
Then solving for next Eijk in terms of
previously determined ones:�

LL
T()

ijk,ijk
= Eijk

2
+ Aijk,i!1 jk

2
Ei!1 jk

2
+ Aijk,ij!1k

2
Eij!1k

2
+ Aijk,ijk!1

2
Eijk!1

2

�

Eijk = Aijk,ijk ! Aijk,i!1 jk

2
Ei!1 jk

2
! Aijk,ij!1k

2
Eij!1k

2
! Aijk,ijk!1

2
Eijk!1

2

11cs533d-term1-2005

Practicalities

! Actually only want to store inverse of E

! Note that for values of A or E off the grid,
substitute zero in formula
• In particular, can start at E000,000=#A000,000

! Modified Incomplete Cholesky looks very similar,
except instead of matching diagonal entries, we
match row sums

! Can squeeze out a little more performance with
the “Eisenstat trick”

12cs533d-term1-2005

Viscosity

! The viscosity update (if we really need it - highly
viscous fluids) is just Backwards Euler:

! Boils down to almost the same linear system to
solve!
• Or rather, 3 similar linear systems to solve - one for

each component of velocity
(NOTE: solve separately, not together!)

• Again use PCG with Incomplete Cholesky

�

I !"t#$
2()u(3) = u

(2)

13cs533d-term1-2005

Staggered grid advection

! Problem: velocity on a staggered grid, don!t have
components where we need it for semi-Lagrangian steps

! Simple answer
• Average velocities to get flow field where you need it, e.g.

uijk=0.5(ui+1/2 jk + ui-1/2 jk)

• So advect each component of velocity around in averaged
velocity field

! Even cheaper
• Advect averaged velocity field around (with any other quantity

you care about) --- reuse interpolation coefficients!

• But - all that averaging smears u out… more numerical viscosity!
[worse for small $t]

14cs533d-term1-2005

Vorticity confinement

! The interpolation errors behave like
viscosity, the averaging from the
staggered grid behaves like viscosity…
• Net effect is that interesting flow structures

(vortices) get smeared out

! Idea of vorticity confinement - add a fake
force that spins vortices faster
• Compute vorticity of flow, add force in

direction of flow around each vortex

• Try to cancel off some of the numerical
viscosity in a stable way

15cs533d-term1-2005

Smoke

! Smoke is a bit more than just a velocity field

! Need temperature (hot air rises) and smoke density
(smoke eventually falls)

! Real physics - density depends on temperature,
temperature depends on viscosity and thermal
conduction, …
• We!ll ignore most of that: small scale effects

• Boussinesq approximation: ignore density variation except in
gravity term, ignore energy transfer except thermal conduction

• We might go a step further and ignore thermal conduction -
insignificant vs. numerical dissipation - but we!re also ignoring
sub-grid turbulence which is really how most of the temperature
gets diffused

16cs533d-term1-2005

Smoke concentration

! There!s more than just air temperature to
consider too

! Smoke weighs more than air - so need to track
smoke concentration
• Also could be used for rendering (though tracing

particles can give better results)

• Point is: physics depends on smoke concentration,
not just appearance

! We again ignore effect of this in all terms except
gravity force

17cs533d-term1-2005

Buoyancy

! For smoke, where there is no interface, we can
add "gy to pressure (and just solve for the
difference) thus cancelling out g term in equation

! All that!s left is buoyancy -- variation in vertical
force due to density variation

! Density varies because of temperature change
and because of smoke concentration

! Assume linear relationship (small variations)

• T=0 is ambient temperature; #, $ depend on g etc.

�

fbouy = !"s+ #T()

18cs533d-term1-2005

Smoke equations

! So putting it all together…

! We know how to solve the u part, using old
values for s and T

! Advecting s and T around is simple - just scalar
advection

! Heat diffusion handled like viscosity
�

ut + u ! "u+ "p = #$s+ %T()(0,1,0)

" ! u = 0

Tt + u ! "T = k"2
T

st + u ! "s = 0

19cs533d-term1-2005

Notes on discretization

! Smoke concentration and temperature may as well live
in grid cells same as pressure

! But then to add buoyancy force, need to average to get
values at staggered positions

! Also, to maintain conservation properties, should only
advect smoke concentration and temperature (and
anything else - velocity) in a divergence-free velocity
field
• If you want to do all the advection together, do it before adding

buoyancy force

• I.e. advect; buoyancy; pressure solve; repeat

20cs533d-term1-2005

Water

21cs533d-term1-2005

Water - Free Surface Flow

! Chief difference: instead of smoke density
and temperature, need to track a free
surface

! If we know which grid cells are fluid and
which aren!t, we can apply p=0 boundary
condition at the right grid cell faces
• First order accurate…

! Main problem: tracking the surface
effectively

22cs533d-term1-2005

Interface Velocity

! Fluid interface moves with the velocity of
the fluid at the interface
• Technically only need the normal component

of that motion…

! To help out algorithms, usually want to
extrapolate velocity field out beyond free
surface

23cs533d-term1-2005

Marker Particle Issues

! From the original MAC paper (Harlow +
Welch %65)

! Start with several particles per grid cell
! After every step (updated velocity) move

particles in the velocity field
• dx/dt=u(x)

• Probably advisable to use at least RK2

! At start of next step, identify grid cells
containing at least one particle: this is
where the fluid is

24cs533d-term1-2005

Issues

! Very simple to implement, fairly robust

! Hard to determine a smooth surface for
rendering (or surface tension!)
• Blobbies look bumpy, stair step grid version is

worse

• But with enough post-smoothing, ok for
anything other than really smooth flow

25cs533d-term1-2005

Surface Tracking

! Actually build a mesh of the surface

! Move it with the velocity field

! Rendering is trivial

! Surface tension - well studied digital geometry
problem

! But: fluid flow distorts interface, needs adaptivity

! Worse: topological changes need “mesh
surgery”
• Break a droplet off, merge a droplet in…

• Very challenging in 3D

26cs533d-term1-2005

Volume of Fluid (VOF)

! Work in a purely Eulerian setting -
maintain another variable “volume fraction”

! Update conservatively (no semi-
Lagrangian) so discretely guarantee sum
of fractions stays constant (in discretely
divergence free velocity field)�

!f

!t
+ " # fu() = 0

27cs533d-term1-2005

VOF Issues

! Difficult to get second order accuracy --
smeared out a discontinuous variable over
a few grid cells
• May need to implement variable density

! Volume fraction continues to smear out
(numerical diffusion)
• Need high-resolution conservation law

methods

• Need to resharpen interface periodically

! Surface reconstruction not so easy for
rendering or surface tension

28cs533d-term1-2005

Level Set

! Maintain signed distance field for fluid-air
interface

! Gives smooth surface for rendering,
curvature estimation for surface tension is
trivial

! High order notion of where surface is

�

!"

!t
+ u # $" = 0

29cs533d-term1-2005

Level Set Issues

! Numerical smearing even with high-
resolution methods
• Interface smoothes out, small features vanish

30cs533d-term1-2005

Level Set Distortion

! Assuming even no numerical diffusion
problems in level set advection (e.g. well-
resolved on grid), level sets still have
problems

! Initially equal to signed distance

! After non-rigid motion, stop being signed
distance
• E.g. points near interface will end up deep

underwater, and vice versa

31cs533d-term1-2005

Fixing Distortion

! Remember it!s only zero isocontour we
care about - free to change values away
from interface

! Can reinitialize to signed distance
(“redistance”)
• Without moving interface, change values to

be the signed distance to the interface

! Fast Marching Method

! Fast Sweeping Method

32cs533d-term1-2005

Problems

! Reinitialization will unfortunately slightly
move the interface (less than a grid cell)

! Errors look like, as usual, extra diffusion or
smoothing
• In addition to the errors we!re making in

advection…

33cs533d-term1-2005

Velocity extrapolation

! We can exploit level set to extrapolate velocity
field outside water
• Not a big deal for pressure solve - can directly handle

extrapolation there

• But a big deal for advection - with semi-Lagrangian
method might be skipping over, say, 5 grid cells

• So might want velocity 5 grid cells outside of water

! Simply take the velocity at an exterior grid point
to be interpolated velocity at closest point on
interface
• Alternatively, propagate outward to solve

similar to reinitiatalization methods

�

!u " !# = 0

34cs533d-term1-2005

Particle-Level Set

! Marker particle (MAC) method great for rough surfaces

! But if we want surface tension (which is strongest for
rough flows!) or smooth water surfaces, we need a better
technique

! Hybrid method: particle-level set
• [Fedkiw and Foster], [Enright et al.]

• Level set gives great smooth surface - excellent for getting mean
curvature

• Particles correct for level set mass (non-)conservation through
excessive numerical diffusion

35cs533d-term1-2005

Level set advancement

! Put marker particles with values of % attached in a band
near the surface

• We!re also storing % on the grid, so we don!t need particles deep
in the water

• For better results, also put particles with %>0 (“air” particles) on
the other side

! After doing a step on the grid and moving %, also move
particles with (extrapolated) velocity field

! Then correct the grid % with the particle %

! Then adjust the particle % from the grid %

36cs533d-term1-2005

Level set correction

! Look for escaped particles
• Any particle on the wrong side (sign differs) by more than the

particle radius |%|

! Rebuild %<0 and %>0 values from escaped particles
(taking min/max!s of local spheres)

! Merge rebuilt %<0 and %>0 by taking minimum-
magnitude values

! Reinitialize new grid %

! Correct again

! Adjust particle % values within limits
(never flip sign)

37cs533d-term1-2005

Fire

38cs533d-term1-2005

Fire

! [Nguyen, Fedkiw, Jensen %02]

! Gaseous fuel/air mix (from a burner, or a hot
piece of wood, or …) heats up

! When it reaches ignition temperature, starts to
burn
• “blue core” - see the actual flame front due to

emission lines of excited hydrocarbons

! Gets really hot while burning - glows orange
from blackbody radiation of smoke/soot

! Cools due to radiation, mixing
• Left with regular smoke

39cs533d-term1-2005

Defining the flow

! Inside and outside blue core, regular
incompressible flow with buoyancy

! But an interesting boundary condition at the
flame front
• Gaseous fuel and air chemically reacts to produce a

different gas with a different density

• Mass is conserved, so volume has to change

• Gas instantly expands at the flame front

! And the flame front is moving too
• At the speed of the flow plus the reaction speed

40cs533d-term1-2005

Interface speed

! Interface = flame front = blue core surface

! D=Vf-S is the speed of the flame front
• It moves with the fuel flow, and on top of that, moves according

to reaction speed S

• S is fixed for a given fuel mix

! We can track the flame front with a level set %

! Level set moves by

! Here uLS is uf-Sn

�

!
t

+ D"! = 0

!
t

+ u
LS
"! = 0

41cs533d-term1-2005

Numerical method

! For water we had to work hard to move interface
accurately

! Here it!s ok just to use semi-Lagrangian method
(with reinitialization)

! Why?
• We!re not conserving volume of blue core - if reaction

is a little too fast or slow, that!s fine

• Numerical error looks like mean curvature

• Real physics actually says reaction speed varies with
mean curvature!

42cs533d-term1-2005

Conservation of mass

! Mass per unit area entering flame front is "f(Vf-D)
where
• Vf=uf•n is the normal component of fuel velocity

• D is the (normal) speed of the interface

! Mass per unit area leaving flame front is "h(Vh-D)
where
• Vh=uh•n is the normal component of hot gaseous

products velocity

! Equating the two gives:

�

! f Vf "D() = !h Vh "D()

43cs533d-term1-2005

Velocity jump

! Plugging interface speed D into
conservation of mass at the flame front
gives:

�

! f S = !h Vh "Vf + S()
!hVh = !hVf + ! f S " !hS

Vh =Vf +
! f

!h

"1

$
%

&

'
(S

44cs533d-term1-2005

Ghost velocities

! This is a “jump condition”: how the normal component of
velocity jumps when you go over the flame interface

! This lets us define a “ghost” velocity field that is
continuous
• When we want to get a reasonable value of uh for semi-

Lagrangian advection of hot gaseous products on the fuel side of
the interface, or vice versa (and also for moving interface)

• When we compute divergence of velocity field

! Simply take the velocity field, add/subtract
("f/"h-1)Sn

45cs533d-term1-2005

Conservation of momentum

! Momentum is also conserved at the interface

! Fuel momentum per unit area “entering” the
interface is

! Hot gaseous product momentum per unit area
“leaving” the interface is

! Equating the two gives

�

! fVf Vf "D() + pf

�

!hVh Vh "D() + ph

�

! fVf Vf "D() + pf = !hVh Vh "D() + ph

46cs533d-term1-2005

Simplifying

! Make the equation look nicer by taking
conservation of mass:

multiplying both sides by -D:

and adding to previous slide!s equation:�

! f Vf "D() = !h Vh "D()

�

! f "D() Vf "D() = !h "D() Vh "D()

�

! f Vf "D()
2

+ pf = !h Vh "D()
2

+ ph

47cs533d-term1-2005

Pressure jump

! This gives us jump in pressure from one side of
the interface to the other

! By adding/subtracting the jump, we can get a
reasonable continuous extension of pressure
from one side to the other
• For taking the gradient of p to make the flow

incompressible after advection

! Note when we solve the Poisson equation
density is NOT constant, and we have to
incorporate jump in p (known) just like we use it
in the pressure gradient

48cs533d-term1-2005

Temperature

! We don!t want to get into complex (!) chemistry
of combustion

! Instead just specify a time curve for the
temperature
• Temperature known at flame front (Tignition)

• Temperature of a chunk of hot gaseous product rises
at a given rate to Tmax after it!s created

• Then cools due to radiation

49cs533d-term1-2005

Temperature cont’d

! For small flames (e.g. candles) can model initial
temperature rise by tracking time since reaction:
Yt+u•&Y=1 and making T a function of Y

! For large flames ignore rise, just start flame at
Tmax (since transition region is very thin, close to
blue core)

! Radiative cooling afterwards:

�

T
t

+ u ! "T = #c
T

T #T
air

T
max

#T
air

$

%
&

'

(
)

4

50cs533d-term1-2005

Smoke concentration

! Can do the same as for temperature: initially
make it a function of time Y since reaction (rising
from zero)
• And ignore this regime for large flames

! Then just advect without change, like before

! Note: both temperature and smoke
concentration play back into velocity equation
(buoyancy force)

51cs533d-term1-2005

Note on fuel

! We assumed fuel mix is magically being injected
into scene
• Just fine for e.g. gas burners

• Reasonable for slow-burning stuff (like thick wood)

! What about fast-burning material?
• Can specify another reaction speed Sfuel for how fast

solid/liquid fuel turned into flammable gas (dependent
on temperature)

• Track level set of solid/liquid fuel just like we did the
blue core

