
Notes

• Errors in last lecture - missing density in
viscosity terms:
• Incompressible Navier-Stokes is

• With constant viscosity, momentum equation is

• Often (particularly if density is constant) take
parameter "=µ/! to get
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Nondimensionalization

• Actually go even further

• Select a characteristic length L
• e.g. the width of the domain,

• And a typical velocity U
• e.g. the speed of the incoming flow

• Rescale terms
• x’=x/L, u’=u/U, t’=tU/L, p’=p/!U2

so they all are dimensionless
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Nondimensional parameters

• Re=UL/" is the Reynold’s number

• The smaller it is, the more viscosity plays a role in

the flow

• High Reynold’s numbers are hard to simulate

• Fr=             is the Froude number

• The smaller it is, the more gravity plays a role in

the flow

• Note: often can ignore gravity (pressure gradient

cancels it out)
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Vorticity

• Last class: irrotational flow
• And simplification to potential flow

• How do we measure rotation?
• Vorticity of a vector field (velocity) is:

• Proportional (but not equal) to angular velocity of a
rigid body - off by a factor of 2

• Visualization of potential flow is fairly boring
• It’s as smooth as possible, laminar

• Vorticity is what makes flow look cool

• (Or free surfaces…)
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Vorticity equation

• Start with N-S, constant viscosity and density

• Take curl of whole equation

• Lots of terms are zero:
• g is constant (or the potential of some field)

• With constant density, pressure term too

• Then use vector identities to simplify…
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Vorticity equation continued

• Simplify with more vector identities, and
assume incompressible to get:

• Important result: Kelvin Circulation Theorem
• Roughly speaking: if #=0 initially, and there’s no

viscosisty, #=0 forever after (following a chunk of
fluid)

• If fluid starts off irrotational, it will stay that
way (in many circumstances)

• So potential flow is reasonable
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Potential in time

• Use vector identity u•$u=($%u)%u+$|u|2/2

• Assume

• incompressible ($•u=0), inviscid, irrotational

($%u=0)

• constant density

• thus potential flow (u=$&, $2&=0)

• Then momentum equation simplifies

(using G=-gy for gravitational potential)
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Bernoulli’s equation

• Every term in the simplified momentum

equation is a gradient: integrate to get

• (Remember Bernoulli’s law for pressure?)

• This tells us how the potential should

evolve in time
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Water waves

• For small waves (no breaking), can reduce
geometry of water to 2D heightfield

• Can reduce the physics to 2D also
• How do surface waves propagate?

• Plan of attack
• Start with potential flow, Bernoulli’s equation

• Write down boundary conditions at water surface

• Simplify 3D structure to 2D

Set up

• We’ll take y=0 as the height of the water

at rest

• H is the depth (y=-H is the sea bottom)

• h is the current height of the water at

(x,z)

• Simplification: velocities very small

(small amplitude waves)

Boundaries

• At sea floor (y=-H), v=0

• At sea surface (y=h!0), v=ht

• Note again - assuming very small horizontal
motion

• At sea surface (y=h!0), p=0
• Or atmospheric pressure, but we only care about

pressure differences

• Use Bernoulli’s equation, throw out small velocity
squared term, use p=0,
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Finding a wave solution

• Plug in &=f(y)sin(K•(x,z)-#t)

• In other words, do a Fourier analysis in
horizontal component, assume nothing
much happens in vertical

• Solving $2&=0 with boundary conditions on
&y gives

• Pressure boundary condition then gives
(with k the magnitude of K)
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Dispersion relation

• So the wave speed c is

• Notice that waves of different wave-
numbers k have different speeds
• Separate or disperse in time

• For deep water (H big, k reasonable --
not tidal waves!) tanh(kH)!1

! 

c =
"

k
=

g

k
tanhkH

! 

c =
g

k

Simulating the ocean

• So far from land, a reasonable thing to
do is
• Do Fourier decomposition of initial surface

height

• Evolve each wave according to given wave
speed (dispersion relation)
• Update phase, use FFT to evaluate

• How do we get the initial spectrum?
• Measure it! (oceanography)

Energy spectrum

• Fourier decomposition of height field:

• “Energy” in K=(i,j) is

• Oceanographic measurements have
found models for expected value of S(K)
(statistical description)
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Phillips Spectrum

• For a “fully developed” sea
• wind has been blowing a long time over a large

area, statistical distribution of spectrum has
stabilized

• The Phillips spectrum is: [Tessendorf…]

• A is an arbitrary amplitude

• L=|W|2/g is largest size of waves due to wind
velocity W and gravity g

• Little l is the smallest length scale you want to
model
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Other spectra

• More complex models such as

JONSWAP

• Sea is never fully developed, need to take
into account how far from land you are

• Or make up your own

Fourier synthesis

• From the prescribed S(K), generate actual
Fourier coefficients

• Xi is a random number with mean 0, standard
deviation 1 (Gaussian)

• Uniform numbers from unit circles aren’t terrible
either

• Want real-valued h, so must have

• Or give only half the coefficients to FFT routine
and specify you want real output

! 

ˆ h K,0( ) = 1

2
X

1
+ X

2
"1( ) S K( )

! 

ˆ h (K) = ˆ h ("K)
#

Time evolution

• Dispersion relation gives us #(K)

• At time t, want

• So then coefficients at time t are

• For j"0:

• Others: figure out from conjugacy condition (or

leave it up to real-valued FFT to fill them in)
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Picking parameters

• Need to fix grid for Fourier synthesis
(e.g. 1024x1024 height field grid)

• Grid spacing shouldn’t be less than e.g. 2cm
(smaller than that - surface tension, nonlinear
wave terms, etc. take over)
• Take little l (cut-off) a few times larger

• Total grid size should be greater than but still
comparable to L in Phillips spectrum
(depends on wind speed and gravity)

• Amplitude A shouldn’t be too large
• Assumed waves weren’t very steep



Note on FFT output

• FFT takes grid of coefficients, outputs grid of
heights

• It’s up to you to map that grid
(0…n-1, 0…n-1) to world-space coordinates

• In practice: scale by something like L/n
• Adjust scale factor, amplitude, etc. until it looks

nice

• Alternatively: look up exactly what your FFT
routines computes, figure out the “true” scale
factor to get world-space coordinates

Tiling issues

• Resulting grid of waves can be tiled in x and z

• Handy, except people will notice if they can
see more than a couple of tiles

• Simple trick: add a second grid with a non-
rational multiple of the size
• Golden mean (1+sqrt(5))/2=1.61803… works well

[why?]

• The sum is no longer periodic, but still can be
evaluated anywhere in space and time easily
enough

Choppy waves

• See Tessendorf for more explanation

• Nonlinearities cause real waves to have

sharper peaks and flatter troughs than
linear Fourier synthesis gives

• Can manipulate height field to give this

effect

• Distort grid with (x,z) -> (x,z)+'D(x,z,t)
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Choppiness problems

• The distorted grid can actually tangle up
(Jacobian has negative determinant -
not 1-1 anymore)
• Can detect this, do stuff (add particles for

foam, spray?)

• Can’t easily use superposition of two
grids to defeat periodicity… (but with a
big enough grid and camera position
chosen well, not an issue)



Issues with Fourier method

• Can’t easily handle objects in water

• E.g. boat wakes, splashes

• One solution: cover up problem with foam

• While dispersion relation works in shallow
water too, can’t handle beaches…

• Next class: shallow water equations (PDE’s)


