Notes

» Errors in last lecture - missing density in
viscosity terms:
* Incompressible Navier-Stokes is
u, +u-Vu+-5Vp= g+%V-,u(Vu+VuT)
V-u=0
» With constant viscosity, momentum equation is

u,+u-Vu+-Vp= g+%V2u
» Often (particularly if density is constant) take
parameter v=u/p to get
u, +u-Vu+-Vp= g+wWu

Nondimensional parameters

* Re=UL/v is the Reynold’s number

e The smaller it is, the more viscosity plays a role in
the flow

» High Reynold’s numbers are hard to simulate

« Fr=U/[¢|L is the Froude number

» The smaller it is, the more gravity plays a role in
the flow

« Note: often can ignore gravity (pressure gradient
cancels it out)

Nondimensionalization

Actually go even further
Select a characteristic length L
* e.g. the width of the domain,
And a typical velocity U
* e.g. the speed of the incoming flow
* Rescale terms
o X’=x/L, u'=u/U, t'=tU/L, p’=p/pU?
so they all are dimensionless

u' +u-Vu'+Vp'= % + Ly

Vorticity

» Last class: irrotational flow
» And simplification to potential flow
* How do we measure rotation?
» Vorticity of a vector field (velocity) is: W = V xu

» Proportional (but not equal) to angular velocity of a
rigid body - off by a factor of 2

* Visualization of potential flow is fairly boring
* It’s as smooth as possible, laminar
* Vorticity is what makes flow look cool
* (Or free surfaces...)



Vorticity equation

Start with N-S, constant viscosity and density
U, +u-Vu+1Vp=g+wWu
Take curl of whole equation
qut+Vx(u~Vu)+Vx%Vp=ng+Vx(VV2u)
Lots of terms are zero:
e g is constant (or the potential of some field)
* With constant density, pressure term too
Vxu, +Vx(uVu)=vwW xVy
Then use vector identities to simplify...
qu[+V><((V><u)xu+i2Vu2)=vV2(qu)

W, +V x(wxu)=Wo

Potential in time

Use vector identity u*Vu=(Vxu)xu+VIul3/2

Assume

e incompressible (V-u=0), inviscid, irrotational
(Vxu=0)

e constant density

* thus potential flow (u=V¢, V2$=0)

Then momentum equation simplifies

(using G=-gy for gravitational potential)

u, +(qu)xu+%V‘u‘2+%Vp=g
Vg, + 1V + LVp=-VG

Vorticity equation continued

» Simplify with more vector identities, and
assume incompressible to get:

D
2O b VurwWo
Dt

» Important result: Kelvin Circulation Theorem
» Roughly speaking: if w=0 initially, and there’s no
viscosisty, m=0 forever after (following a chunk of
fluid)

« If fluid starts off irrotational, it will stay that
way (in many circumstances)

* So potential flow is reasonable

Bernoulli’s equation

» Every term in the simplified momentum
equation is a gradient: integrate to get

¢,+§u2+£=—G
P

* (Remember Bernoulli’s law for pressure?)

 This tells us how the potential should
evolve in time



Water waves Set up

» For small waves (no breaking), can reduce We’'ll take y=0 as the height of the water
geometry of water to 2D heightfield at rest

e Can reduce the physics to 2D also _ )
« How do surface waves propagate? H is the depth (y=-H is the sea bottom)

* Plan of attack h is the current height of the water at
« Start with potential flow, Bernoulli’s equation (X,2)

» Write down boundary conditions at water surface Simplification: velociti I
« Simplify 3D structure to 2D Implitica an. veloclties very sma
(small amplitude waves)

Boundaries Finding a wave solution
* At sea floor (y=-H), v=0 ¢, =0 e Plug in ¢=f(y)sin(K+(x,z)-wt)
* In other words, do a Fourier analysis in
At sea surface (y=h=0), v=h, horizontal component, assume nothing
* Note again - assuming very small horizontal much happens in vertical
motion g —h, « Solving V2¢=0 with boundary conditions on
ives w €Os + )
» At sea surface (y=h=0), p=0 b9 ¢=AKMSIH(K +(x,2) - 1)

¢ Or atmospheric pressure, but we only care about - .
pressure differences * Pressure boundary condition then gives

¢ Use Bernoulli’s equation, throw out small velocity (with k the magnitude of K)
squared ter(r;, :siegp;fo, o = ~/gktanh kH
t



Dispersion relation Simulating the ocean

» So the wave speed c is » So far from land, a reasonable thing to
W g dois
€= T B kH « Do Fourier decomposition of initial surface
* Notice that waves of different wave- height
numbers k have different speeds * Evolve egch wave accqrding to given wave
« Separate or disperse in time speed (dispersion relation)

¢ Update phase, use FFT to evaluate
* How do we get the initial spectrum?
* Measure it! (oceanography)

» For deep water (H big, k reasonable --
not tidal waves!) tanh(kH)=1

=8
k
Energy spectrum Phillips Spectrum
» Fourier decomposition of height field: « For a “fully developed” sea
AN AT ) () * wind has been blowing a long time over a large
h(x,z,t) = Eh(l,JJ)e R area, statistical distribution of spectrum has
) i stabilized
* "Energy” in K=(i,j) is S(K)=‘E(K)‘2 « The Phillips spectrum is: [Tessendorf...]
ca e g WY
 Oceanographic measurements have = AL eXp((kL)z (k) [KW)
found models for expected value of S(K) « Ais an arbitrary amplitude
(statistical description) « L=IWI?/g is largest size of waves due to wind

velocity W and gravity g

* Little | is the smallest length scale you want to
model



Other spectra

* More complex models such as
JONSWAP

» Sea is never fully developed, need to take
into account how far from land you are

e Or make up your own

Time evolution

» Dispersion relation gives us w(K)
e Attimet, want A(x,)= Eh(K,O)e‘m(K'X‘“”)
K=(i. /)
= Eﬁ(K,O)e‘ﬁ%ﬁm

K=(i,))

» So then coefficients at time t are
» Forj=0: h(i, j,t) = h(i,j,0)e """
 Others: figure out from conjugacy condition (or
leave it up to real-valued FFT to fill them in)

Fourier synthesis

» From the prescribed S(K), generate actual
Fourier coefficients

h(K.0) = 5(X, + X,v=1)y/S(K)

* X is a random number with mean 0O, standard
deviation 1 (Gaussian)

¢ Uniform numbers from unit circles aren't terrible
either

» Want real-valued h, so must have
h(K) = h(-K)"
» Or give only half the coefficients to FFT routine
and specify you want real output

Picking parameters

* Need to fix grid for Fourier synthesis
(e.g. 1024x1024 height field grid)

 Grid spacing shouldn’t be less than e.g. 2cm
(smaller than that - surface tension, nonlinear
wave terms, etc. take over)
e Take little | (cut-off) a few times larger

» Total grid size should be greater than but still
comparable to L in Phillips spectrum
(depends on wind speed and gravity)

* Amplitude A shouldn’t be too large
» Assumed waves weren’t very steep



Note on FFT output

FFT takes grid of coefficients, outputs grid of
heights

It’s up to you to map that grid
(0...n-1, 0...n-1) to world-space coordinates

In practice: scale by something like L/n

¢ Adjust scale factor, amplitude, etc. until it looks
nice
Alternatively: look up exactly what your FFT

routines computes, figure out the “true” scale
factor to get world-space coordinates

Choppy waves

See Tessendorf for more explanation

Nonlinearities cause real waves to have
sharper peaks and flatter troughs than
linear Fourier synthesis gives

Can manipulate height field to give this
effect
* Distort grid with (x,z) -> (x,z)+AD(x,z,1)

D(x.t)= Yy -1 %ﬁ(l{,t)g“”

Tiling issues

* Resulting grid of waves can be tiled in x and z
» Handy, except people will notice if they can

see more than a couple of tiles

» Simple trick: add a second grid with a non-

rational multiple of the size

» Golden mean (1+sqrt(5))/2=1.61803... works well
[why?]

» The sum is no longer periodic, but still can be
evaluated anywhere in space and time easily
enough

Choppiness problems

* The distorted grid can actually tangle up

(Jacobian has negative determinant -
not 1-1 anymore)

» Can detect this, do stuff (add particles for
foam, spray?)

e Can’t easily use superposition of two

grids to defeat periodicity... (but with a
big enough grid and camera position
chosen well, not an issue)



Issues with Fourier method

Can’t easily handle objects in water
» E.g. boat wakes, splashes

One solution: cover up problem with foam

While dispersion relation works in shallow
water too, can’t handle beaches...

Next class: shallow water equations (PDE’s)



