
Notes

• Added a 2D cross-section viewer for
assignment 6
• Not great, but an alternative if the full 3d viewer

isn’t working for you

• Warning about the formulas in Fedkiw, Stam,
and Jensen - maybe not right
• Rederive the limited Catmull-Rom formulas or

check around on the web…

• Please read Foster & Metaxas, “Realistic
animation of liquids”, 1996

• Thursday: decide your final project!

Water

• This week: extend our 3D flow solver to
full 3D water

• We need to add two things:

• Keep track of where the water is

• Figure out the right boundary conditions for

water surface

Free surface

• As before with waves, we’ll ignore what the
air is doing
• Our model of air is pressure=0

• Comparison:
• !water=1000kg/m3, !air=1.3kg/m3 (approximate, at

sea level)

• Air moves out of the way of water pretty fast!

• Momentum of air isn’t a big deal, pressure
variation small
• Of course, the wind does makes the waves go…

• Instead of 2 phase flow (water+air), we’re
doing free surface flow (water+vacuum)

Boundary conditions

• All that’s new is the free surface
boundary (water-“air”)

• We know p=0 outside the water

• So use this BC for the pressure solve

• What about velocity?

• For figuring out divergence etc.

• Let’s think about real water-air interface

Real velocity

• The molecules of water at the interface
basically move at the same speed as the
molecules of air at the interface
• Normal to the interface: if moving at different

speeds, either compress together or leave a
gaping hole…

• Mathematically this translates to !u/!n=0

• In tangential direction, things are a little more
complicated - applied traction due to viscous
stress…

• Simplify by saying no viscosity, which means
tangential components of u not coupled across the
boundary

Velocity boundary condition

• If we don’t have air, just a free surface, then

just extrapolate u

• u outside = u at closest point inside water

• Then !u/!n=0, and we get reasonable values for

tangential components

• So for example, when we compute

divergence near free surface, don’t include

differences across the interface

• [draw it]

Tracking the interface

• We know the normal component of u is
continuous across interface (so it’s well
defined on the interface)

• The water and air molecules just on either
side then have the same normal velocity

• So interface moves in the normal direction at
that speed

• Can the interface move in the tangential
direction?
• No - that doesn’t make sense…

• Ignore the tangential component of velocity

Numerical methods

• Two approaches:

• “tracking”: Lagrangian view point, actually

tag material and follow it around

• “capturing”: Eulerian view point, just keep

track of whether each grid point is water or

not

• Lots of different algorithms…

Parameterized tracking

• Example: see [Foster & Metaxas ‘96]

• 1st try: use a heightfield again
• But if heightfield geometry is reasonable, probably

2D physics simplification is fine too

• So then generalize to a parameterized
surface
• E.g. a mesh, or a spline surface, …

• Delineates the water surface - just what we need
for rendering

• Each vertex of the mesh should move at the
speed of the water (extrapolated if needed)

Adaptivity

• Want to start with, e.g., one mesh vertex per
surface voxel

• But as water sloshes around, sampling will
change
• Some regions over-resolved - could get numerical

noise in mesh

• Some regions under-resolved - bad bad bad

• Need to resample - delete points, add points,
maybe even move points
• In 1D/2D pretty easy

• In 2D/3D pretty hard (but do-able: 533A)

Topology changes

• When a wave crashes down, or a drop hits, or
a drop separates, or…
• Topology changes

• Old parameterization does not apply

• Need to detect collisions, reparameterize
(mesh surgery)
• 1D/2D: painful, but do-able

• 2D/3D: you don’t want to go there

• Bottom-line: parameterized surfaces are not a
good idea for interface tracking

Phase-field

• Mathematically could define characteristic
function "(x)

• 1 for water, 0 for air

• Discretize this on a grid #ijk, advect it around
in the velocity field like any other scalar
• Called a phase field (tells us which phase)

• Two immediate problems:
• Stair-step problem (smooth water surface is now

voxelized)

• Initial discontinuity gets blurred out - we lose 0/1
values

!

"
t
+ u # $" = 0

Fixing phase fields

• Smearing things out is actually good!
• Around interface go smoothly from 0 to 1

• Pick 1/2 to be the threshhold for what is water,
what is not

• Render smooth implicit surface

• How much smearing?
• Say 2-3 grid cells…

• Problems:
• Over time, smearing spreads and gets distorted

• Mass is not conserved discretely

Level sets

• Naturally leads to level set method

• Now use signed distance on a grid, with $=0
marking the interface

• We know exactly how much “smearing”: we
want |%$|=1

• Interface is always sharply defined

• Move it around as before:

• But problems remain:
• Over time, signed distance gets distorted

• Mass isn’t guaranteed to be conserved!

"
t
+ u # $" = 0

Interface velocity

• Remember the interface only cares about
normal component of velocity

• It also only cares about velocity at the
interface
• But Eulerian schemes move entire field using

velocity everywhere…

• Significantly improve level set method by
changing velocity field
• Just keep normal component of velocity from

closest point on interface

!

u
LS

(x) = u(x "#$#) % ˆ n ˆ n

Distortion

• This delays, but doesn’t stop, the problem of
signed distance getting distorted
• If it’s distorted too much, get very unreliable

normals and closest point estimates…

• But remember: we only care about interface
• Values of $ far from interface may be changed for

our convenience without changing interface:
there’s nothing sacred about them

• Thus we need to reinitialize $ to be signed
distance

Reinitialization

• Idea: we have a distorted $, |%$|"1

• Want to return to |%$|=1 without disturbing the
location of the interface

• If we’re not too far from |%$|=1, makes sense
to use an iterative method
• We can even think of each iteration as a pseudo-

time step

• Information should flow outward from interface

• Advection in direction sign($)n and with rate of
change sign($):

!

"t + sign(")
#"

#"

$

%
&

'

(
) * #" = sign(")

Reinitialization cont’d

• Simplifying this we get:

• This is another Hamilton-Jacobi
equation…

• If we want |%$|=1 to very high order

accuracy, can use high-order HJ methods

!

"t + sign(") #1()$" = 0

Discretization

• When we discretize (e.g. with semi-
Lagrangian) we’ll end up interpolating
with values on either side of interface

• Limit the possibility for weird stuff to
happen, like $ changing sign

• So instead of sign($), use S($0)

• Can never flip sign

• Sign function smeared out to be smooth:

!

S("
0
) =

"
0

"
0

2 + #"
0

2
$x()

2

Aside: initialization

• This works well if we’re already close to
signed distance

• What if we start from scratch at t=0?
• For very simple geometry, may construct $

analytically

• More generally, need to numerically approximate

• One solution - if we can at least get
inside/outside on the grid, can run
reinitialization equation from there (1st order
accurate)

Fast methods

• Problem with reinitialization from scratch - to
get full field, need to take O(n) steps, each
costs O(n3)

• Can speed up with local level set method
• Only care about signed distance near interface, so

only compute those O(n2) values in O(1) steps

• Gives optimal O(n2) complexity (but the constant
might be big!)

• If we really want full grid, but fast:
• Fast Marching Method O(n3log n)

• Fast Sweeping Method O(n3)

• But not very accurate

Velocity extrapolation

• We can exploit level set to extrapolate
velocity field outside water
• Not a big deal for pressure solve - can directly

handle extrapolation there

• But a big deal for advection - with semi-
Lagrangian method might be skipping over, say, 5
grid cells

• So might want velocity 5 grid cells outside of water

• Simply take the velocity at an exterior grid
point to be interpolated velocity at closest
point on interface

Pure level set algorithm

• Use current $ (for velocity extrapolation

and pressure-solve boundary conditions)
to get next velocity field

• Advect $

• Every so often (20 time steps?)
reinitialize $ for a few (5?) pseudo-time

steps

Mass conservation

• Problem: it doesn’t work

• Visual artifacts - water droplets vanish in mid-
air

• Mass is not guaranteed to be conserved

• Reinitialization makes it even worse

• [example]

• In the limit, works ok, but not on coarse grids
• Even if we use 5th order accurate HJ-WENO…

Volume-of-fluid (VOF)

• Another Eulerian approach: directly enforce
conservation of mass
• Account for every last drop of water

• At each grid cell, keep track of how much
water is in it (as a fraction of the cell):
0=empty, 1=full
• Like phase-field, only physical meaning for

intermediate values

• Treat advection as a conservation law - make
sure water is conserved

VOF problems

• Discontinuous interface (which should be
handled by p=0, extrapolated u) is smeared
out and made erroneously continuous

• Hard to figure out what to do with
accumulation of partially-filled cells

• Hard to reconstruct nice interface, e.g. for
rendering
• [draw it]

Back to particles!

• Harlow and Welch, 1965: MAC method
• Marker-and-Cell

• Instead of moving surface particles around,
move water particles (“marker particles”)

• Forget about a mesh
• Only need to know where water is and isn’t (worry

about rendering later - e.g. blobby implicit surface
wrapped around particles)

• Any grid cell with marker particles in it is
water, rest are not

MAC

• Seed particles in grid cells where there
is water (e.g. 8 to a grid cell in 3D)

• Mark grid cells as water/air according to
whether or not they have particles

• Solve for new velocity/pressure

• Move particles in velocity field

• Need CFL limit for accuracy

Issues

• Mass conservation?

• Not exact, but close - if velocity field is divergence-
free

• Can never lose water in mid-air

• Smearing, distortion? Doesn’t apply

• The only downside is noisy surface

• Discrete particles don’t do a good job at

representing smooth water

• But great for rough foamy splashing!

Surface tension

• Critical for small-scale water

• We model it by adding to pressure boundary
condition p=0 at free surface:

• & is surface tension parameter, ' is mean
curvature

• Recall ' is based on second derivatives of surface

• If we have a noisy surface from blobby-
wrapped marker particles, curvature estimate
is extremely noisy - useless

!

pfs ="#

