Notes

Added a 2D cross-section viewer for

assignment 6

* Not great, but an alternative if the full 3d viewer
isn’t working for you

Warning about the formulas in Fedkiw, Stam,

and Jensen - maybe not right

* Rederive the limited Catmull-Rom formulas or
check around on the web...

Please read Foster & Metaxas, “Realistic

animation of liquids”, 1996

Thursday: decide your final project!

Free surface

As before with waves, we’ll ignore what the
air is doing
e Our model of air is pressure=0
Comparison:
* Puater=1000kg/m3, p,,=1.3kg/m?3 (approximate, at
sea level)
» Air moves out of the way of water pretty fast!
* Momentum of air isn’t a big deal, pressure
variation small
 Of course, the wind does makes the waves go...
Instead of 2 phase flow (water+air), we’re
doing free surface flow (water+vacuum)

Water

* This week: extend our 3D flow solver to
full 3D water

* We need to add two things:
» Keep track of where the water is

 Figure out the right boundary conditions for
water surface

Boundary conditions

» All that’s new is the free surface
boundary (water-“air”)

» We know p=0 outside the water
» So use this BC for the pressure solve
» What about velocity?
 For figuring out divergence etc.
» Let’s think about real water-air interface



Real velocity

The molecules of water at the interface

basically move at the same speed as the

molecules of air at the interface

¢ Normal to the interface: if moving at different
speeds, either compress together or leave a
gaping hole...

« Mathematically this translates to du/on=0

* In tangential direction, things are a little more
complicated - applied traction due to viscous
stress...

» Simplify by saying no viscosity, which means
tangential components of u not coupled across the
boundary

Tracking the interface

We know the normal component of u is
continuous across interface (so it's well
defined on the interface)

The water and air molecules just on either
side then have the same normal velocity
So interface moves in the normal direction at
that speed

Can the interface move in the tangential
direction?

¢ No - that doesn’t make sense...

* Ignore the tangential component of velocity

Velocity boundary condition

 If we don’t have air, just a free surface, then
just extrapolate u
e u outside = u at closest point inside water
* Then du/dn=0, and we get reasonable values for

tangential components

» So for example, when we compute
divergence near free surface, don’t include
differences across the interface
o [draw it]

Numerical methods

e Two approaches:
* “tracking”: Lagrangian view point, actually
tag material and follow it around
* “capturing”: Eulerian view point, just keep
track of whether each grid point is water or
not

* Lots of different algorithms...



Parameterized tracking

Example: see [Foster & Metaxas ‘96]

1st try: use a heightfield again

« But if heightfield geometry is reasonable, probably
2D physics simplification is fine too

So then generalize to a parameterized

surface

» E.g. amesh, or a spline surface, ...

» Delineates the water surface - just what we need
for rendering

» Each vertex of the mesh should move at the
speed of the water (extrapolated if needed)

Topology changes

When a wave crashes down, or a drop hits, or

a drop separates, or...

e Topology changes

» Old parameterization does not apply

Need to detect collisions, reparameterize
(mesh surgery)

e 1D/2D: painful, but do-able

e 2D/3D: you don’t want to go there

Bottom-line: parameterized surfaces are not a

good idea for interface tracking

Adaptivity

Want to start with, e.g., one mesh vertex per
surface voxel

But as water sloshes around, sampling will
change

* Some regions over-resolved - could get numerical
noise in mesh

» Some regions under-resolved - bad bad bad
Need to resample - delete points, add points,
maybe even move points

¢ In 1D/2D pretty easy

 In 2D/3D pretty hard (but do-able: 533A)

Phase-field

Mathematically could define characteristic

function y(x)

« 1 for water, 0O for air

Discretize this on a grid 8, advect it around

in the velocity field like any other scalar

» Called a phase field (tells us which phase)

0.+u-vo=0

Two immediate problems:

 Stair-step problem (smooth water surface is now
voxelized)

« Initial discontinuity gets blurred out - we lose 0/1
values



Fixing phase fields

» Smearing things out is actually good!
» Around interface go smoothly from 0 to 1

¢ Pick 1/2 to be the threshhold for what is water,
what is not

* Render smooth implicit surface
e How much smearing?
e Say 2-3 grid cells...
* Problems:
» Over time, smearing spreads and gets distorted
« Mass is not conserved discretely

Interface velocity

» Remember the interface only cares about
normal component of velocity
* It also only cares about velocity at the
interface
» But Eulerian schemes move entire field using
velocity everywhere...
« Significantly improve level set method by
changing velocity field
* Just keep normal component of velocity from
closest point on interface

U (x)=u(x-¢Ve)-nn

Level sets

Naturally leads to level set method
Now use signed distance on a grid, with ¢=0
marking the interface

We know exactly how much “smearing”: we
want IVol=1

Interface is always sharply defined
Move it around as before:

¢, +u- V=0
But problems remain:

» Over time, signed distance gets distorted
* Mass isn’t guaranteed to be conserved

Distortion

This delays, but doesn’t stop, the problem of

signed distance getting distorted

« If it’s distorted too much, get very unreliable
normals and closest point estimates...

But remember: we only care about interface

» Values of ¢ far from interface may be changed for
our convenience without changing interface:
there’s nothing sacred about them

Thus we need to reinitialize ¢ to be signed
distance



Reinitialization Reinitialization cont’d

 |dea: we have a distorted ¢, IVpl#1 « Simplifying this we get:
« Want to return to IV¢I=1 without disturbing the ¢, + (sign(¢) - 1)Vl =0
location of the interface ’

« If we're not too far from IV¢l=1, makes sense  This is another Hamilton-Jacobi
to use an iterative method equation...
* We can even think of each iteration as a pseudo- « If we want IV¢l=1 to very high order
e siep high-order HJ methods
« Information should flow outward from interface accuracy, can use high-o
» Advection in direction sign(¢p)n and with rate of
change sign(¢): Vo
¢, +| sign(¢p)i=—| V¢ = sign(¢)
( Vel
Discretization Aside: initialization
* When we discretize (e.g. with semi- « This works well if we’re already close to
Lagrangian) we’ll end up interpolating signed distance
with values on either side of interface  What if we start from scratch at t=07
. NIT . e For very simple geometry, may construct ¢
* Limit the possibility for weird stuff to analytically
happen, like ¢ changing sign « More generally, need to numerically approximate
» So instead of sign(¢), use S(¢,) « One solution - if we can at least get
« Can never flip sign inside/outside on the grid, can run
« Sign function smeared out to be smooth: reinitialization equation from there (1st order
’ accurate)

2

S(¢()) = ﬁ
9 + Vo[ (Ax)



Fast methods Velocity extrapolation

e Problem with reinitialization from scratch - to * We can exploit level set to extrapolate

get full field, need to take O(n) steps, each velocity field outside water

costs O(n3) « Not a big deal for pressure solve - can directly
« Can speed up with local level set method handle extrapolation there

« But a big deal for advection - with semi-
Lagrangian method might be skipping over, say, 5
grid cells

» So might want velocity 5 grid cells outside of water
» Simply take the velocity at an exterior grid

point to be interpolated velocity at closest
point on interface

» Only care about signed distance near interface, so
only compute those O(n?) values in O(1) steps

 Gives optimal O(n?) complexity (but the constant
might be big!)
* If we really want full grid, but fast:
 Fast Marching Method O(n3log n)
» Fast Sweeping Method O(n?3)
» But not very accurate

Pure level set algorithm Mass conservation

« Use current ¢ (for velocity extrapolation * Problem: it doesn’t work

and pressure-solve boundary conditions) * Visual artifacts - water droplets vanish in mid-

to get next velocity field air

» Mass is not guaranteed to be conserved

* Advect ¢  Reinitialization makes it even worse
» Every so often (20 time steps?) « [example]

reinitialize ¢ for a few (5?) pseudo-time « In the limit, works ok, but not on coarse grids

steps » Even if we use 5th order accurate HJ-WENO...



Volume-of-fluid (VOF)

Another Eulerian approach: directly enforce

conservation of mass

e Account for every last drop of water

At each grid cell, keep track of how much

water is in it (as a fraction of the cell):

O=empty, 1=full

* Like phase-field, only physical meaning for
intermediate values

Treat advection as a conservation law - make

sure water is conserved

Back to particles!

Harlow and Welch, 1965: MAC method

* Marker-and-Cell

Instead of moving surface particles around,

move water particles (“marker particles”)

Forget about a mesh

* Only need to know where water is and isn’t (worry
about rendering later - e.g. blobby implicit surface
wrapped around particles)

Any grid cell with marker particles in it is

water, rest are not

VOF problems

Discontinuous interface (which should be
handled by p=0, extrapolated u) is smeared
out and made erroneously continuous

Hard to figure out what to do with
accumulation of partially-filled cells

Hard to reconstruct nice interface, e.g. for
rendering
e [draw it]

MAC

Seed particles in grid cells where there
is water (e.g. 8 to a grid cell in 3D)

Mark grid cells as water/air according to
whether or not they have particles

Solve for new velocity/pressure

Move particles in velocity field
* Need CFL limit for accuracy



Issues Surface tension

» Mass conservation?  Critical for small-scale water
« Not exact, but close - if velocity field is divergence- * We model it by adding to pressure boundary
free condition p=0 at free surface:
» Can never lose water in mid-air
. ) : , Py =0K
» Smearing, distortion? Doesn’t apply _ _ _
L . e o is surface tension parameter, x is mean
e The only downside is noisy surface curvature
 Discrete particles don’t do a good job at * Recall x is based on second derivatives of surface
representing smooth water _ + If we have a noisy surface from blobby-
* But great for rough foamy splashing! wrapped marker particles, curvature estimate

is extremely noisy - useless



