Notes

- Previous lecture
 - Missing a factor of Δt in pressure rescaling
 - Not really important though can absorb into rescaling of pressure (along with density etc.)
 - True update is $u^{n+1} = u^{(3)} \Delta t \frac{1}{\rho} \nabla p$
 - If you want to use rescaled pressure from last step as initial guess for pressure solve, need to multiply it by $\Delta t_{new}/\Delta t_{old}$
- · Homework 6 goes out later today: check web
- Still marking homework 4...

Recall from last class

- Solving incompressible flow by splitting up the equations into easier chunks
 - · We handled gravity
 - We handled pressure
 - · We handled viscosity
- Today we'll do the missing piece, advection

$$u_{t} = g$$

$$u_{t} + u \cdot \nabla u = 0$$

$$u_{t} = v \nabla^{2} u$$

$$u_{t} + \frac{1}{\rho} \nabla p = 0 \qquad (\nabla \cdot u = 0)$$

Time integration again

• And again, we're doing this in time:

$$u^{(1)} = u^{n} + \Delta tg$$

$$u^{(2)} = advect(u^{(1)}, \Delta t)$$

$$u^{(3)} = u^{(2)} + v\Delta t \nabla^{2} u^{(3)}$$

$$u^{n+1} = u^{(3)} - \Delta t \frac{1}{2} \nabla p$$

- We've chosen to use a staggered grid so the last step works well
- Now need to figure out advect()

Velocity advection

- This is a nonlinear problem
 - Difficult for implicit methods
 - Let's stay explicit
- Before jumping to advecting velocity, let's look at advecting a scalar q

$$q_t + u \cdot \nabla q = 0$$

The true solution

Recall the material derivative - what we're solving

 $\frac{Dq}{Dt} = 0$

- So if we identify a particle in the flow with some value q_0 , just move the particle around and don't change q_0
 - Trivial for Lagrangian methods
 - We'll come back to this later
- But let's keep thinking Eulerian, and try to solve the PDE on a grid

First try: central differences

- Centred-differences give better accuracy
- Example: $\frac{\partial q_i}{\partial t} = -u \left(\frac{q_{i+1} q_{i-1}}{2\Delta x} \right)$
 - 2nd order accurate in space
- Eigenvalues are pure imaginary rules out Forward Euler and RK2 in time
- But what does the solution look like?

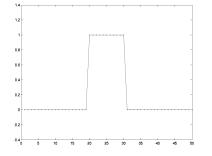
Scalar advection in 1D

- Let's simplify even more, to just one dimension: q_t+uq_x=0
- Incompressible flow in 1D is just u=constant
- And let's ignore boundary conditions for now
 - E.g. use a periodic boundary
- True solution just translates q around at speed u - shouldn't change shape

Testing a pulse

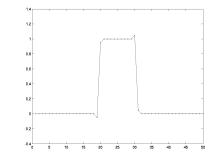
- We know things have to work out nicely in the limit (second order accurate)
 - I.e. when the grid is fine enough
 - What does that mean? -- when the sampled function looks smooth on the grid
- In graphics, it's just redundant to use a grid that fine
 - we can fill in smooth variations with interpolation later
- So we're always concerned about coarse grids == not very smooth data
- Discontinuous pulse is a nice test case

A pulse (initial conditions)



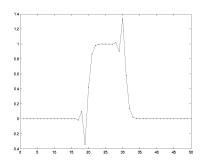
Centered finite differences

- A few time steps (RK4, small Δt) later
 - u=1, so pulse should just move right without changing shape



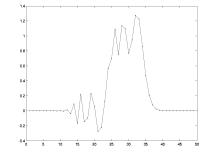
Centred finite differences

• A little bit later...



Centred finite differences

• A fair bit later



What went wrong?

- Lots of ways to interpret this error
- Example phase analysis
 - Take a look at what happens to a sinusoid wave numerically
 - The amplitude stays constant (good), but the wave speed depends on wave number (bad) - we get dispersion
 - So the sinusoids that initially sum up to be a square pulse move at different speeds and separate out
 - We see the low frequency ones moving faster...
 - But this analysis won't help so much in 3D, variable u...

Modified PDE's

- Another way to interpret error try to account for it in the physics
- · Look at truncation error more carefully:

$$\begin{aligned} q_{i+1} &= q_i + \Delta x \frac{\partial q}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 q}{\partial x^2} + \frac{\Delta x^3}{6} \frac{\partial^3 q}{\partial x^3} + O(\Delta x^4) \\ q_{i-1} &= q_i - \Delta x \frac{\partial q}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 q}{\partial x^2} - \frac{\Delta x^3}{6} \frac{\partial^3 q}{\partial x^3} + O(\Delta x^4) \\ \frac{q_{i+1} - q_{i-1}}{2\Delta x} &= \frac{\partial q}{\partial x} + \frac{\Delta x^2}{6} \frac{\partial^3 q}{\partial x^3} + O(\Delta x^3) \end{aligned}$$

• Up to high order error, we numerically solve $q_t + uq_x = -\frac{u\Delta x^2}{6}q_{xxx}$

Interpretation

$$q_t + uq_x = -\frac{u\Delta x^6}{6}q_{xxx}$$

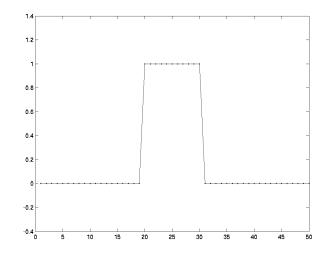
- Extra term is "dispersion"
 - · Does exactly what phase analysis tells us
 - Behaves a bit like surface tension...
- We want a numerical method with a different sort of truncation error
 - Any centred scheme ends up giving an odd truncation error --- dispersion
- · Let's look at one-sided schemes

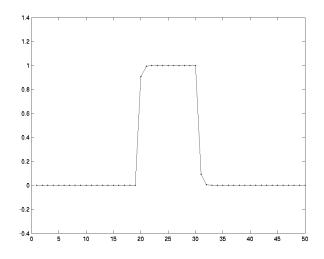
Upwind differencing

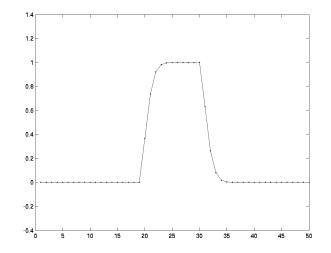
- Think physically:
 - True solution is that q just translates at velocity u
- Information flows with u
- So to determine future values of q at a grid point, need to look "upwind" -- where the information will blow from
 - Values of q "downwind" only have any relevance if we know q is smooth -- and we're assuming it isn't

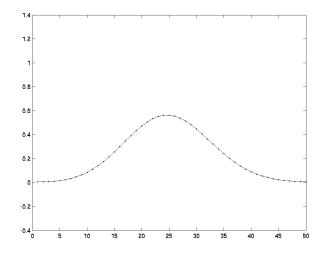
1st order upwind

- Basic idea: look at sign of u to figure out which direction we should get information
- If u<0 then $\partial q/\partial x \approx (q_{i+1}-q_i)/\Delta x$
- If u>0 then $\partial q/\partial x \approx (q_i q_{i-1})/\Delta x$
- Only 1st order accurate though
 - Let's see how it does on the pulse...









Modified PDE again

- Let's see what the modified PDE is this time $q_{i+1} = q_i + \Delta x \frac{\partial q}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 q}{\partial x^2} + O(\Delta x^3)$ $\frac{q_{i+1} - q_i}{\Delta x} = \frac{\partial q}{\partial x} + \frac{\Delta x}{2} \frac{\partial^2 q}{\partial x^2} + O(\Delta x^2)$
- For u<0 then we have $q_t + uq_x = -u\Delta x q_{xx}$
- And for u>0 we have (basically flip sign of Δx)

 $q_t + uq_x = u\Delta x q_{xx}$

• Putting them together, 1st order upwind numerical solves (to 2nd order accuracy)

 $q_t + uq_x = |u\Delta x|q_{xx}$

Interpretation

- The extra term (that disappears as we refine the grid) is **diffusion** or **viscosity**
- So sharp pulse gets blurred out into a hump, and eventually melts to nothing
- It looks a lot better, but still not great
 - Again, we want to pack as much detail as possible onto our coarse grid
 - With this scheme, the detail melts away to nothing pretty fast
- Note: unless grid is really fine, the numerical viscosity is much larger than physical viscosity - so might as well not use the latter

Fixing upwind method

- Natural answer reduce the error by going to higher order but life isn't so simple
- High order difference formulas can overshoot in extrapolating
 - If we difference over a discontinuity
 - Stability becomes a real problem
- Go nonlinear (even though problem is linear)
 - "limiters" use high order unless you detect a (near-)overshoot, then go back to 1st order upwind
 - "ENO" try a few different high order formulas, pick smoothest

Hamilton-Jacobi Equations

- In fact, the advection step is a simple example of a Hamilton-Jacobi equation (HJ)
 - $q_t + H(q,q_x) = 0$
- Come up in lots of places
 - Level sets...
- Lots of research on them, and numerical methods to solve them
- We don't want to get into that complication

Other problems

- Even if we use top-notch numerical methods for HJ, we have problems
 - Time step limit: CFL condition
 - Have to pick time step small enough that information physically moves less than a grid cell: Δt<Δx/u
 - Schemes can get messy at boundaries

Exploiting Lagrangian view

- But wait! This was trivial for Lagrangian (particle) methods!
- We still want to stick an Eulerian grid for now, but somehow exploit the fact that
 - If we know q at some point x at time t, we just follow a particle through the flow starting at x to see where that value of q ends up

$$q(x(t + \Delta t), t + \Delta t) = q_0$$
$$\frac{dx}{dt} = u(x), \quad x(t) = x_0$$

Looking backwards

- Problem with tracing particles we want values at **grid nodes** at the end of the step
 - · Particles could end up anywhere
- But... we can look backwards in time $q_{ijk} = q(x(t - \Delta t), t - \Delta t)$ $\frac{dx}{dt} = u(x), \quad x(t) = x_{ijk}$
- Same formulas as before but new interpretation
 - To get value of q at a grid point, follow a particle backwards through flow to wherever it started

Semi-Lagrangian method

- Also dubbed "stable fluids" in graphics (reinvention)
- To find the new value of q at a grid point, trace particle backwards from grid point (in velocity field u) for -Δt and interpolate from old values of q
- Two questions
 - How do we trace?
 - How do we interpolate?

Tracing

- The errors we make in tracing backwards aren't too big a deal
 - We don't compound them stability isn't an issue
 - How accurate we are in tracing doesn't effect shape of q much, just location
 - Whether we get too much blurring, oscillations, or a nice result is really up to interpolation
- Thus look at "Forward" Euler and RK2

Tracing: 1st order

- We're at grid node (i,j,k) at position x_{iik}
- Trace backwards through flow for - Δt

$$x_{old} = x_{ijk} - \Delta t \, u_{ijk}$$

- Note using u value at grid point (what we know already) like Forward Euler.
- Then can get new q value (with interpolation)

$$q_{ijk}^{n+1} = q^n (x_{old})$$
$$= q^n (x_{ijk} - \Delta t u_{ijk})$$

Behaviour around vortices

- [draw examples]
 - Forward Euler tracing will grab information from further out
 - If we're actually advecting velocity itself, vortex will slow down and shrink...
 - RK2 much better, but still a little
 - Backward Euler is the opposite
 Vortices will grow!
 - Trapezoidal Rule is just right
 - · But implicit methods probably way too slow
 - Stability is not an issue for us!
 - Modified Euler (slightly more stable than RK2) is attractive...

Interpolation

- First order accurate: nearest neighbour
 - Just pick q value at grid node closest to $\boldsymbol{x}_{\text{old}}$
 - Doesn't work for slow fluid (small time steps) -nothing changes!
- Second order accurate: linear
 - Or bilinear (2D), trilinear (3D)
 - Still fast, easy to handle boundary conditions...
 - How well does it work?

Linear interpolation

- Error in linear interpolation is proportional to $\Delta x^2 \frac{\partial^2 q}{\partial r^2}$
- Modified PDE ends up something like...

$$\frac{Dq}{Dt} = k(\Delta t)\Delta x^2 \frac{\partial^2 q}{\partial x^2}$$

- We have numerical viscosity, things will smear out
- + For reasonable time steps, k looks like $1/\Delta t \sim 1/\Delta x$
- [Equivalent to 1st order upwind for CFL Δt]
- In practice, too much smearing!

Nice properties of lerping

- But linear interpolation is completely stable
 - Interpolated value of q must lie between the old values of q on the grid
 - Thus with each time step, max(q) cannot increase, and min(q) cannot decrease
- Thus we end up with a fully stable algorithm take Δt as big as you want
 - Great for interactive applications (if the pressure solve is fast enough...)

Cubic interpolation

- To fix the problem of excessive smearing, go to higher order
- E.g. use cubic splines
 - Finding interpolating C² cubic spline is a little painful, an alternative is the
 - C¹ Catmull-Rom (cubic Hermite) spline
 [derive]
- Introduces overshoot problems
 - · Stability isn't so easy to guarantee anymore

Min-mod limited Catmull-Rom

- Trick is to check if either slope at the endpoints of the interval has the wrong sign
 - If so, clamp the slope to zero
 - Still use cubic Hermite formulas with more reliable slopes
- This has same stability guarantee as linear interpolation
 - But in smoother parts of flow, higher order accurate
 - Called "high resolution"
- Still has issues with boundary conditions...

Velocity advection

- So far we've concentrated just on advecting some scalar q
- · We want to advect velocity
 - But velocity field defines advection: nonlinear!
 - So we ignore it: "lagging"
 - Just use the old velocity field, treat u, v, and w as just scalars to move around like q
 - Again only 1st order accurate in time, but that's OK.

Staggered grid

- Problem: velocity on a staggered grid
- Simple answer
 - Average velocities to get flow field where you need it, e.g. u_{ijk}=0.5(u_{i+1/2 jk} + u_{i-1/2 jk})
 - So advect each component of velocity around in averaged velocity field
- Even cheaper
 - Advect averaged velocity field around (with any other quantity you care about) --- reuse interpolation coefficients!
 - But all that averaging smears u out... more numerical viscosity! [worse for small Δt]

Vorticity confinement

- The interpolation errors behave like viscosity, the averaging from the staggered grid behaves like viscosity...
 - Net effect is that interesting flow structures (vortices) get smeared out
 - Boooooring
- Idea of vorticity confinement add a fake force that spins vortices faster
 - Try to cancel off some of the numerical viscosity in a stable way

Smoke

- · Smoke is a bit more than just a velocity field
- Need temperature (hot air rises) and smoke density (smoke eventually falls)
- Real physics density depends on temperature, temperature depends on viscosity and thermal conduction, ...
 - We'll ignore most of that: small scale effects
 - Boussinesq approximation: ignore density variation except in gravity term, ignore energy transfer except thermal conduction
 - We go a step further and ignore thermal conduction insignificant vs. numerical dissipation

Smoke concentration

- There's more than just air temperature to consider too
- Smoke weighs more than air so need to track smoke concentration
 - Also could be used for rendering (though tracing particles can give better results)
 - Point is: physics depends on smoke concentration, not just appearance
- We again ignore effect of this in all terms except gravity force

Buoyancy

- For smoke, where there is no interface, we can add ρgy to pressure (and just solve for the difference) thus cancelling out g term in equation
- All that's left is buoyancy -- variation in vertical force due to density variation
- Density varies because of temperature change and because of smoke concentration
- Assume linear relationship (small variations)

$$f_{bouy} = (-\alpha s + \beta T)$$

+ T=0 is ambient temperature; $\alpha,\,\beta$ depend on g etc.

Smoke equations

- So putting it all together... $u_t + u \cdot \nabla u + \nabla p = (-\alpha s + \beta T)(0,1,0)$ $\nabla \cdot u = 0$ $T_t + u \cdot \nabla T = 0$ $s_t + u \cdot \nabla s = 0$
- We know how to solve the u part, using old values for s and T
- Advecting s and T around is simple just scalar advection

Notes on discretization

- Smoke concentration and temperature may as well live in grid cells same as pressure
- But then to add buoyancy force, need to average to get values at staggered positions
- Also, to maintain conservation properties, should only advect smoke concentration and temperature (and any other scalars) in a divergence-free velocity field
 - If you want to do all the advection together, do it before adding buoyancy force
 - I.e. advect; buoyancy; pressure solve; repeat