Notes Recall from last class

* Previous lecture » Solving incompressible flow by splitting up the
» Missing a factor of At in pressure rescaling equations into easier chunks
* Not really important though - can absorb into « We handled gravity

rescaling of pressure (along with density etc.)

e We handl
« True update is e handled pressure

u' = u® - At%Vp « We handled viscosity
« If you want to use rescaled pressure from last step * Today we’ll do the missing piece, advection
as initial guess for pressure solve, need to multiply u =g

it by At /At

u,+u-Vu=10
 Homework 6 goes out later today: check web

2
« Still marking homework 4... = VVu
u,+-5Vp=0 (V-u=0)
Time integration again Velocity advection
* And again, we’re doing this in time: This is a nonlinear problem
u® =u" + Atg « Difficult for implicit methods
u® = advect(u™,At) * Let’s stay explicit
u™ = u® + vAVu"? » Before jumping to advecting velocity,
W' =u - AtLvp let’s look at advecting a scalar q
« We've chosen to use a staggered grid so the q,+u-Vqg=0

last step works well
* Now need to figure out advect()

The true solution

Recall the material derivative - what we’re

solving
Dq
10

Dt

So if we identify a particle in the flow with
some value q,, just move the particle around
and don’t change q,

* Trivial for Lagrangian methods

* We'll come back to this later

But let’s keep thinking Eulerian, and try to
solve the PDE on a grid

First try: central differences

Centred-differences give better
accuracy

Example: g, =_u(qm —qi-l)
ot 2Ax
e 2nd order accurate in space

Eigenvalues are pure imaginary - rules
out Forward Euler and RK2 in time

But what does the solution look like?

Scalar advection in 1D

Let’s simplify even more, to just one
dimension: q,+uq,=0
Incompressible flow in 1D is just u=constant

And let’s ignore boundary conditions for now
» E.g. use a periodic boundary

True solution just translates q around at
speed u - shouldn’t change shape

Testing a pulse

We know things have to work out nicely in the
limit (second order accurate)
* |.e. when the grid is fine enough

* What does that mean? -- when the sampled
function looks smooth on the grid

In graphics, it’s just redundant to use a grid
that fine

» we can fill in smooth variations with interpolation
later

So we’re always concerned about coarse
grids == not very smooth data

Discontinuous pulse is a nice test case

A pulse (initial conditions) Centered finite differences

o A few time steps (RK4, small At) later

¢ u=1, so pulse should just move right without
changing shape

...........

o
L o

Centred finite differences Centred finite differences

e A little bit later... * A fair bit later

.....................

What went wrong? Modified PDFE’s

 Lots of ways to interpret this error » Another way to interpret error - try to account
« Example - phase analysis for it in the physics
« Take a look at what happens to a sinusoid wave » Look at truncation error more carefully:
numerically 0 A 3 3
_ q dq Ax’dg 4
« The amplitude stays constant (good), but the wave Qoo =G+ Ax =t = oS4 =+ O(Ar')
speed depends on wave number (bad) - we get g0 AC Fa A S
dispersion e S s RXC (S

» So the sinusoids that initially sum up to be a
square pulse move at different speeds and
separate out

2 3
i —94iq =ﬂ+£é’7‘§+0(m3)
2Ax ox 6 ox

» We see the low frequency ones moving faster... . Up to high order error, we numerically solve

¢ But this analysis won’t help so much in 3D, UG = — uhx’
variable u... g+ Uq, = 6 Dcxx
Interpretation Upwind differencing
] * Think physically:
q,+uq, =- MA6X q.. True solution is that q just translates at velocity u
 Information flows with u
* Extra term is “dispersion” « So to determine future values of q at a grid

« Does exactly what phase analysis tells us point, need to look “upwind” -- where the
» Behaves a bit like surface tension... information will blow from

 We want a numerical method with a different
sort of truncation error

* Any centred scheme ends up giving an odd
truncation error --- dispersion

e Let’s look at one-sided schemes

» Values of g “downwind” only have any relevance if
we know q is smooth -- and we’re assuming it isn’t

1st order upwind

Basic idea: look at sign of u to figure out
which direction we should get
information

If u<0 then dq/ox=(q;,,-q;)/Ax
If u>0 then dq/ox=(qi-q;_;)/Ax

Only 1st order accurate though
* Let’s see how it does on the pulse...

0.8
06
04

021

0.2k

-0.4
0

0.8

06

04

0.2

-0.21

-0.4
0

081

061

T
TN
P L

-0.21

-0.4
0

Interpretation

The extra term (that disappears as we refine
the grid) is diffusion or viscosity

So sharp pulse gets blurred out into a hump,
and eventually melts to nothing

It looks a lot better, but still not great

¢ Again, we want to pack as much detail as possible
onto our coarse grid

¢ With this scheme, the detail melts away to nothing
pretty fast

Note: unless grid is really fine, the numerical

viscosity is much larger than physical

viscosity - so might as well not use the latter

Modified PDE again

Let’s see what the mogified PDE is this time
9 =Qf+M%+%%+O(M3)

i — 94 =ﬂ+ Ax &g +0(sz)

Ax ax 2 ox?

For u<0 then we have ¢, + uq, = -uAxq,,
And for u>0 we have (basically flip sign of Ax)
q, +uq, = ubxq,

Putting them together, 1st order upwind
numerical solves (to 2nd order accuracy)

q,+uq = |qu q..

Fixing upwind method

Natural answer - reduce the error by going to
higher order - but life isn’t so simple

High order difference formulas can overshoot
in extrapolating

« If we difference over a discontinuity

« Stability becomes a real problem

Go nonlinear (even though problem is linear)

* “limiters” - use high order unless you detect a
(near-)overshoot, then go back to 1st order upwind

* “ENO” - try a few different high order formulas,
pick smoothest

Hamilton-Jacobi Equations

In fact, the advection step is a simple
example of a Hamilton-Jacobi equation (HJ)
* qr+H(a,q,)=0

Come up in lots of places

e Level sets...

Lots of research on them, and numerical
methods to solve them

We don’t want to get into that complication

Exploiting Lagrangian view

But wait! This was trivial for Lagrangian
(particle) methods!

We still want to stick an Eulerian grid for now,
but somehow exploit the fact that

 If we know g at some point x at time t, we just
follow a particle through the flow starting at x to
see where that value of g ends up

g(x(r+Ar),t + Ar) = g,
dx _

E u(x), x(1) = x,

Other problems

* Even if we use top-notch numerical
methods for HJ, we have problems

» Time step limit: CFL condition

* Have to pick time step small enough that
information physically moves less than a grid
cell: At<Ax/u

» Schemes can get messy at boundaries

Looking backwards

» Problem with tracing particles - we want
values at grid nodes at the end of the step
« Particles could end up anywhere
e But... we can look backwards in time
4 = q(x(t = At),1 - Ar)

% = u(x), x(1) = x,

 Same formulas as before - but new
interpretation

» To get value of q at a grid point, follow a particle
backwards through flow to wherever it started

Semi-Lagrangian method Tracing

* Also dubbed “stable fluids” in graphics » The errors we make in tracing
(reinvention) o backwards aren’t too big a deal

* To find the new value of q at a grid point, » We don’t compound them - stability isn’t an
trace particle backwards from grid point (in issue
velocity field u) for -At and interpolate from old

* How accurate we are in tracing doesn’t
effect shape of g much, just location
» Whether we get too much blurring, oscillations,

values of g
* Two questions

* How do we trace? or a nice result is really up to interpolation
» How do we interpolate? « Thus look at “Forward” Euler and RK2
Tracing: 1st order Behaviour around vortices
« We're at grid node (i,j,k) at position x;, e [draw examples]
» Trace backwards through flow for -At » Forward Euler tracing will grab information from
further out
Xowg = Xijp = At Ui * If we’re actually advecting velocity itself, vortex will slow
down and shrink...
« Note - using u value at grid point (what we know * RK2 much better, but still a little
already) like Forward Euler. e Backward Euler is the opposite
« Then can get new q value (with interpolation) * Vortices will grow!
nel m Trapezoidal Rule is just right
B =q" (%) « But implicit methods probably way too slow

« Stability is not an issue for us!

* Modified Euler (slightly more stable than RK2) is
attractive...

=q" (x,:,.k - Atui].k)

Interpolation

 First order accurate: nearest neighbour
* Just pick g value at grid node closest to X4

» Doesn’t work for slow fluid (small time steps) --
nothing changes!

» Second order accurate: linear
 Or bilinear (2D), trilinear (3D)
« Still fast, easy to handle boundary conditions...
* How well does it work?

Nice properties of lerping

e But linear interpolation is completely stable

* Interpolated value of g must lie between the old
values of g on the grid

» Thus with each time step, max(q) cannot increase,

and min(g) cannot decrease

* Thus we end up with a fully stable algorithm -

take At as big as you want

» Great for interactive applications
(if the pressure solve is fast enough...)

Linear interpolation

Error in linear interpolation is proportional to
Ax2‘9_2q
o’
Modified PDE ends up something like...
D 2
D4 _ (anan 24
Dt ox
* We have numerical viscosity, things will smear out
e For reasonable time steps, k looks like 1/At ~ 1/Ax
[Equivalent to 1st order upwind for CFL At]

In practice, too much smearing!

Cubic interpolation

To fix the problem of excessive smearing, go
to higher order
E.g. use cubic splines
* Finding interpolating C? cubic spline is a little
painful, an alternative is the
e C' Catmull-Rom (cubic Hermite) spline
* [derive]
Introduces overshoot problems
 Stability isn’t so easy to guarantee anymore

Min-mod limited Catmull-Rom Velocity advection

 Trick is to check if either slope at the » So far we’ve concentrated just on advecting
endpoints of the interval has the wrong sign some scalar q

* If so, clamp the slope to zero . We want to advect velocity
« Still use cubic Hermite formulas with more reliable

slopes « But velocity field defines advection: nonlinear!
« This has same stability guarantee as linear * So we ignore it: “lagging”
interpo|ation + Just use the old velocity field, treat u, v, and w as just
But | th ts of fl hiah d scalars to move around like q
aéchr:airenoo er parts oTlow, higher order » Again - only 1st order accurate in time, but that’s
 Called “high resolution” OK.

« Still has issues with boundary conditions...

Staggered grid Vorticity confinement
» Problem: velocity on a staggered grid » The interpolation errors behave like viscosity,
« Simple answer the averaging from the staggered grid
« Average velocities to get flow field where you need behaves like viscosity...
it, €.9. Uj=0.5(Uj,1/2 j + Uiy) * Net effect is that interesting flow structures
« So advect each component of velocity around in (vortices) get smeared out
averaged velocity field » Boooooring
» Even cheaper * |dea of vorticity confinement - add a fake
« Advect averaged velocity field around (with any force that spins vortices faster
other quantity you care about) --- reuse e Try to cancel off some of the numerical viscosity in
interpolation coefficients! a stable way

» But - all that averaging smears u out... more
numerical viscosity! [worse for small At]

Smoke

Smoke is a bit more than just a velocity field

Need temperature (hot air rises) and smoke
density (smoke eventually falls)

Real physics - density depends on
temperature, temperature depends on
viscosity and thermal conduction, ...

* We'll ignore most of that: small scale effects

» Boussinesq approximation: ignore density
variation except in gravity term, ignore energy
transfer except thermal conduction

» We go a step further and ignore thermal
conduction - insignificant vs. numerical dissipation

Buoyancy

For smoke, where there is no interface, we
can add pgy to pressure (and just solve for
the difference) thus cancelling out g term in
equation

All that’s left is buoyancy -- variation in
vertical force due to density variation

Density varies because of temperature
change and because of smoke concentration

Assume linear relationship (small variations)

/ bouy — (—Ots + /3T)

e T=0 is ambient temperature; a, f depend on g etc.

Smoke concentration

There’s more than just air temperature to
consider too

Smoke weighs more than air - so need to
track smoke concentration

* Also could be used for rendering (though tracing
particles can give better results)

« Point is: physics depends on smoke concentration,
not just appearance

We again ignore effect of this in all terms
except gravity force

Smoke equations

So putting it all together...
u, +u-Vu+Vp = (—as + /J’T)(O,I,O)

V-u=0
I, +u-VIT=0
s, +u-Vs=0

We know how to solve the u part, using old
values forsand T

Advecting s and T around is simple - just
scalar advection

Notes on discretization

» Smoke concentration and temperature may
as well live in grid cells same as pressure

» But then to add buoyancy force, need to
average to get values at staggered positions

» Also, to maintain conservation properties,
should only advect smoke concentration and
temperature (and any other scalars) in a
divergence-free velocity field

* If you want to do all the advection together, do it
before adding buoyancy force
e |e. advect; buoyancy; pressure solve; repeat

