
Notes

• Previous lecture
• Missing a factor of !t in pressure rescaling

• Not really important though - can absorb into
rescaling of pressure (along with density etc.)

• True update is

• If you want to use rescaled pressure from last step
as initial guess for pressure solve, need to multiply
it by !tnew/!told

• Homework 6 goes out later today: check web

• Still marking homework 4…
!

u
n+1

= u
(3) "#t 1

$
%p

Recall from last class

• Solving incompressible flow by splitting up the

equations into easier chunks

• We handled gravity

• We handled pressure

• We handled viscosity

• Today we’ll do the missing piece, advection

!

ut = g

u
t

+ u " #u = 0

ut = $#2
u

ut + 1

%
#p = 0 # " u = 0()

Time integration again

• And again, we’re doing this in time:

• We’ve chosen to use a staggered grid so the
last step works well

• Now need to figure out advect()!

u
(1)

= u
n

+ "tg

u
(2)

= advect(u
(1)
,"t)

u
(3)

= u
(2)

+ #"t$2
u
(3)

u
n+1

= u
(3) %"t 1

&
$p

Velocity advection

• This is a nonlinear problem

• Difficult for implicit methods

• Let’s stay explicit

• Before jumping to advecting velocity,
let’s look at advecting a scalar q

!

qt + u " #q = 0

The true solution

• Recall the material derivative - what we’re
solving

• So if we identify a particle in the flow with
some value q0, just move the particle around
and don’t change q0

• Trivial for Lagrangian methods

• We’ll come back to this later

• But let’s keep thinking Eulerian, and try to
solve the PDE on a grid

!

Dq

Dt
= 0

Scalar advection in 1D

• Let’s simplify even more, to just one

dimension: qt+uqx=0

• Incompressible flow in 1D is just u=constant

• And let’s ignore boundary conditions for now

• E.g. use a periodic boundary

• True solution just translates q around at

speed u - shouldn’t change shape

First try: central differences

• Centred-differences give better
accuracy

• Example:

• 2nd order accurate in space

• Eigenvalues are pure imaginary - rules
out Forward Euler and RK2 in time

• But what does the solution look like?

!

"qi
"t

= #u
qi+1 # qi#1
2$x

%

&
'

(

)
*

Testing a pulse

• We know things have to work out nicely in the
limit (second order accurate)
• I.e. when the grid is fine enough

• What does that mean? -- when the sampled
function looks smooth on the grid

• In graphics, it’s just redundant to use a grid
that fine
• we can fill in smooth variations with interpolation

later

• So we’re always concerned about coarse
grids == not very smooth data

• Discontinuous pulse is a nice test case

A pulse (initial conditions) Centered finite differences

• A few time steps (RK4, small !t) later
• u=1, so pulse should just move right without

changing shape

Centred finite differences

• A little bit later…

Centred finite differences

• A fair bit later

What went wrong?

• Lots of ways to interpret this error

• Example - phase analysis
• Take a look at what happens to a sinusoid wave

numerically

• The amplitude stays constant (good), but the wave
speed depends on wave number (bad) - we get
dispersion

• So the sinusoids that initially sum up to be a
square pulse move at different speeds and
separate out
• We see the low frequency ones moving faster…

• But this analysis won’t help so much in 3D,
variable u…

Modified PDE’s

• Another way to interpret error - try to account
for it in the physics

• Look at truncation error more carefully:

• Up to high order error, we numerically solve

!

qi+1 = qi + "x
#q

#x
+
"x

2

2

2q

#x 2
+
"x

3

6

3q

#x 3
+O "x

4()

qi$1 = qi $"x
#q

#x
+
"x

2

2

2q

#x 2
$
"x

3

6

3q

#x 3
+O "x

4()

qi+1 $ qi$1

2"x
=
#q

#x
+
"x

2

6

3q

#x 3
+O "x

3()

!

qt + uqx = "
u#x

2

6
qxxx

Interpretation

• Extra term is “dispersion”
• Does exactly what phase analysis tells us

• Behaves a bit like surface tension…

• We want a numerical method with a different
sort of truncation error
• Any centred scheme ends up giving an odd

truncation error --- dispersion

• Let’s look at one-sided schemes

!

qt + uqx = "
u#x

6

6
qxxx

Upwind differencing

• Think physically:

• True solution is that q just translates at velocity u

• Information flows with u

• So to determine future values of q at a grid

point, need to look “upwind” -- where the

information will blow from

• Values of q “downwind” only have any relevance if
we know q is smooth -- and we’re assuming it isn’t

1st order upwind

• Basic idea: look at sign of u to figure out
which direction we should get
information

• If u<0 then "q/"x#(qi+1-qi)/!x

• If u>0 then "q/"x#(qi-qi-1)/!x

• Only 1st order accurate though

• Let’s see how it does on the pulse…

Modified PDE again

• Let’s see what the modified PDE is this time

• For u<0 then we have

• And for u>0 we have (basically flip sign of !x)

• Putting them together, 1st order upwind
numerical solves (to 2nd order accuracy)

!

qi+1 = qi + "x
#q

#x
+
"x

2

2

2q

#x 2
+O "x

3()

qi+1 $ qi

"x
=
#q

#x
+
"x

2

2q

#x 2
+O "x

2()

!

qt + uqx = "u#x qxx

!

qt + uqx = u"xqxx

!

qt + uqx = u"x qxx

Interpretation

• The extra term (that disappears as we refine
the grid) is diffusion or viscosity

• So sharp pulse gets blurred out into a hump,
and eventually melts to nothing

• It looks a lot better, but still not great
• Again, we want to pack as much detail as possible

onto our coarse grid

• With this scheme, the detail melts away to nothing
pretty fast

• Note: unless grid is really fine, the numerical
viscosity is much larger than physical
viscosity - so might as well not use the latter

Fixing upwind method

• Natural answer - reduce the error by going to
higher order - but life isn’t so simple

• High order difference formulas can overshoot
in extrapolating
• If we difference over a discontinuity

• Stability becomes a real problem

• Go nonlinear (even though problem is linear)
• “limiters” - use high order unless you detect a

(near-)overshoot, then go back to 1st order upwind

• “ENO” - try a few different high order formulas,
pick smoothest

Hamilton-Jacobi Equations

• In fact, the advection step is a simple

example of a Hamilton-Jacobi equation (HJ)

• qt+H(q,qx)=0

• Come up in lots of places

• Level sets…

• Lots of research on them, and numerical

methods to solve them

• We don’t want to get into that complication

Other problems

• Even if we use top-notch numerical
methods for HJ, we have problems

• Time step limit: CFL condition

• Have to pick time step small enough that
information physically moves less than a grid

cell: !t<!x/u

• Schemes can get messy at boundaries

Exploiting Lagrangian view

• But wait! This was trivial for Lagrangian
(particle) methods!

• We still want to stick an Eulerian grid for now,
but somehow exploit the fact that
• If we know q at some point x at time t, we just

follow a particle through the flow starting at x to
see where that value of q ends up

!

q x(t + "t),t + "t() = q
0

dx

dt
= u x(), x(t) = x

0

Looking backwards

• Problem with tracing particles - we want
values at grid nodes at the end of the step
• Particles could end up anywhere

• But… we can look backwards in time

• Same formulas as before - but new
interpretation
• To get value of q at a grid point, follow a particle

backwards through flow to wherever it started

!

qijk = q x(t "#t),t "#t()

dx

dt
= u x(), x(t) = xijk

Semi-Lagrangian method

• Also dubbed “stable fluids” in graphics
(reinvention)

• To find the new value of q at a grid point,
trace particle backwards from grid point (in
velocity field u) for -!t and interpolate from old
values of q

• Two questions
• How do we trace?

• How do we interpolate?

Tracing

• The errors we make in tracing
backwards aren’t too big a deal
• We don’t compound them - stability isn’t an

issue

• How accurate we are in tracing doesn’t
effect shape of q much, just location
• Whether we get too much blurring, oscillations,

or a nice result is really up to interpolation

• Thus look at “Forward” Euler and RK2

Tracing: 1st order

• We’re at grid node (i,j,k) at position xijk

• Trace backwards through flow for -!t

• Note - using u value at grid point (what we know
already) like Forward Euler.

• Then can get new q value (with interpolation)!

xold = xijk "#t uijk

!

qijk
n+1 = qn xold()

= qn xijk "#tuijk()

Behaviour around vortices

• [draw examples]
• Forward Euler tracing will grab information from

further out
• If we’re actually advecting velocity itself, vortex will slow

down and shrink…

• RK2 much better, but still a little

• Backward Euler is the opposite
• Vortices will grow!

• Trapezoidal Rule is just right

• But implicit methods probably way too slow
• Stability is not an issue for us!

• Modified Euler (slightly more stable than RK2) is
attractive…

Interpolation

• First order accurate: nearest neighbour

• Just pick q value at grid node closest to xold

• Doesn’t work for slow fluid (small time steps) --

nothing changes!

• Second order accurate: linear

• Or bilinear (2D), trilinear (3D)

• Still fast, easy to handle boundary conditions…

• How well does it work?

Linear interpolation

• Error in linear interpolation is proportional to

• Modified PDE ends up something like…

• We have numerical viscosity, things will smear out

• For reasonable time steps, k looks like 1/!t ~ 1/!x

• [Equivalent to 1st order upwind for CFL !t]

• In practice, too much smearing!

!

"x
2 #

2
q

#x 2

!

Dq

Dt
= k "t()"x 2

2q

#x 2

Nice properties of lerping

• But linear interpolation is completely stable

• Interpolated value of q must lie between the old
values of q on the grid

• Thus with each time step, max(q) cannot increase,
and min(q) cannot decrease

• Thus we end up with a fully stable algorithm -

take !t as big as you want

• Great for interactive applications
(if the pressure solve is fast enough…)

Cubic interpolation

• To fix the problem of excessive smearing, go

to higher order

• E.g. use cubic splines

• Finding interpolating C2 cubic spline is a little

painful, an alternative is the

• C1 Catmull-Rom (cubic Hermite) spline

• [derive]

• Introduces overshoot problems

• Stability isn’t so easy to guarantee anymore

Min-mod limited Catmull-Rom

• Trick is to check if either slope at the
endpoints of the interval has the wrong sign
• If so, clamp the slope to zero

• Still use cubic Hermite formulas with more reliable
slopes

• This has same stability guarantee as linear
interpolation
• But in smoother parts of flow, higher order

accurate

• Called “high resolution”

• Still has issues with boundary conditions…

Velocity advection

• So far we’ve concentrated just on advecting

some scalar q

• We want to advect velocity

• But velocity field defines advection: nonlinear!

• So we ignore it: “lagging”

• Just use the old velocity field, treat u, v, and w as just
scalars to move around like q

• Again - only 1st order accurate in time, but that’s

OK.

Staggered grid

• Problem: velocity on a staggered grid

• Simple answer
• Average velocities to get flow field where you need

it, e.g. uijk=0.5(ui+1/2 jk + ui-1/2 jk)

• So advect each component of velocity around in
averaged velocity field

• Even cheaper
• Advect averaged velocity field around (with any

other quantity you care about) --- reuse
interpolation coefficients!

• But - all that averaging smears u out… more
numerical viscosity! [worse for small !t]

Vorticity confinement

• The interpolation errors behave like viscosity,
the averaging from the staggered grid
behaves like viscosity…
• Net effect is that interesting flow structures

(vortices) get smeared out

• Boooooring

• Idea of vorticity confinement - add a fake
force that spins vortices faster
• Try to cancel off some of the numerical viscosity in

a stable way

Smoke

• Smoke is a bit more than just a velocity field

• Need temperature (hot air rises) and smoke
density (smoke eventually falls)

• Real physics - density depends on
temperature, temperature depends on
viscosity and thermal conduction, …
• We’ll ignore most of that: small scale effects

• Boussinesq approximation: ignore density
variation except in gravity term, ignore energy
transfer except thermal conduction

• We go a step further and ignore thermal
conduction - insignificant vs. numerical dissipation

Smoke concentration

• There’s more than just air temperature to
consider too

• Smoke weighs more than air - so need to
track smoke concentration
• Also could be used for rendering (though tracing

particles can give better results)

• Point is: physics depends on smoke concentration,
not just appearance

• We again ignore effect of this in all terms
except gravity force

Buoyancy

• For smoke, where there is no interface, we
can add !gy to pressure (and just solve for
the difference) thus cancelling out g term in
equation

• All that’s left is buoyancy -- variation in
vertical force due to density variation

• Density varies because of temperature
change and because of smoke concentration

• Assume linear relationship (small variations)

• T=0 is ambient temperature; ", # depend on g etc.

!

fbouy = "#s+ $T()

Smoke equations

• So putting it all together…

• We know how to solve the u part, using old
values for s and T

• Advecting s and T around is simple - just
scalar advection!

ut + u " #u+#p = $%s+ &T()(0,1,0)

" u = 0

Tt + u " #T = 0

st + u " #s = 0

Notes on discretization

• Smoke concentration and temperature may
as well live in grid cells same as pressure

• But then to add buoyancy force, need to
average to get values at staggered positions

• Also, to maintain conservation properties,
should only advect smoke concentration and
temperature (and any other scalars) in a
divergence-free velocity field
• If you want to do all the advection together, do it

before adding buoyancy force

• I.e. advect; buoyancy; pressure solve; repeat

