
Notes

• Please read
• Fedkiw, Stam, Jensen, “Visual simulation of

smoke”, SIGGRAPH ‘01

• I’ll try to have homework 3 back to you later
today
• and homework 4 by Thursday

• Reminder: there is a project in this course,
you should be thinking about it
• Homework 6 is going to be smoke simulation (with

extensions such as turning it into water)

Going to 3D

• Today we’ll solve full 3D fluid equations
• Incompressible flow only - don’t care about sound

waves

• We may not need viscosity, except for really
goopy fluids
• A lot of CFD is all about overcoming numerical

viscosity…

• But without interfaces - simplifies life!
• Prototypical example: smoke

• We have fluid moving, and either particles or
smoke concentration field moving passively with
the flow

• Passive == velocity doesn’t care about smoke

Operator Splitting

• Generally a bad idea to treat

incompressible flow as conservation

laws with constraints

• Instead: split equations up into easy

chunks

!

ut = g

ut + u " #u = 0

ut = $#2
u

ut + 1

%
#p = 0 # " u = 0()

Time integration

• Don’t mix the steps at all - 1st order accurate

• Need to explain the last 3 steps

• Start off at the end though
• In some ways hardest part!

u
(1)

= u
n

+ "tg

u
(2)

= advect(u
(1)
,"t)

u
(3)

= u
(2)

+ #"t$2
u
(3)

u
n+1

= u
(3) %"t 1

&
$p

Continuous pressure

• Before we discretize in space, last step is to
take u(3), figure out the pressure p that makes
un+1 incompressible:

• Want

• Plug in pressure update formula:

• Rearrange:

• Solve this Poisson problem (often density is

constant and you can rescale p by it, also !t)

• Make this assumption from now on:

!

" # u
n+1

= 0

!

" # u(3) $%t 1
&
"p() = 0

!

" # $t 1
%
"p() =" # u(3)

!

"
2
p =" # u

(3)

u
n+1

= u
(3)
$"p

Boundary conditions

• Delicate issue: what BC’s for pressure equation?
(for both and)

• Closed no-slip boundaries (frictional walls) u=0
• And pressure gradient shouldn’t change it: "p/"n=0

• For closed no-stick boundaries u•n=0
• And same "p/"n=0

• For open, controlled boundaries, same but u#0
• But make sure compatible: $ u•n=0

• For open, uncontrolled boundaries, specify p
• u may be changed as incompressibility dictates

• If we don’t know u outside, take "u/"n=0

!

" # 1
$
"p

!

" # u
(3)

Approximate projection

• Can now directly discretize Poisson equation
on a grid

• Central differences - 2nd order, no bias
!

"2
p()

ijk
=
2p

#x 2
+
2p

#y 2
+
2p

#z2
$

%
&

'

(
)

*
pi+1 jk + 2pijk + pi+1 jk

,x 2
+
pij+1k + 2pijk + pij+1k

,y 2
+
pijk+1 + 2pijk + pijk+1

,z2

" - u()
ijk

=
#u

#x
+
#v

#y
+
#w

#z

$

%
&

'

(
)
ijk

*
ui+1 jk + ui+1 jk

2,x
+
vij+1k + vij+1k

2,y
+
wijk+1 + wijk+1

2,z

"p()
ijk
*

pi+1 jk + pi+1 jk
2,x

,
pij+1k + pij+1k

2,y
,
pijk+1 + pijk+1
2,z

.

/
0

1

2
3

Problems

• Becomes exact in limit for smooth u

• But isn’t good on coarse grids, rough u
• Particularly around boundaries!

(e.g. after adding g!t everywhere, then setting u=0
at ground)

• See the errors as weird noise, oscillations

• Also: doesn’t exactly make u incompressible
• Measuring divergence of result gives nonzero

• So let’s look at exactly enforcing the
incompressibility constraint

Exact projection (1st try)

• Connection

• use the discrete divergence as a hard constraint to

enforce, pressure p turns out to be the Lagrange

multipliers…

• Or let’s just follow the route before, but

discretize divergence and gradient first

• First try: use centred differences as before

• u and p all “live” on same grid: uijk, pijk

• This is called a “collocated” scheme

Exact collocated projection

• So want

• Update with discrete gradient of p

• Plug in update formula to solve for p
!

" # u
n+1()

ijk
= 0

ui+1 jk
n+1

$ ui$1 jk
n+1

2%x
+
vij+1k
n+1

$ vij$1k
n+1

2%y
+
wijk+1

n+1
$ wijk$1

n+1

2%z
= 0

!

u
n+1

= u
(3)
"#p

!

uijk
n+1

= uijk
(3) "

pi+1 jk " pi"1 jk
2#x

,
pij+1k " pij"1k

2#y
,
pijk+1 " pijk"1
2#z

$

%
&

'

(
)

!

pi+2 jk " 2pijk + pi"2 jk

4#x
2

+
pij+2k " 2pijk + pij"2k

4#y
2

+
pijk+2 " 2pijk + pijk"2

4#z
2

=

ui+1 jk
(3)

" ui"1 jk
(3)

2#x
+
vij+1k
(3)

" vij"1k
(3)

2#y
+
wijk+1

(3)
" wijk"1

(3)

2#z

Problems

• Pressure problem decouples into 8
independent subproblems

• “Checkerboard” instability

• Weird stuff around boundaries…

• Can be fixed with some effort, but there is a
better way

• Really want to avoid differences over 2 grid
points, but still want centred

• Thus use a staggered grid

Staggered grid

• Pressure p lives in centre of cell, pijk

• u lives in centre of x-faces, ui+1/2,j,k

• v in centre of y-faces, vi,j+1/2,k

• w in centre of z-faces, wi,j,k+1/2

• Whenever we need to take a difference
(grad p or div u) result is where it should be

• [draw diagram]

Exact staggered projection

• Do it discretely as before, but now want

• And update is

!

" # u
n+1()

ijk
= 0

ui+1/ 2 jk
n+1

$ ui$1/ 2 jk
n+1

%x
+
vij+1/ 2k
n+1

$ vij$1/ 2k
n+1

%y
+
wijk+1/ 2

n+1
$ wijk$1/ 2

n+1

%z
= 0

!

ui+1/ 2 jk
n+1

= ui+1/ 2 jk
(3)

"
pi+1 jk " pijk

#x

vij+1/ 2k
n+1

= vij+1/ 2k
(3)

"
pij+1k " pijk

#y

wijk+1/ 2

n+1
= wijk+1/ 2

(3)
"
pijk+1 " pijk

#z

(Continued)

• Plugging in to solve for p

• This is for all i,j,k: gives a linear system

to solve -Ap=d!

pi+1 jk " 2pijk + pi"1 jk

#x
2

+
pij+1k " 2pijk + pij"1k

#y
2

+
pijk+1 " 2pijk + pijk"1

#z
2

=

ui+1/ 2 jk
(3)

" ui"1/ 2 jk
(3)

#x
+
vij+1/ 2k
(3)

" vij"1/ 2k
(3)

#y
+
wijk+1/ 2

(3)
" wijk"1/ 2

(3)

#z

Pressure solve simplified

• Assume for simplicity that !x=!y=!z=h

• Then we can actually rescale pressure (again
- already took in density) to get

• At boundaries where p is known, replace (say)
pi+1jk with known value, move to right-hand
side (be careful to scale if not zero!)

• At boundaries where (say) "p/"y=0, replace
pij+1k with pijk (so p stays the same as you
move across the boundary)

!

6pijk " pi+1 jk " pi"1 jk " pij+1k " pij"1k " pijk+1 " pijk"1 =

"ui+1/ 2 jk
(3)

+ ui"1/ 2 jk
(3)

" vij+1/ 2k
(3)

+ vij"1/ 2k
(3)

" wijk+1/ 2

(3)
+ wijk"1/ 2

(3)

(continued)

• Same kind of boundary treatment for
velocity when taking the divergence

• So we’re left with the problem of
efficiently finding p

• Luckily, linear system Ap=-d is
symmetric positive definite

• Incredibly well-studied A, lots of work
out there on how to do it fast

How to solve it

• Direct Gaussian Elimination does not work
well
• This is a large sparse matrix - will end up with lots

of fill-in (new nonzeros)

• If domain is square with uniform boundary
conditions, can use FFT
• Fourier modes are eigenvectors of the matrix A,

everything works out

• But in general, will need to go to iterative
methods
• Luckily - have a great starting guess! Pressure

from previous time step [appropriately rescaled]

Convergence

• Need to know when to stop iterating

• Ideally - when error is small

• But if we knew the error, we’d know the
solution

• We can measure the residual for Ap=b: it’s
just r=b-Ap
• Related to the error: Ae=r

• So check if norm(r)<tol*norm(b)
• Maybe use infinity norm (max)

• Play around with tol (maybe 1e-4 is good
enough?)

CG

• Already mentioned this when talking

about implicit time integration for

elasticity problems

• All CG needs to know is how to multiply

matrix with a vector (and basic vector

operations)

• Repeating a slide from before…

CG again (relabeled)

• r=b-Ap (p is initial guess)

• !=rTr, check if already solved

• s=r

• Loop:
• t=As

• "= !/(sTt)

• x+= "s, r-= "t, check for convergence

• !new=rTr

• #= !new /!

• s=r+ #s

• !=!new

Speeding it up

• This generally takes as many iterations as
your grid is large
• E.g. if 30x70x40 expect to take 70 iterations (or

proportional to it)

• Though a good initial guess may reduce that a lot

• Basic issue: pressure is globally coupled -
information needs to travel from one end of
the grid to the other
• Each step of CG can only go one grid point

• Idea of a “preconditioner”: if we can get a
routine which approximately computes A-1,
call it M, then solve MAx=Mb

Preconditioners

• Technically, convergence of PCG
(preconditioned congugate gradient) depends
on eigenvalue distribution of MA

• Lots and lots of work on how to pick an M

• Examples: FFT, SSOR, ADI, multigrid, sparse
approximate inverses

• We’ll take a look at Incomplete Cholesky
factorization

• But first, how do we change CG to take
account of M?
• M has to be SPD, but MA might not be…

PCG

• r=b-Ap, z=Mr, s=z

• !=zTr, check if already solved

• Loop:
• t=As

• "= !/(sTt)

• x+= "s, r-= "t , check for convergence

• z=Mr

• !new=zTr

• #= !new /!

• s=z+ #s

• !=!new

Cholesky

• True Gaussian elimination, which is called
Cholesky factorization in the SPD case, gives
A=LLT

• L is a lower triangular matrix

• Then solving Ap=b can be done by
• Lx=p, LTp=x

• Each solve is easy to do - triangular

• [reminder]

• But can’t do that here since L has many more
nonzeros than A -- EXPENSIVE!

Incomplete Cholesky

• We only need approximate result for
preconditioner

• So do Cholesky factorization, but throw away
new nonzeros (set them to zero)

• Result is not exact, but pretty good
• Instead of O(n) iterations (for an n3 grid) we get

O(n1/2) iterations

• Can actually do better:
• Modified Incomplete Cholesky

• Same algorithm, only when we throw away
nonzeros, we add them to the diagonal

• Gets us down to O(n1/4) iterations

IC(0)

• Incomplete Cholesky level 0: IC(0) is where
we make sure L=0 wherever A=0

• For this A (7-point Laplacian) with the regular
grid ordering, things are nice

• Write A=F+D+FT where F is strictly lower
triangular and D is diagonal

• Then IC(0) ends up being of the form
L=(FE-1+E) where E is diagonal
• We only need to store E-1 (when doing the

triangular solves, only care about inverses of
diagonal elements)

Computing IC(0)

• Need to find diagonal E so that (LLT)ij=Aij

wherever Aij#0

• Expand out:
• LLT=F+FT+E2+FE-2FT

• Again, for this special case, can show that
last term only contributes to diagonal and
elements where Aij=0

• So we get the off-diagonal correct for free

• Let’s take a look at diagonal entry for grid
point ijk

Diagonal Entry

• Assume we order increasing in i, j, k

• Note F=A for lower diagonal elements

• Want this to match A’s diagonal

Then solving for next Eijk in terms of

previously determined ones:
!

LL
T()

ijk,ijk
= Eijk

2 + Aijk,i"1 jk

2
Ei"1 jk

2 + Aijk,ij"1k

2
Eij"1k

2 + Aijk,ijk"1

2
Eijk"1

2

!

Eijk = Aijk,ijk " Aijk,i"1 jk

2
Ei"1 jk

2
" Aijk,ij"1k

2
Eij"1k

2
" Aijk,ijk"1

2
Eijk"1

2

Practicalities

• Again, actually only want to store inverse of E

• Note that for values of A or E off the grid,
substitute zero in formula
• In particular, can start at E000,000=%A000,000

• Modified Incomplete Cholesky looks very
similar, except instead of matching diagonal
entries, we match row sums

• Can squeeze out a little more performance
with the “Eisenstat trick”

Viscosity

• The viscosity update (if we really need it -
highly viscous fluids) is just Backwards Euler:

• Boils down to almost the same linear system
to solve!
• Or rather, 3 similar linear systems to solve - one

for each component of velocity
(NOTE: solve separately, not together!)

• Actually, gets easier to solve the smaller $!t is

• Again use PCG with Incomplete Cholesky

!

I "#t$%2()u(3) = u(2)

Advection

• All that we haven’t yet talked about is

how to do advection

• This is the tricky part

