Notes

e Please read

* Fedkiw, Stam, Jensen, “Visual simulation of
smoke”, SIGGRAPH ‘01

e I'll try to have homework 3 back to you later

today

¢ and homework 4 by Thursday

* Reminder: there is a project in this course,
you should be thinking about it
¢ Homework 6 is going to be smoke simulation (with

extensions such as turning it into water)

Operator Splitting

» Generally a bad idea to treat

incompressible flow as conservation

laws with constraints

* Instead: split equations up into easy

chunks

=5
u,+u-Vu=0
2
u =vu

LVp =
u+5Vp=0

(V-u=0)

Going to 3D

» Today we’ll solve full 3D fluid equations

* Incompressible flow only - don’t care about sound
waves

* We may not need viscosity, except for really
goopy fluids

¢ Alot of CFD is all about overcoming numerical
viscosity...

» But without interfaces - simplifies life!
» Prototypical example: smoke

» We have fluid moving, and either particles or
smoke concentration field moving passively with
the flow

» Passive == velocity doesn’t care about smoke

Time integration

* Don’t mix the steps at all - 1st order accurate
u = u" + Atg
u® = advect(u,At)
u(3) = I/t(2) + vAtVzu(3)
u' = u® ~ At Vp
* Need to explain the last 3 steps

 Start off at the end though
* In some ways hardest part

Continuous pressure

» Before we discretize in space, last step is to
take u®), figure out the pressure p that makes
u™! incompressible:

e Want V- 3" =0
« Plug in pressure update formula: V- (4 - Ar1Vp)=0
» Rearrange: V-(Atﬁvp)=v-u<3>
» Solve this Poisson problem (often density is
constant and you can rescale p by it, also At)
e Make this assumption from now on:
Vip=V-u?

W= y® Vp

Approximate projection

» Can now directly discretize Poisson equation
on a grid

(V) - ’p, 3 Ip
o \ax? @yt 0

- Pk _zpi/k + Diije . Pijax _zpijk + Dy + Pijkst _2pi/k + Dijit
2

Ax? Ay? Az
(Vou) = LI
ik Aox dy dz i
- Ui jp = Uic1 + Viisik = Vij-ix + Wigst = Wit
2Ax 2Ay 2Az
(Vp) - Pivijg = Picij Pijoix — Pijoie Pijent ~ Pijpar
ik 20 T 28y 2Az

» Central differences - 2nd order, no bias

Boundary conditions

Delicate issue: what BC’s for pressure equation?
(for both v-+vp and v-)

Closed no-slip boundaries (frictional walls) u=0
» And pressure gradient shouldn’t change it: dp/on=0
For closed no-stick boundaries u-n=0

* And same dp/dn=0

For open, controlled boundaries, same but u£0
» But make sure compatible: [usn=0

For open, uncontrolled boundaries, specify p

* u may be changed as incompressibility dictates

* If we don’t know u outside, take du/on=0

Problems

Becomes exact in limit for smooth u

But isn’t good on coarse grids, rough u

» Particularly around boundaries!
(e.g. after adding gAt everywhere, then setting u=0
at ground)

» See the errors as weird noise, oscillations
Also: doesn’t exactly make u incompressible
» Measuring divergence of result gives nonzero

So let’s look at exactly enforcing the
incompressibility constraint

Exact projection (1st try) Exact collocated projection

(V . I/l’Hl)__ -0
ijk
» Connection e Sowant !, -u, L ViV Wi =W o
« use the discrete divergence as a hard constraint to 2Ax 2Ay 2Az
enforce, pressure p turns out to be the Lagrange « Update with discrete gradient of p ™ =u® -vp
multipliers. - N Pinjg = Piajx Piyax ~ Pk Pignt ~ Piar
e 200 T 280y T 2A7

* Or let’s just follow the route before, but
discretize divergence and gradient first
 First try: use centred differences as before

* Plug in update formula to solve for p

Piv2jxk = 2pijk +Dioj + DPijeok — 2pijk + Dok + Pijs2 — 2p1jk * D2

W _— 4Ax* 4Ay® 4A7’
¢ uand p all “live” on same grid: uy, Py T R S,
» This is called a “collocated” scheme L L L R L L L
2Ax 2Ay 2Az
Problems Staggered grid

Pressure problem decouples into 8
independent subproblems

“Checkerboard” instability

Pressure p lives in centre of cell, py,

u lives in centre of x-faces, U, 1/«

v in centre of y-faces, V; 12«

Weird stuff around boundaries... w in centre of z-faces, W, 4.1

Can be fixed with some effort, but there is a Whenever we need to take a difference

better way (grad p or div u) result is where it should be
Really want to avoid differences over 2 grid [draw diagram]
points, but still want centred

Thus use a staggered grid

Exact staggered projection

. Do(it dis)cretely as before, but now want
V-u"') =0

ijk

n+l n+l n+l n+l n+l n+l
Uiijoj — Wiciyo e + Viiewze ~ Vij-126 + Wikr2 = Wiz 0

Ax Ay Az
e And update is
W ® Pivjx — Pig
i+1/2jk — Fivl/2jk T Ax
ndl o (3) DPijik ~ Piji
Vievok = Vijsr2e ~ Ay
wn+l _ W(3> _ pijk+1 - pijk
k172 = Wigks1/2 A
Z

Pressure solve simplified

Assume for simplicity that Ax=Ay=Az=h
Then we can actually rescale pressure (again
- already took in density) to get

6p[jk ~Pivijk ~ Picijk ~ Pijsik ~ Pijik ~ Pijgst ~ Pijg-1 =

(3) (3) 3) 3) (3) (3)
Ui Y Uil g~ Vieoe T ViiZuoe = Wigs2 ¥ Wiz

At boundaries where p is known, replace (say)
Pi.1j With known value, move to right-hand
side (be careful to scale if not zero!)

At boundaries where (say) dp/dy=0, replace

Pii+1k With py (SO p stays the same as you
move across the boundary)

(Continued)

* Plugging in to solve for p
Pinjx— 21’,;/1(+ Diciji + Pijeix — 2pijk + Dij_ix + Pijs1 ~ 2p,;,'k + Pijr-i
Ax? Ay® A7’

(3) (3) (3) (3) (3) (3)
i+1/2 jk ui—l/ij + vij+l/2k - V{/—I/Zk + sz/'k+l/2 - szk—l/Z

u

Ax Ay Az

» This is for all i,j,k: gives a linear system
to solve -Ap=d

(continued)

e Same kind of boundary treatment for
velocity when taking the divergence

e So we’re left with the problem of
efficiently finding p

 Luckily, linear system Ap=-d is
symmetric positive definite

* Incredibly well-studied A, lots of work
out there on how to do it fast

How to solve it

e Direct Gaussian Elimination does not work

well

» This is a large sparse matrix - will end up with lots
of fill-in (new nonzeros)

If domain is square with uniform boundary
conditions, can use FFT

¢ Fourier modes are eigenvectors of the matrix A,
everything works out

But in general, will need to go to iterative
methods

* Luckily - have a great starting guess! Pressure
from previous time step [appropriately rescaled]

CG

» Already mentioned this when talking
about implicit time integration for
elasticity problems

» All CG needs to know is how to multiply
matrix with a vector (and basic vector
operations)

* Repeating a slide from before...

Convergence

Need to know when to stop iterating
Ideally - when error is small

But if we knew the error, we’d know the
solution

We can measure the residual for Ap=b: it’s

just r=b-Ap

* Related to the error: Ae=r

So check if norm(r)<tol*norm(b)
» Maybe use infinity norm (max)

» Play around with tol (maybe 1e-4 is good
enough?)

CG again (relabeled)

r=b-Ap (p is initial guess)
p=rTr, check if already solved
S=r

Loop:

e t=As

e a=p/(s™)

* Xx+=as, r-=at, check for convergence
Prew=T"r

* B= Prnew /p

* s=r+f3s

* P=Prew

Speeding it up

This generally takes as many iterations as

your grid is large

» E.g. if 30x70x40 expect to take 70 iterations (or
proportional to it)

¢ Though a good initial guess may reduce that a lot

Basic issue: pressure is globally coupled -

information needs to travel from one end of

the grid to the other

» Each step of CG can only go one grid point

Idea of a “preconditioner”: if we can get a

routine which approximately computes A1,

call it M, then solve MAx=Mb

PCG

r=b-Ap, z=Mr, s=z

p=z'r, check if already solved
Loop:
e t=As

o a=pl/(sT)

* x+=as, r-=at, check forconvergence
e z=Mr

pnewzzTr

* B=Prew /P

* S=7+ f3s

* P=Pnew

Preconditioners

Technically, convergence of PCG
(preconditioned congugate gradient) depends
on eigenvalue distribution of MA

Lots and lots of work on how to pick an M
Examples: FFT, SSOR, ADI, multigrid, sparse
approximate inverses

We’ll take a look at Incomplete Cholesky
factorization

But first, how do we change CG to take
account of M?

* M has to be SPD, but MA might not be...

Cholesky

True Gaussian elimination, which is called
Cholesky factorization in the SPD case, gives
A=LLT

L is a lower triangular matrix

Then solving Ap=b can be done by

e Lx=p, LTp=x

» Each solve is easy to do - triangular

* [reminder]

But can’t do that here since L has many more
nonzeros than A -- EXPENSIVE!

Incomplete Cholesky

We only need approximate result for
preconditioner

So do Cholesky factorization, but throw away
new nonzeros (set them to zero)
Result is not exact, but pretty good

* Instead of O(n) iterations (for an n3 grid) we get
O(n'?2) iterations

Can actually do better:

* Modified Incomplete Cholesky

» Same algorithm, only when we throw away
nonzeros, we add them to the diagonal

» Gets us down to O(n'4) iterations

Computing 1C(0)

Need to find diagonal E so that (LLT);=A;
wherever Aj#0

Expand out:

o LLT=F+FT+E2+FE2FT

Again, for this special case, can show that
last term only contributes to diagonal and
elements where A;=0

So we get the off-diagonal correct for free

Let’s take a look at diagonal entry for grid
point ijk

1C(0)

* Incomplete Cholesky level 0: IC(0) is where
we make sure L=0 wherever A=0

» For this A (7-point Laplacian) with the regular
grid ordering, things are nice

* Write A=F+D+FT where F is strictly lower
triangular and D is diagonal

» Then IC(0) ends up being of the form
L=(FE-'+E) where E is diagonal
» We only need to store E-' (when doing the
triangular solves, only care about inverses of
diagonal elements)

Diagonal Entry

* Assume we order increasing in i, j, k
» Note F=A for lower diagonal elements

(LLT)U,{,U,(= E;k + A;k,i—ljkEiz—ljk + A;k,ij—lkE;—lk + A;k,zjik—lE;k—l
* Want this to match A’s diagonal
Then solving for next E; in terms of
previously determined ones:

2 2 2 2 2 2
E ik = \/ Aijk.i/'k - Az:/k,f—ljkE i-1jk ~ Az:fk,fj—lkE ij-1k ~ Az:/'k,z:ik—lE ijk-1

Practicalities Viscosity

» Again, actually only want to store inverse of E » The viscosity update (if we really need it -

« Note that for values of A or E off the grid, highly viscous fluids) is just Backwards Euler:
substitu‘Fe zero in formula (I— Athz)um —
* In particular, can start at E(,00,000=\/A0007000

» Modified Incomplete Cholesky looks very » Boils down to almost the same linear system
similar, except instead of matching diagonal to solve!
entries, we match row sums « Or rather, 3 similar linear systems to solve - one

« Can squeeze out a little more performance for each component of velocity

(NOTE: solve separately, not together!)
» Actually, gets easier to solve the smaller vAt is
» Again use PCG with Incomplete Cholesky

with the “Eisenstat trick”

Advection

» All that we haven’t yet talked about is
how to do advection

* This is the tricky part

