Course Details

- http://www.cs.ubc.ca/~rbridson/ courses/533b-winter-2004
- Course schedule
- Assignments
- Resources (papers to read!)
- Final Project information

Instructor

- Robert Bridson
 - CICSR 189: usually 9:30-5:30
 - Drop by, or make an appointment
 - 822-1993 (or just 21993)
 - email rbridson@cs.ubc.ca

Evaluation

- 6 assignments (85%)
 - #1 is a warm-up (10%) given out today
 - #2-#6 are each 15%
 - Mostly programming, with a little analysis (writing)
- Also a final project (15%)
 - Extend one of assignments #2-#6
 - Or: do what you want, but talk to me about it
 - · Present in final class informal talk, show movies
- Late: without a good reason, 20% off per day
 - For final project starts after final class
 - For assignments starts morning after due

Animation Physics CPSC 533B

Why?

- Animating natural phenomena: passive (secondary) motion
- Film/TV: passive motion difficult with traditional techniques
 - When you control every detail of the motion, it's hard to make it look like it's not being controlled!
- Games: difficult to handle everything convincingly with prescripted motion
- Instead: directly simulate the underlying physics to get realistic motion

Topics

- Particle Systems
 - most common simulated special effect
- Rigid Bodies
- Deformable Bodies
 - e.g. cloth and flesh
- Fluids
 - smoke and water

Particle Systems

Read:

Reeves, "Particle Systems...", SIGGRAPH'83

- Some phenomena is most naturally described as many small particles
 - Rain, snow, dust, sparks, gravel, ...
- · Others are difficult to get a handle on
 - Fire, water, grass, ...

Particle Basics

- Each particle has a position
 - Maybe orientation, age, colour, velocity, temperature, radius, ...
 - Call the state x
- · Seeded randomly somewhere at start
 - Maybe some created each frame
- Move (evolve state x) each frame according to some formula
- Eventually die when some condition met

Example

- Sparks from a campfire
- Every frame (1/24 s) add 2-3 particles
 - Position randomly in fire
 - Initialize temperature randomly
- Move in specified turbulent smoke flow
 - Also decrease temperature
- Render as a glowing dot (blackbody radiation from temperature)
- Kill when too cold to glow visibly

Rendering

- We won't talk much about rendering in this course, but most important for particles
- The real strength of the idea of particle systems: how to render
 - Could just be coloured dots
 - Or could be shards of glass, or animated sprites (e.g. fire), or deforming blobs of water, or blades of grass, or birds in flight, or ...

Motion (1st order)

 For each particle, have a simple 1st order differential equation:

$$\frac{dx}{dt} = v(x,t)$$

 Need to solve this numerically forward in time from x(t=0) to x(frame1), x(frame2), x(frame3), ...

Forward Euler

• Simplest method:

 $x_{n+1} = x_n + \Delta t \, v \big(x_n, t_n \big)$

- Can show it's first order accurate:
 - Error accumulated by a fixed time is $O(\Delta t)$
- Thus it converges to the right answer
 - Do we care?

Aside on Error

- · General idea want error to be small
 - Obvious approach: make $\Delta t \; \text{small}$
 - But then need more time steps expensive
- Also note O(1) error made in modeling
 - Even if numerical error was 0, still wrong!
 - In science, need to validate against experiments
 - In graphics, the experiment is showing it to an audience: **does it look real?**
- So numerical error can be huge, as long as your solution has the right qualitative look

Forward Euler Stability

- Big problem with Forward Euler: it's not very stable
- Example: dx/dt = -x, x(0) = 1
- Real solution e^{-t} smoothly decays to zero, always positive
- Run Forward Euler with $\Delta t=11$
 - x=1, -10, 100, -1000, 10000, ...
 - Instead of 1, 1.7*10⁻⁵, 2.8*10⁻¹⁰, ...

Linear Analysis

• Approximate

$$v(x,t) \approx v(x^*,t^*) + \frac{\partial v}{\partial x} \cdot (x-x^*) + \frac{\partial v}{\partial t} \cdot (t-t^*)$$

• Ignore all but the middle term (the one that could cause blow-up)

$$dx/dt = Ax$$

• Look at x parallel to eigenvector of A: the "test equation" $dx/dt = \lambda x$

The Test Equation

- Get a rough, hazy, heuristic picture of the stability of a method
- Note that eigenvalue λ can be complex
- · But, assume that for real physics
 - Things don't blow up without bound
 - Thus **real** part of eigenvalue λ is ≤ 0
- Beware nonlinear effects can cause instability

More Linear Analysis

Forward Euler on test equation is

 $x_{n+1} = x_n + \Delta t \,\lambda x_n$

• Solving gives

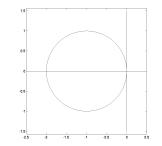
$$x_n = \left(1 + \lambda \Delta t\right)^n x_0$$

• So for stability, need

 $|1 + \lambda \Delta t| < 1$

Stability Region

 Can plot all the values of λΔt on the complex plane where F.E. is stable:



Real Eigenvalue

- Say eigenvalue is real (and negative)
 - Corresponds to a damping motion, smoothly coming to a halt
- Then need:
- $\Delta t < \frac{2}{|\lambda|}$
- Is this bad?
 - If eigenvalue is big, could mean small time steps
 - But, maybe we really need to capture that timescale anyways, so no big deal

Imaginary Eigenvalue

- If eigenvalue is pure imaginary...
 - Oscillatory or rotational motion
- Cannot make Δt small enough
- Forward Euler unconditionally unstable for these kinds of problems!
- Need to look at other methods

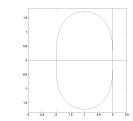
Runge-Kutta Methods

- Also "explicit"
 - next x is an explicit function of previous
- But evaluate v at a few locations to get a better estimate of next x
- E.g. midpoint method (one of RK2)

$x_{n+\frac{1}{2}} = x_n + \frac{1}{2}\Delta t v(x_n, t_n)$ $x_{n+1} = x_n + \Delta t v(x_{n+\frac{1}{2}}, t_{n+\frac{1}{2}})$

Midpoint RK2

- Second order: error is $O(\Delta t^2)$ when smooth
- Larger stability region:



• But still not stable on imaginary axis: no point

Modified Euler

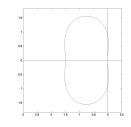
- (Not an official name)
- Lose second-order accuracy, get stability on imaginary axis:

$$x_{n+\alpha} = x_n + \alpha \Delta t v(x_n, t_n)$$
$$x_{n+1} = x_n + \Delta t v(x_{n+\alpha}, t_{n+\alpha})$$

• Parameter α between 0.5 and 1 gives tradeoff between imaginary axis and real axis

Modified Euler (2)

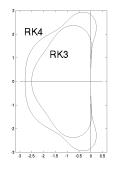
• Stability region for α =2/3



- Great! But twice the cost of Forward Euler
- Can you get more stability per v-evaluation?

Higher Order Runge-Kutta

 RK3 and up naturally include part of the imaginary axis



RK4

• Often most bang for the buck

$$v_{1} = v(x_{n}, t_{n})$$

$$v_{2} = v(x_{n} + \frac{1}{2}\Delta tv_{1}, t_{n+\frac{1}{2}})$$

$$v_{3} = v(x_{n} + \frac{1}{2}\Delta tv_{2}, t_{n+\frac{1}{2}})$$

$$v_{4} = v(x_{n} + \Delta tv_{3}, t_{n+1})$$

$$x_{n+1} = x_{n} + \Delta t(\frac{1}{6}v_{1} + \frac{2}{6}v_{2} + \frac{2}{6}v_{3} + \frac{1}{6}v_{4})$$

TVD-RK3

 RK3 useful because it can be written as a combination of Forward Euler steps and averaging: can guarantee stuff!

$$\begin{split} \tilde{x}_{n+1} &= x_n + \Delta t v \left(x_n, t_n \right) \\ \tilde{x}_{n+2} &= \tilde{x}_{n+1} + \Delta t v \left(\tilde{x}_{n+1}, t_{n+1} \right) \\ \tilde{x}_{n+\frac{1}{2}} &= \frac{3}{4} x_n + \frac{1}{4} \tilde{x}_{n+2} \\ \tilde{x}_{n+\frac{3}{2}} &= \tilde{x}_{n+\frac{1}{2}} + \Delta t v \left(\tilde{x}_{n+\frac{1}{2}}, t_{n+\frac{1}{2}} \right) \\ x_{n+1} &= \frac{1}{3} x_n + \frac{2}{3} \tilde{x}_{n+\frac{3}{2}} \end{split}$$

Time Step Control

- Hack: try until it looks like it works
- Stability based:
 - Figure out a bound on eigenvalues of Jacobian
 - Scale back by a fudge factor (e.g. 0.9, 0.5)
- Adaptive error based:
 - Usually not worth the trouble in graphics

Implicit Methods

- Often don't want to be restricted by stability ("stiffness")
- Implicit methods can be unconditionally stable
- Key ingredient:
 - Next x is an implicit function of previous
 - · Need to solve a system of equations

Backward Euler

• The simplest implicit method:

$$x_{n+1} = x_n + \Delta t v (x_{n+1}, t_{n+1})$$

- First order accurate
- Test equation shows stable when $|1 \lambda \Delta t| > 1$
- This includes everything except a circle in the positive real-part half-plane
- It's stable even when the physics is unstable!
- This is the biggest problem: damps out motion unrealistically

Aside: Solving Systems

- If v is linear in x, just a system of linear equations
 - If very small, use determinant formula
 - If small, use LAPACK
 - If large, life gets more interesting...
- If v is mildly nonlinear, can approximate with linear equations ("semi-implicit")

$$x_{n+1} = x_n + \Delta t v(x_{n+1})$$

$$\approx x_n + \Delta t \left(v(x_n) + \frac{\partial v(x_n)}{\partial x} (x_{n+1} - x_n) \right)$$

Newton's Method

- For more strongly nonlinear v, need to iterate:
 - Start with guess x_n for x_{n+1} (for example)
 - Linearize around current guess, solve linear system for next guess
 - Repeat, until close enough to solved
- Note: Newton's method is **great** when it works, but it might not work
 - If it doesn't, need to reduce time step size to make equations easier to solve, and try again

Newton's Method: B.E.

- Start with $x^0=x_n$ (guess for x_{n+1})
- For k=1, 2, ... find $x^{k+1}=x^k+\Delta x$ by solving

$$x^{k+1} = x_n + \Delta t \left(v(x^k) + \frac{\partial v(x^k)}{\partial x} (x^{k+1} - x^k) \right)$$
$$\Rightarrow \left(I - \Delta t \frac{\partial v(x^k)}{\partial x} \right) \Delta x = x_n + \Delta t v(x^k) - x^k$$

• Stop when right-hand side is small enough, set $x_{n+1} = x^k$

Monotonicity

- Test equation with real, negative λ
 - True solution is x(t)=x₀e^{λt}, which smoothly decays to zero, doesn't change sign (monotone)
- Forward Euler at stability limit:
 - x=x₀, -x₀, x₀, -x₀, ...
- Not smooth, oscillating sign: garbage!
- · So monotonicity limit stricter than stability
- RK3 has the same problem
 - But the even order RK are fine for linear problems
 - TVD-RK3 designed so that it's fine when F.E. is, even for nonlinear problems!

Trapezoidal Rule

• Can improve by going to second order:

 $x_{n+1} = x_n + \Delta t \left(\frac{1}{2} v(x_n, t_n) + \frac{1}{2} v(x_{n+1}, t_{n+1}) \right)$

- This is actually just a half step of F.E., followed by a half step of B.E.
 - F.E. is under-stable, B.E. is over-stable, the combination is **just right**
- Stability region is the left half of the plane: **exactly** the same as the physics!
- Really good for pure rotation (doesn't amplify or damp)

Monotonicity and Implicit Methods

- Backward Euler is unconditionally monotone
 - No problems with oscillation, just too much damping
- Trapezoidal Rule suffers though, because of that half-step of F.E.
 - Beware: could get ugly oscillation instead of smooth damping

Summary 1

- Particle Systems: useful for lots of stuff
- · Need to move particles in velocity field
- Forward Euler
 - Simple, first choice unless problem has oscillation/rotation
- Runge-Kutta if happy to obey stability limit
 - If time step fixed elsewhere, modified Euler may be cheapest method
 - RK4 general purpose workhorse
 - TVD-RK3 for more robustness with nonlinearity (more on this later in the course!)

Summary 2

- If stability limit is a problem, look at implicit methods
 - e.g. need to guarantee a frame-rate, or explicit time steps are way too small
- Trapezoidal Rule
 - If monotonicity isn't a problem
- Backward Euler
 - Almost always works, but may over-damp!