Notes

- Assignment #1
 - Uniform distribution in a disk:
 - Either pick points uniformly in square and discard those outside disk
 - Or take r=sqrt(rand), theta=2*pi*rand
 - Shortcut: if you implement Backward Euler and Forward Euler, just reuse them in Trapezoidal Rule

Constrained Dynamics

- Want "natural" dynamics but subject to constraint
- Last time: work with regular system, but add extra forces/impulses to satisfy constraint (at least approximately)
- · Now: get rid of constraint equation altogether
 - Parameterize system so constraint automatically satisfied
 - Last time, the hard part was satisfying the constraint
 - This time, the hard part is satisfying physics!

Generalized Coordinates

- Say "positions" of system in vector x
- Constraint C(x)=0
- Find parameterization of the constraint manifold x=X(q)
 - C(X(q))=0 for all q
 - For every x with C(x)=0, there is a q s.t. x=X(q)
- The q vector is the generalized coordinates
- Example: pendulum 6 x coordinates with 5 constraints, or 1 q gen. coordinate (angle)
- No redundancy: cannot drift, should be fast for lots of constraints

Problems Ahead

- Math can get fairly nasty if the parameterization isn't simple
 - Many people use Maple/Mathematica/etc. to crunch the expressions, generate code
- Parameterization could have pitfalls
 - [Gimbal-lock]
 - Some degenerate redundancies (multiple values of q mapping to same x)
 - End up with ill-conditioned system (in the limit, underdetermined: more than one direction for q to evolve)

General flavour

- Just look at constraint-free reparameterization (e.g. going to spherical coordinates)
- Say x=X(q), and inverse map also is well defined: q=Q(x)

$$\dot{q} = \frac{\partial Q}{\partial x} \dot{x} \qquad \dot{x} = \frac{\partial X}{\partial q} \dot{q}$$
$$\ddot{q} = \frac{\partial Q}{\partial x} \ddot{x} + \frac{\partial^2 Q}{\partial x^2} : \dot{x} \dot{x}^T$$

Getting rid of x's...

$$\begin{split} \ddot{q} &= \frac{\partial Q}{\partial x} M^{-1}F + \frac{\partial^2 Q}{\partial x^2} : \left(\frac{\partial X}{\partial q} \dot{q} \dot{q}^T \frac{\partial X}{\partial q}^T\right) \\ &= \frac{\partial X^{-1}}{\partial q} M^{-1}F + \frac{\partial^2 Q}{\partial x^2} : \left(\frac{\partial X}{\partial q} \dot{q} \dot{q}^T \frac{\partial X}{\partial q}^T\right) \\ &= \left(\frac{\partial X}{\partial q}^T M \frac{\partial X}{\partial q}\right)^{-1} \left(\frac{\partial X}{\partial q}^{-T} F\right) + \frac{\partial^2 Q}{\partial x^2} : \left(\frac{\partial X}{\partial q} \dot{q} \dot{q}^T \frac{\partial X}{\partial q}^T\right) \\ &= \tilde{M}^{-1} \left(\tilde{F} + \tilde{F}_{inertial}\right) \end{split}$$

Let's go on

- · Not so important for passive motion
 - · Critical for robotics
 - Important for human animation, but often better to directly specify joint angles (active motion anyways!)
 - If joint angles scripted, still can have character translate/rotate thorugh space
 - Same as a rigid body (angular momentum is conserved) except inertia tensor in object space changes in time
 - For the occasional use of constraints in passive motion, easier to use soft constraints and/or Lagrange multipliers

Deformable Objects

- In reality, no such thing as a rigid body
- · Lots of things aren't anywhere close
 - All of your body except your bones
 - Clothing, and most other thin objects
 - Damaged/fractured objects
 - Water and other fluids

• ...

- Lots of degrees of freedom
 - -> painful to animate
- · The math we need: continuum mechanics

Lagrangian vs. Eulerian

- Continuum: motion of a chunk of matter depends on nearby matter
- Two ways of looking at it
- Lagrangian: (e.g. particle systems)
 - Identify chunks of matter, track their positions (and velocities, accelerations, etc.) over time
- Eulerian: (will come later)
 - Forget identities of chunks of matter, instead just focus on how matter flows through space
 - Track velocity (and material properties) at fixed points in space
- [draw it rigid chunk example]

Examples

- Elastic object, small deformation
 - Elastic means when force is removed, will try to return to original shape
 - E.g. [solid rubber ball]
 - Lagrangian works great
 - Eulerian might have difficulty
- Completely fluid object, large deformation
 - E.g. [coffee]
 - Lagrangian has problems
 - Eulerian works great

Elastic objects

- Simplest model: masses and springs
- Split up object into regions
- Integrate density in each region to get mass (if things are uniform enough, perhaps equal mass)
- · Connect up neighbouring regions with springs
 - Careful: need chordal graph
- Now it's just a particle system
 - When you push on a node, neighbours pulled along with it, etc.

Masses and springs

- But: how strong should the springs be? Is this good in general?
 - [anisotropic examples]
- General rule: we don't want to see the mesh in the output
 - Avoid "grid artifacts"
 - We of course will have numerical error, but let's avoid obvious patterns in the error

1D masses and springs

- Look at a homogeneous elastic rod, length 1, linear density ρ
- Parameterize by p (x(p)=p in rest state)
- Split up into intervals/springs
 - $0 = p_0 < p_1 < \ldots < p_n = 1$
 - Mass $m_i = \rho(p_{i+1}-p_{i-1})/2$ (+ special cases for ends)
 - Spring i+1/2 has rest length $L_{i+\frac{1}{2}} = p_{i+1} p_i$

and force
$$f_{i+\frac{1}{2}} = k_{i+\frac{1}{2}} \frac{x_{i+1} - x_i - L_{i+\frac{1}{2}}}{L_{i+\frac{1}{2}}}$$

Figuring out spring constants

• So net force on i is

$$F_{i} = k_{i+\frac{1}{2}} \frac{x_{i+1} - x_{i} - L_{i+\frac{1}{2}}}{L_{i+\frac{1}{2}}} - k_{i-\frac{1}{2}} \frac{x_{i} - x_{i-1} - L_{i-\frac{1}{2}}}{L_{i-\frac{1}{2}}}$$
$$= k_{i+\frac{1}{2}} \left(\frac{x_{i+1} - x_{i}}{p_{i+1} - p_{i}} - 1\right) - k_{i-\frac{1}{2}} \left(\frac{x_{i} - x_{i-1}}{p_{i} - p_{i-1}} - 1\right)$$

- We want mesh-independent response (roughly), e.g. for static equilibrium
 - Rod stretched the same everywhere: $x_i = \alpha p_i$
 - Then net force on each node should be zero (add in constraint force at ends...)

Young's modulus

- So each spring should have the same k
 - · Note we divided by the rest length
 - Some people don't, so they have to make their constant scale with rest length
- The constant k is a material property (doesn't depend on our discretization) called the Young's modulus
 - Often written as E
- The one-dimensional Young's modulus is simply force per percentage deformation

The continuum limit

- Imagine Δp (or Δx) going to zero
 - Eventually can represent any kind of deformation
 - [note force and mass go to zero too]

$$\ddot{x}(p) = \frac{1}{\rho} \frac{\partial}{\partial p} \left(E(p) \left(\frac{\partial}{\partial a} x(p) - 1 \right) \right)$$

• If density and Young's modulus constant,

$$\frac{\partial^2 x}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 x}{\partial p^2}$$

Sound waves

- Try solution x(p,t)=x₀(p-ct)
- And $x(p,t)=x_0(p+ct)$
- So speed of sound in rod is $\sqrt{\frac{E}{\rho}}$
- Courant-Friedrichs-Levy (CFL) condition:
 - Numerical methods only will work if information transmitted numerically at least as fast as in reality (here: the speed of sound)
 - Usually the same as stability limit for explicit methods [what are the eigenvalues here]
 - Implicit methods transmit information infinitely fast

Why?

- · Are sound waves important?
 - Visually? Usually not
- However, since speed of sound is a material property, it can help us get to higher dimensions
- · Speed of sound in terms of one spring is

$$c = \sqrt{\frac{kL}{m}}$$

- So in higher dimensions, just pick k so that c is constant
 - m is mass around spring [triangles, tets]

Damping

- Figuring out how to scale damping is more tricky
- Go to differential equation (no mesh) $2^{2}x = 1 - 2 \left(- \left(2x - 2 \right) - 2x \right)$

$$\frac{\partial^2 x}{\partial t^2} = \frac{1}{\rho} \frac{\partial}{\partial p} \left(E \left(\frac{\partial x}{\partial p} - 1 \right) + D \frac{\partial v}{\partial p} \right)$$

• So spring damping should be

$$f_{i+\frac{1}{2}} = k_{i+\frac{1}{2}} \frac{x_{i+1} - x_i - L_{i+\frac{1}{2}}}{L_{i+\frac{1}{2}}} + d_{i+\frac{1}{2}} \frac{v_{i+1} - v_i}{L_{i+\frac{1}{2}}}$$

Extra effects with springs

- (Brittle) fracture
 - Whenever a spring is stretched too far, break it
 - Issue with loose ends...
- Plasticity
 - Whenever a spring is stretched too far, change the rest length part of the way

Mass-spring problems

- [anisotropy]
- [stretching, Poisson's ratio]
- [2D bending]
- More generally: implicit integration?
 contact/collision?