Notes Constrained Dynamics

e Assignment #1 * Want “natural” dynamics but subject to
constraint

 Last time: work with regular system, but add
extra forces/impulses to satisfy constraint (at
least approximately)

* Now: get rid of constraint equation altogether
» Parameterize system so constraint automatically

¢ Uniform distribution in a disk:

* Either pick points uniformly in square and
discard those outside disk

* Or take r=sqrt(rand), theta=2*pi*rand
» Shortcut: if you implement Backward Euler

and Forward Euler, just reuse them in satisfied
Trapezoidal Rule « Last time, the hard part was satisfying the
constraint

» This time, the hard part is satisfying physics!

Generalized Coordinates Problems Ahead
e Say “positions” of system in vector x * Math can get fairly nasty if the
« Constraint C(x)=0 parameterization isn’t simple

* Many people use Maple/Mathematica/etc. to
crunch the expressions, generate code
» Parameterization could have pitfalls
e [Gimbal-lock]

» Some degenerate redundancies (multiple values
of g mapping to same x)

Find parameterization of the constraint
manifold x=X(q)

* C(X(q))=0 for all q

» For every x with C(x)=0, there is a q s.t. x=X(q)

The q vector is the generalized coordinates

* Example: pendulum - 6 x coordinates with 5 « End up with ill-conditioned system (in the limit,
constraints, or 1 g gen. coordinate (angle) underdetermined: more than one direction for g to
« No redundancy: cannot drift, should be fast evolve)

for lots of constraints



General flavour Getting rid of x's...
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Let’s go on Deformable Objects

* Not so important for passive motion
* Critical for robotics

In reality, no such thing as a rigid body
Lots of things aren’t anywhere close

* Important for human animation, but often better to « All of your body except your bones
directly specify joint angles (active motion « Clothing, and most other thin objects
anyways!) ’

» Damaged/fractured objects

o i , : racter
If joint angles scripted, still can have characte . Water and other fluids

translate/rotate thorugh space
» Same as a rigid body (angular momentum is conserved)
except inertia tensor in object space changes in time
» For the occasional use of constraints in passive
motion, easier to use soft constraints and/or
Lagrange multipliers

Lots of degrees of freedom
» -> painful to animate
The math we need: continuum mechanics




Lagrangian vs. Eulerian

Continuum: motion of a chunk of matter
depends on nearby matter

Two ways of looking at it

Lagrangian: (e.g. particle systems)

« |dentify chunks of matter, track their positions (and
velocities, accelerations, etc.) over time

Eulerian: (will come later)

» Forget identities of chunks of matter, instead just
focus on how matter flows through space

» Track velocity (and material properties) at fixed
points in space

[draw it - rigid chunk example]

Elastic objects

Simplest model: masses and springs

Split up object into regions

Integrate density in each region to get mass
(if things are uniform enough, perhaps equal
mass)

Connect up neighbouring regions with springs
 Careful: need chordal graph

Now it’s just a particle system

¢ When you push on a node, neighbours pulled
along with it, etc.

Examples

 Elastic object, small deformation

» Elastic means when force is removed, will try to
return to original shape

» E.g. [solid rubber ball]
» Lagrangian works great
 Eulerian - might have difficulty
o Completely fluid object, large deformation
» E.g. [coffee]
» Lagrangian has problems
» Eulerian - works great

Masses and springs

» But: how strong should the springs be?
Is this good in general?
e [anisotropic examples]

* General rule: we don’t want to see the
mesh in the output
 Avoid “grid artifacts”

» We of course will have numerical error, but
let’s avoid obvious patterns in the error



1D masses and springs

Look at a homogeneous elastic rod, length 1,
linear density p

Parameterize by p (x(p)=p in rest state)

Split up into intervals/springs

* O0=py<pi<...<p,=1

* Mass m=p(p;,1-P;.1)/2 (+ special cases for ends)
* Spring i+1/2 has rest length Li+y2 =Py~ D;
X =X — Li+%

and force Jiry = Kiy L.,

Young’s modulus

So each spring should have the same k

* Note we divided by the rest length

¢ Some people don'’t, so they have to make their
constant scale with rest length

The constant k is a material property (doesn’t

depend on our discretization) called the

Young’s modulus

o Often written as E

The one-dimensional Young’s modulus is

simply force per percentage deformation

Figuring out spring constants

* So netforceoniis
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« We want mesh-independent response
(roughly), e.g. for static equilibrium
* Rod stretched the same everywhere: x=ap;,

¢ Then net force on each node should be zero
(add in constraint force at ends...)

The continuum limit

* Imagine Ap (or Ax) going to zero

» Eventually can represent any kind of
deformation

* [note force and mass go to zero t00]
. |7, 1%
X(p) = ——(E (p)(—X(p) - 1))
p dp oa
* If density and Young’s modulus constant,
#x_Edx
ot pdp’



Sound waves

Try solution x(p,t)=x,(p-ct)
And x(p,t)=x,(p+ct) Z
So speed of sound in rod is \/%

Courant-Friedrichs-Levy (CFL) condition:

* Numerical methods only will work if information
transmitted numerically at least as fast as in reality
(here: the speed of sound)

» Usually the same as stability limit for explicit
methods [what are the eigenvalues here]

* Implicit methods transmit information infinitely fast

Damping

Figuring out how to scale damping is
more tricky

Go to differential equation (no mesh)
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Why?

* Are sound waves important?
* Visually? Usually not

* However, since speed of sound is a material
property, it can help us get to higher
dimensions

» Speed of sound in terms of one spring is

\/ﬁ
P L
m
» So in higher dimensions, just pick k so that ¢

is constant
* m is mass around spring [triangles, tets]

Extra effects with springs

* (Brittle) fracture

» Whenever a spring is stretched too far,
break it

 Issue with loose ends...
* Plasticity

» Whenever a spring is stretched too far,
change the rest length part of the way



Mass-spring problems

* [anisotropy]

* [stretching, Poisson’s ratio]

 [2D bending]

» More generally: implicit integration?
contact/collision?



