
Notes

• Assignment #1

• Uniform distribution in a disk:

• Either pick points uniformly in square and

discard those outside disk

• Or take r=sqrt(rand), theta=2*pi*rand

• Shortcut: if you implement Backward Euler

and Forward Euler, just reuse them in
Trapezoidal Rule

Constrained Dynamics

• Want “natural” dynamics but subject to
constraint

• Last time: work with regular system, but add
extra forces/impulses to satisfy constraint (at
least approximately)

• Now: get rid of constraint equation altogether
• Parameterize system so constraint automatically

satisfied

• Last time, the hard part was satisfying the
constraint

• This time, the hard part is satisfying physics!

Generalized Coordinates

• Say “positions” of system in vector x

• Constraint C(x)=0

• Find parameterization of the constraint
manifold x=X(q)
• C(X(q))=0 for all q

• For every x with C(x)=0, there is a q s.t. x=X(q)

• The q vector is the generalized coordinates

• Example: pendulum - 6 x coordinates with 5
constraints, or 1 q gen. coordinate (angle)

• No redundancy: cannot drift, should be fast
for lots of constraints

Problems Ahead

• Math can get fairly nasty if the
parameterization isn’t simple
• Many people use Maple/Mathematica/etc. to

crunch the expressions, generate code

• Parameterization could have pitfalls
• [Gimbal-lock]

• Some degenerate redundancies (multiple values
of q mapping to same x)

• End up with ill-conditioned system (in the limit,
underdetermined: more than one direction for q to
evolve)



General flavour

• Just look at constraint-free

reparameterization (e.g. going to

spherical coordinates)

• Say x=X(q), and inverse map also is

well defined: q=Q(x)
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Getting rid of x’s…
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Let’s go on

• Not so important for passive motion
• Critical for robotics

• Important for human animation, but often better to
directly specify joint angles (active motion
anyways!)

• If joint angles scripted, still can have character
translate/rotate thorugh space
• Same as a rigid body (angular momentum is conserved)

except inertia tensor in object space changes in time

• For the occasional use of constraints in passive
motion, easier to use soft constraints and/or
Lagrange multipliers

Deformable Objects

• In reality, no such thing as a rigid body

• Lots of things aren’t anywhere close
• All of your body except your bones

• Clothing, and most other thin objects

• Damaged/fractured objects

• Water and other fluids

• …

• Lots of degrees of freedom
• -> painful to animate

• The math we need: continuum mechanics



Lagrangian vs. Eulerian

• Continuum: motion of a chunk of matter
depends on nearby matter

• Two ways of looking at it

• Lagrangian: (e.g. particle systems)
• Identify chunks of matter, track their positions (and

velocities, accelerations, etc.) over time

• Eulerian: (will come later)
• Forget identities of chunks of matter, instead just

focus on how matter flows through space

• Track velocity (and material properties) at fixed
points in space

• [draw it - rigid chunk example]

Examples

• Elastic object, small deformation
• Elastic means when force is removed, will try to

return to original shape

• E.g. [solid rubber ball]

• Lagrangian works great

• Eulerian - might have difficulty

• Completely fluid object, large deformation
• E.g. [coffee]

• Lagrangian has problems

• Eulerian - works great

Elastic objects

• Simplest model: masses and springs

• Split up object into regions

• Integrate density in each region to get mass
(if things are uniform enough, perhaps equal
mass)

• Connect up neighbouring regions with springs
• Careful: need chordal graph

• Now it’s just a particle system
• When you push on a node, neighbours pulled

along with it, etc.

Masses and springs

• But: how strong should the springs be?

Is this good in general?

• [anisotropic examples]

• General rule: we don’t want to see the

mesh in the output

• Avoid “grid artifacts”

• We of course will have numerical error, but
let’s avoid obvious patterns in the error



1D masses and springs

• Look at a homogeneous elastic rod, length 1,
linear density "

• Parameterize by p (x(p)=p in rest state)

• Split up into intervals/springs

• 0 = p0 < p1 < … < pn = 1

• Mass mi="(pi+1-pi-1)/2    (+ special cases for ends)

• Spring i+1/2 has rest length

and force
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Figuring out spring constants

• So net force on i is

• We want mesh-independent response
(roughly), e.g. for static equilibrium
• Rod stretched the same everywhere: xi=!pi

• Then net force on each node should be zero
(add in constraint force at ends…)
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Young’s modulus

• So each spring should have the same k
• Note we divided by the rest length

• Some people don’t, so they have to make their
constant scale with rest length

• The constant k is a material property (doesn’t
depend on our discretization) called the
Young’s modulus
• Often written as E

• The one-dimensional Young’s modulus is
simply force per percentage deformation

The continuum limit

• Imagine !p (or !x) going to zero

• Eventually can represent any kind of
deformation

• [note force and mass go to zero too]

• If density and Young’s modulus constant,
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Sound waves

• Try solution x(p,t)=x0(p-ct)

• And x(p,t)=x0(p+ct)

• So speed of sound in rod is

• Courant-Friedrichs-Levy (CFL) condition:
• Numerical methods only will work if information

transmitted numerically at least as fast as in reality
(here: the speed of sound)

• Usually the same as stability limit for explicit
methods [what are the eigenvalues here]

• Implicit methods transmit information infinitely fast
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Why?

• Are sound waves important?
• Visually? Usually not

• However, since speed of sound is a material
property, it can help us get to higher
dimensions

• Speed of sound in terms of one spring is

• So in higher dimensions, just pick k so that c
is constant
• m is mass around spring [triangles, tets]! 

c =
kL

m

Damping

• Figuring out how to scale damping is

more tricky

• Go to differential equation (no mesh)

• So spring damping should be
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Extra effects with springs

• (Brittle) fracture

• Whenever a spring is stretched too far,
break it

• Issue with loose ends…

• Plasticity

• Whenever a spring is stretched too far,
change the rest length part of the way



Mass-spring problems

• [anisotropy]

• [stretching, Poisson’s ratio]

• [2D bending]

• More generally: implicit integration?

contact/collision?


