
Notes

• Please read

• Hahn, “Realistic animation of rigid bodies”,
SIGGRAPH’88

• Guendelman et al., “Nonconvex rigid
bodies with stacking”, SIGGRAPH’03

• Check web site for instructions on

printing slides

• Use pdf2ps, not acroread

Object collision detection

• Before: particles vs. objects
• Spheres vs. objects for signed distance

• Now: need objects vs. objects

• Interference detection
• Do the objects intersect?

• For collision processing: “where?”

• Collision detection
• At some point in time, did the objects intersect?

• When and where?

Convex polyhedra

• Lots of research on convex polyhedral objects

• Intersection of a finite set of half-planes
• {x | ni•(x-xi) ! 0 for i=0,1, …, m}

• Very easy to test inside/outside (if m is small)
• [Aside: signed distance from this?]

• Also want to know the vertices
• Object is the convex hull of the vertices

• Can be used for the points xi defining the half-
planes

Acceleration

• BV hierarchy or grid acceleration structure
can certainly prune out a lot of tests

• Also: notion of separating plane
• A plane s.t. object 1 is on one side, object 2 is on

the other

• Convex objects intersect if and only if there is no
separating plane

• For convex polyhedra, if there is one, one example
will either be
• One of the defining half-planes

• Or parallel to an edge from object 1 and an edge from
object 2, going through one of the edge endpoints

More on convex bodies

• M. Lin: maintain closest pair of features

• Time coherence (for convex bodies) makes this

fast!

• Extension to nonconvex objects

• Maybe unnecessary (if it’s close to convex, just

use simplified collision geometry which is convex)

• Can decompose any object into a union of convex
parts

• Decomposition may be inefficient…

More general shapes

• For most every-day objects, forget about
convexity

• Look at general triangle meshes and level
sets again

• Fairly difficult to avoid all interpenetration
(and not crucial usually)

• So even if we use full collision detection, still look

for residual intersections and use repulsions to

separate

Where is the geometry?

• For efficiency, in all but the simplest cases,
just store geometry in object space

• Two different objects have different object
spaces

• Thus we’ll need to convert between the two
frequently

• General idea
• Do collision tests in object 1’s object space

• Precompute composition of map from object 2’s
object space to world space, then from world
space to object 1’s object space

• Use rotation matrix R, not quaternion

Where is the acceleration?

• Note that axis aligned bounding boxes won’t
be axis aligned after transformation
• Become oriented bounding boxes

• Oriented bounding boxes need to be rotated
in transformation

• Spheres are invariant

• Signed distance is invariant
• But normals need to be rotated!

• Grids need to be rotated

• Or just keep one grid out in world space, and
update or rebuild it each time step

Intersecting triangle meshes

• Check if an edge of one intersects a face of
the other
• Also check if one vertex of object 1 is inside object

2, and vice versa

• Naïve way:
• Loop over faces of one, check each for

intersection (accelerate each check)

• Repeat for the faces of the other

• Better way:
• Use acceleration structure to prune in BOTH

objects simultaneously

• Don’t check any distant faces or edges

BV Hierarchy

• Start with an empty stack
• Holds pairs: one BV node from object 1, one BV

node from object 2

• Put the root BV’s on the stack

• While stack isn’t empty
• Remove a pair of BV’s from top, check if they

intersect
• If so, and they are at the base level, do the face/edge

intersection tests

• If so, and not at the base level, but all pairs of children on
the stack

Grid

• Find all grid cells with primitives from

both objects

• Probably want separate lists for each
object, or a count of # primitives from each
object, to make this O(1) per grid cell

• Test those primitives for intersection

Colliding triangle meshes

• In general, both meshes moving

• Need to detect point-face collisions as before with

particles

• Recall:

assume linear trajectories, form cubic, find
possible collision times, test geometry at each

collision time

• Also need to detect edge-edge collisions

• Math is almost the same…

Edge-edge collisions

• Say edge endpoints are x1-x2 and x3-x4

• Parameterize with s=0 at start of time step,
s=1 at end

• Positions are xi+svi at time s

• Two edges intersect only if their lines lie in
the same plane

• Redraw diagram

• End up with point in plane

• So get exactly the same cubic as before!

Edge-edge collisions 2

• Once we have a possible collision time, need
to check if the edges actually overlap at that
time

• (1-a)x1+ax2=(1-b)x3+bx4

• Again, over-determined

• Solve least-squares
• What are the barycentric coordinates (a for edge

1-2, b for edge 3-4) of the closest points on the
lines?

• [work out]

• Also note: normal is cross-product of edges

Acceleration

• Again, need to cover whole extent of

triangle motion in the acceleration

structure

• Can use the same recursive algorithm

for efficiently finding colliding

trajectories

Level sets

• Open (but low hanging fruit) problem:
• Directly search signed distance fields for point

where both are negative

• Simpler approach: dual representation
• Use level sets which are great for point queries

• Sprinkle particles on the surface (to provide the
points)

• Point sampling could come from a mesh, but it
doesn’t have to!

• This will be an approximate detection

• If we do have a mesh, can also check edges
against level set (obj1 vs. obj2 and vice versa)…

Collision resolution

• Tricky part, especially with friction
• Theorists still arguing about validity of

Coulomb friction

• Baraff ‘94: finding contact forces (polygonal
objects, Coulomb friction) is NP-complete

• Nobody really understands rolling friction
yet

• We’ll get by with simplified
approximations: plausible results

Repulsion forces

• Don’t work so well for stacks
• Things get mushy…

• Work ok for simpler interaction
• But friction is kind of dodgy…

• Basic premise
• When objects collide, stick in a virtual damped

spring at the collision point, until they separate

• Need a better approach
• But still useful for separating objects that are still

slightly interfering after other algorithms

• In this case, can alter just positions…

Simplifying to points

• Let’s focus on a single point collision
• If just checking interference, use the deepest point

• Note: only work with non-separating points
• If all interfering points are separating, we need to

use repulsions instead

• This looks a lot like particles now

• But after resolving deepest point, need to
check again with updated velocities
• Are there more points that need resolving?

[example]

• Iterate a few (5?) times

Frictionless impulse

• Object velocities at point:
• vi=!i"(x-Xi)+Vi

• Relative velocity v=v1-v2

• Normal component vn=v•n

• Want post-collision relative normal velocity to
be vn

after=-#vn

• Apply an impulse j=jnn in the normal direction
to achieve this

• [work out]

Computing frictionless impulse

!

K
i
=
1

M
i

" + x # X
i()
$T
I
i

#1
x # X

i()
$

!

j =
" 1+ #()vn

n
T
K
1

+ K
2()n

n

Adding friction

• Static friction valid only in “friction cone”

• Approach:
• Calculate static friction impulse (whatever it takes

to make relative velocity zero)

• Check if it’s in the friction cone

• If so, we’re done

• If not, try again with sliding

• [work out]

!

jT " µ jn

Computing static friction

!

v
after = v " 1+ #()vnn

!

j = " 1+ #()vn K1 + K
2()
"1
n

Sliding friction

• If computed static friction impulse fails friction
cone test

• In general, sliding direction will change during
impact!
• Several papers, even in graphics, actually solve

ODE’s for sliding friction during impact

• We’ll assume not: tangential impulse just in
the initial relative velocity direction
• In practice, good enough

• [work out]

Computing sliding friction

!

T =
v " v

n
n

v " v
n
n

!

j = jnn "µjnT

!

jn =
" 1+ #()vn

n
T
K
1

+ K
2()(n "µT)

New twist: multiple collisions

• Before (particles vs. objects) we ignored
particle vs. particle collisions

• Here, many collisions can occur in a time step

• Solving one pair changes velocities, which
can cause a different pair to collide

• Solving that pair can cause another pair to
collide

• Need to keep iterating

• [Stack example]

Collision resolution pipeline

• We need to combine different collision
techniques

• After elastic bounces (fine to just do a few
pairwise collisions) do inelastic contact

• Take candidate velocities for contact

• Pass through a pipeline
• Early stages are fast, accurate, local - handle the

simple cases well

• Later stages may be slower, less accurate, but
global and robust - handle the complex cases
robustly and plausibly

Shock propagation

• For rigid bodies, first stages of contact
pipeline are just doing pairwise inelastic
impulses

• Say 3-5 passes

• We want to finish up with something that
handles the rest: stacks

• Idea of shock propagation

• Fix bottom object, freeze in place, then fix next

object up, freeze in place, and continue

Who’s on who?

• Need to figure out ordering of objects - who’s
on the bottom, who’s on top

• One by one, advance position of just one
object and see which objects it collides with

• Form a directed graph (edge means “below”)

• Group cycles together to get a DAG

• Topologically sort DAG to get final ordering

Freezing

• Assume the ground is the bottommost object
(and is immovable)
• Note: if not, momentum is not conserved by shock

propagation - need to be careful

• Then freezing just means we glue to the
ground (kind of like static friction…)

• Implement it by setting K=0
• Infinite mass, infinite inertia tensor (since we’re

combining the object with the ground)

• Looks terrible, is badly inaccurate: except it
works great when we already did a decent job
at start of pipeline!

Some open problems

• Rolling friction

• Balancing stacks [draw example]

