Notes Object collision detection

Before: particles vs. objects

» Spheres vs. objects for signed distance
Now: need objects vs. objects
Interference detection

* Do the objects intersect?

 For collision processing: “where?”
Collision detection

* Please read

* Hahn, “Realistic animation of rigid bodies”,
SIGGRAPH’88

» Guendelman et al., “Nonconvex rigid
bodies with stacking”, SIGGRAPH’03

e Check web site for instructions on

printing slides « At some point in time, did the objects intersect?
« Use pdf2ps, not acroread * When and where?
Convex polyhedra Acceleration
» Lots of research on convex polyhedral objects * BV hierarchy or grid acceleration structure
« Intersection of a finite set of half-planes can certainly prune out a lot of tests
o {xInq(x-x)) =0 fori=0,1, ..., m} Also: notion of separating plane
» Very easy to test inside/outside (if m is small) * Aplane s.t. object 1 is on one side, object 2 is on

the other

* [Aside: signed distance from this?] _ _ . .)
» Convex objects intersect if and only if there is no

Also want to know the vertices separating plane

* Object is the convex hull of the vertices « For convex polyhedra, if there is one, one example
» Can be used for the points x; defining the half- will either be
planes « One of the defining half-planes

¢ Or parallel to an edge from object 1 and an edge from
object 2, going through one of the edge endpoints

More on convex bodies

M. Lin: maintain closest pair of features

* Time coherence (for convex bodies) makes this
fast!

Extension to nonconvex objects

¢ Maybe unnecessary (if it’s close to convex, just
use simplified collision geometry which is convex)

¢ Can decompose any object into a union of convex
parts

» Decomposition may be inefficient...

Where is the geometry?

For efficiency, in all but the simplest cases,
just store geometry in object space

Two different objects have different object
spaces

Thus we’ll need to convert between the two
frequently

General idea

* Do collision tests in object 1’s object space

* Precompute composition of map from object 2’s
object space to world space, then from world
space to object 1’s object space

» Use rotation matrix R, not quaternion

More general shapes

For most every-day objects, forget about
convexity

Look at general triangle meshes and level
sets again

Fairly difficult to avoid all interpenetration
(and not crucial usually)

* So even if we use full collision detection, still look
for residual intersections and use repulsions to
separate

Where is the acceleration?

Note that axis aligned bounding boxes won’t
be axis aligned after transformation

» Become oriented bounding boxes

Oriented bounding boxes need to be rotated
in transformation

Spheres are invariant

Signed distance is invariant

» But normals need to be rotated!

Grids need to be rotated

Or just keep one grid out in world space, and
update or rebuild it each time step

Intersecting triangle meshes

» Check if an edge of one intersects a face of
the other

» Also check if one vertex of object 1 is inside object
2, and vice versa

* Naive way:
« Loop over faces of one, check each for
intersection (accelerate each check)

* Repeat for the faces of the other

» Better way:

» Use acceleration structure to prune in BOTH
objects simultaneously

» Don’t check any distant faces or edges

Grid

 Find all grid cells with primitives from
both objects

* Probably want separate lists for each
object, or a count of # primitives from each
object, to make this O(1) per grid cell

e Test those primitives for intersection

BV Hierarchy

 Start with an empty stack
* Holds pairs: one BV node from object 1, one BV
node from object 2
* Put the root BV’s on the stack

* While stack isn’t empty

* Remove a pair of BV’s from top, check if they
intersect

« If so, and they are at the base level, do the face/edge
intersection tests

« If so, and not at the base level, but all pairs of children on
the stack

Colliding triangle meshes

* In general, both meshes moving

» Need to detect point-face collisions as before with
particles

* Recall:
assume linear trajectories, form cubic, find
possible collision times, test geometry at each
collision time

» Also need to detect edge-edge collisions
* Math is almost the same...

Edge-edge collisions Edge-edge collisions 2

Say edge endpoints are x;-X, and X3-X4 » Once we have a possible collision time, need
Parameterize with s=0 at start of time step, to check if the edges actually overlap at that
s=1 at end time

Positions are x+sv; at time s ¢ (1-a)xq+axy=(1-b)x5+bx,

Two edges intersect only if their lines lie in * Again, over-determined

the same plane » Solve least-squares

Redraw diagram * What are the barycentric coordinates_ (a for edge
End up with point in plane ﬂnisg for edge 3-4) of the closest points on the
So get exactly the same cubic as before! « [work out]

» Also note: normal is cross-product of edges

Acceleration Level sets
Again, need to cover whole extent of * Open (but low hanging fruit) problem:
triangle motion in the acceleration * Directly search signed distance fields for point
where both are negative
structure « Simpler approach: dual representation
Can use the same recursive algorithm « Use level sets which are great for point queries
for efficiently finding coIIiding » Sprinkle particles on the surface (to provide the
. . points)
trajectories » Point sampling could come from a mesh, but it

doesn’t have to!
» This will be an approximate detection

« If we do have a mesh, can also check edges
against level set (obj1 vs. obj2 and vice versa)...

Collision resolution

» Tricky part, especially with friction

 Theorists still arguing about validity of
Coulomb friction

» Baraff ‘94: finding contact forces (polygonal
objects, Coulomb friction) is NP-complete

* Nobody really understands rolling friction
yet

» We’'ll get by with simplified

approximations: plausible results

Simplifying to points

Let’s focus on a single point collision

« If just checking interference, use the deepest point

Note: only work with non-separating points

« If all interfering points are separating, we need to
use repulsions instead

This looks a lot like particles now

But after resolving deepest point, need to
check again with updated velocities

» Are there more points that need resolving?
[example]

* lterate a few (57?) times

Repulsion forces

Don’t work so well for stacks

» Things get mushy...

Work ok for simpler interaction
* But friction is kind of dodgy...
Basic premise

» When objects collide, stick in a virtual damped
spring at the collision point, until they separate

Need a better approach

 But still useful for separating objects that are still
slightly interfering after other algorithms

* In this case, can alter just positions...

Frictionless impulse

Object velocities at point:

o Vi=ox(X-X)+V,

Relative velocity v=v,-v,

* Normal component v, =v*n

Want post-collision relative normal velocity to
be Vnafter=_gvn

Apply an impulse j=j,n in the normal direction
to achieve this

[work out]

Computing frictionless impulse

1

K, = Mii5+ (x-X,)" I(x-X,)
~(1+¢€)v,

/= nT(K1 + Kz)n "

Computing static friction

v =y —(1+¢€)v,n

j=—(1+e, (K +K,) " n

n

Adding friction

« Static friction valid only in “friction cone”

‘]T‘ = Au.]n
* Approach:

» Calculate static friction impulse (whatever it takes
to make relative velocity zero)

e Check if it’s in the friction cone
* |If so, we're done
* If not, try again with sliding

e [work out]

Sliding friction

If computed static friction impulse fails friction

cone test

In general, sliding direction will change during

impact!

» Several papers, even in graphics, actually solve
ODE'’s for sliding friction during impact

We’ll assume not: tangential impulse just in
the initial relative velocity direction

* In practice, good enough

[work out]

Computing sliding friction

7=V "Vl

‘V —Vnn‘
J=Jn-w,I
~(1+¢)v,

In = n' (K, +K,)(n-uT)

Collision resolution pipeline

We need to combine different collision
techniques

After elastic bounces (fine to just do a few
pairwise collisions) do inelastic contact

Take candidate velocities for contact

Pass through a pipeline
» Early stages are fast, accurate, local - handle the
simple cases well

» Later stages may be slower, less accurate, but
global and robust - handle the complex cases
robustly and plausibly

New twist: multiple collisions

Before (particles vs. objects) we ignored
particle vs. particle collisions

Here, many collisions can occur in a time step

Solving one pair changes velocities, which
can cause a different pair to collide

Solving that pair can cause another pair to
collide

Need to keep iterating
[Stack example]

Shock propagation

For rigid bodies, first stages of contact
pipeline are just doing pairwise inelastic
impulses

e Say 3-5 passes

We want to finish up with something that
handles the rest: stacks

* |Idea of shock propagation

» Fix bottom object, freeze in place, then fix next
object up, freeze in place, and continue

Who’s on who?

» Need to figure out ordering of objects - who’s
on the bottom, who’s on top

* One by one, advance position of just one
object and see which objects it collides with

» Form a directed graph (edge means “below”)
» Group cycles together to get a DAG
» Topologically sort DAG to get final ordering

Some open problems

 Rolling friction
» Balancing stacks [draw example]

Freezing

Assume the ground is the bottommost object

(and is immovable)

» Note: if not, momentum is not conserved by shock
propagation - need to be careful

Then freezing just means we glue to the

ground (kind of like static friction...)

Implement it by setting K=0

* Infinite mass, infinite inertia tensor (since we’re
combining the object with the ground)

Looks terrible, is badly inaccurate: except it

works great when we already did a decent job

at start of pipeline!

