Notes on Last Lecture

Approximate interior normal may be quite
wrong [corner example]

Lots of potential ways to fix this if it happens

« Fall back on collision detection (normal at collision

point on surface should work)

« If the object normal doesn’t work, use opposite of

particle velocity instead  (maybe too inelastic)
» Use a repulsion impulse (and friction) to get out:
Avy = (-¢/At)n  (dangerous: adds energy!)

Unfortunately, to be robust enough, usually
need to throw in a bunch of hacks...

Moving triangles

Life is a little more complicated

Assume corners of the triangles move in
linear trajectories too

* Note this is NOT rigid in general...

At time s, corner is at X;+SV,

* (assume s starts at 0 at start of time step)
Normal is also changing in time

» So for plane intersection, need to substitute for n
the cross-product formula

¢ Thankfully, don’t need to normalize, since that
doesn’t change the plane

Notes

Round-off error is also a problem

In algorithms described before, can get into

infinite loops if not careful: vyPefore+Av, =
VNafter

« If collision resolution doesn’t seem to ever
converge---could just be round-off

» Simple fix: stop after a fixed number of iterations,
keep the old particle position

* Not so easy with moving objects - really need to
update position

» So use very weak repulsions to push objects just
slightly clear of objects

Moving triangles equation

A cubic in s to solve:
[A=5)p+5g-x,]*[(x,(5) = x,(8)) x (x5 (5) - x,(5)) | = O

Only interested in real solutions between 0
and At

Solve iteratively

» Derivative=quadratic can be solved to tell us if any
extrema in interval

» Values at endpoints and at any extrema in interval
tell us the intervals that roots could be in

+ Solve for those roots with secant/bisection search



Acceleration

Too slow to check every single triangle if
mesh is large

Need acceleration

Also critical if we have lots of distinct objects
(even if implicit)

Lots of papers written on acceleration
structures

¢ Prune out unnecessary tests

Grid Acceleration

Or, put down a virtual grid in space

» Each grid cell has a list of which triangles overlap
To test a segment, only look at triangles in
the grid cells the segment crosses

Can use hash table for memory efficiency

» Hash on cell indices (i,j,k)

Note trade-off:

» The finer the grid, the fewer extraneous triangles

e But: more grid cells to check, more memory used,
and more expensive to build grid

* Tune for your application!

Bounding Volume Hierarchy

Surround each triangle (or small group of
triangles) with a simple bounding volume

» E.g. axis-aligned box, sphere, oriented box...
Surround group of bounding volumes with a
parent bounding volume, and so on up

End up with a tree

To check a segment against scene, check if it
could overlap root of tree

 If not, we’re done

* |f so, recurse on children

Rigid Bodies

Very well studied

I’ll introduce them from a particle perspective
» Easy to get lost in abstract notions

« Particles are fundamental

Discretize an object into small point masses
* XV, m,

Assume object doesn’t change shape
(doesn’t deform)

+ What does that mean for the motion of the
particles? How do we describe it, solve for it?



World Space vs. Object Space

» World space: where the particles actually are
now

e This is where we will look at x, v, and almost every
other quantity

» Object space: imaginary “reference” place for
the particles
» Label the object space position p;

» Does not change as the object moves - things we
compute in object space stay constant

» We can define it arbitrarily

Rigid Motion

« Differentiate map w.r.t. time (using dot
notation): v.,=Rp,+V

e Invert map for p;: p; =R (x,-X)
* Thus: v,=RR"(x,-X)+V

* st term: rotation, 2nd term: translation
* Let’s simplify the rotation

Mapping

» The map from p; to x;(t) cannot change
the shape

* The distance between any two particles
never changes

» Thus map has to be x;(t)=R(t)p;+X(t)

* R(t) is an orthogonal 3x3 matrix: RRT=%
» The orientation (rotation) of the object

» X(t) is a vector
» The “location” of the object

Skew-Symmetry

» Differentiate RRT=3 w.r.t. time:
RR" + RRT =0 = RR = —(RRT)T

o Skew-symmetric! Thus can write as:
0 -w, o,
RR"=|w, 0 -w,
-, w, 0

e Call this matrix w* (built from a vector w)
RR"=w* = R=0'R



The cross-product matrix

 Note that:
0 -w, o \x, W, X, — W, X,
ox=|lw, 0 -o|x|=lwx,-wx,|=0xx
-0, o, 0 Ax, WyX, — WX,

* So we have:
vi=ox(x,-X)+V

* o is the angular velocity of the object

Force

Take another time derivative to get
acceleration: 4 =y = Rp, + A

Use F=ma, sum up net force on system:

EiFi = Eimiai = Eimi(jépi + A)
= kzimlpi + Azimi

Let the total mass be M = E-mi

How to simplify the other term?

Angular velocity

e Recall:

* lwl is the speed of rotation (radians per
second)

* w points along the axis of rotation (which in
this case passes through the point X)

» Convince yourself this makes sense with
the properties of the cross-product

Centre of Mass

» Let’s pick a new object space position:

P =p; _—E-"mjpj
' l M

» The mass-weighted average of the
positions is the centre of mass

» We translated the centre of mass (in object
space) to the point 0

* Now: Eimipi ~0



Force equation

So now, assuming we’ve set up object space
right (centre of mass at 0), F=MA

If there are no external forces, have F=0

« Internal forces must balance out, opposite and
equal

e Thus A=0, thus V=constant

If there are external forces, can integrate
position of object just like a regular particle!

Net Torque

(e -%)- (x —X)) fi=

Play around:
y X)x £,

(5, X) s
{5, X)x,

Sum both sides (look for net force)

2= X)xfy === X) ]

S(s-X)xF; =S, -x)xr
=0

The expression we just computed=0 is the net
torque on the object

What about R?

How does orientation change?

Think about internal forces keeping the
particles in the rigid configuration

» Conceptual model: very stiff spring between every
pair of particles, maintaining the rest length

So F = E f;  Where f;is force onidue toj

Also: f; is in the direction of x;-x;
* Thus (xl.—xj)xfl.j =0

Torque

The torque of a force applied to a point is
T, = (xl. — X) xF,
The net torque due to internal forces is 0

[geometry of torque: at CM, with opposite
equal force elsewhere]

Torque obviously has something to do with
rotation

How do we get formula for change in angular
velocity?



Angular Momentum

» Use F=ma in definition of torque:
T, = (x,. —X)xmiai
= i[mi(xl. - X)x vl.]

dt

 force=rate of change of linear momentum,
torque=rate of change of angular momentum

» The total angular momentum of the object is

L=Eimi(xi_ i
= E,-mi(xi - X) X (vl. - V)

Inertia Tensor

I(t) is the inertia tensor

Kind of like “angular mass”

Linear momentum is mv

Angular momentum is L=I(t)w

Or we can go the other way: w=I(1)'L

Getting to @

e Recall v,-V =a)x(xl. - X)
 Plug this into angular momentum:

L= E a)x( X))
Em x,-X —X)xa))
=—Em x,-X x—X)‘a)
(Em x,-X * x—X)*)w
I(t)

Equations of Motion

SV=Py HL=T
X =V w=I(t)"L

LR=wR

In the absence of external forces F=0, T=0



Reminder

Before going on:

Remember that this all boils down to particles

e Mass, position, velocity, (linear) momentum, force
are fundamental

« Inertia tensor, orientation, angular velocity, angular
momentum, torque are just abstractions

» Don’t get too puzzled about interpretation of
torque for example: it’s just a mathematical
convenience

Inertia Tensor Simplified 2

So just compute inertia tensor once, for object
space configuration

Then I(t)=Rlyoq,RT
* So precompute inverse too

In fact, since | is symmetric, know we have an
orthogonal eigenbasis Q

Rotate object-space orientation by Q
* Then Iy, is just diagonal!

Inertia Tensor Simplified

» Reduce expense of calculating I(t):
10y ="Y m(x,=X)" (x,- X
= > m (= X)" (3= X)6 = (o, = X) (o, = X)' ]

1

* Now use x-X=Rp; and use RTR=0
1=y m[p/R"Rpd-Rp,pR"]
= R(Eimi(pf poO-pri ))RT
I

body

Degenerate Inertia Tensors

* |is just sum of symmetric positive semi-
definite matrices
» Each one has null space: vectors parallel to x-X
« [f all the points line up (object is a rod) then
sum | has the same null space
 Singular: cannot be inverted

e We don’t care though, since we can’t track rotation
around that axis anyways

» So diagonalize I, and only invert nonzero elements
 Similarly for a single point...



Taking the limit

Letting our decomposition of the object
into point masses go to infinity:
* Instead of sum over particles,

integral over object volume

* Instead of particle mass,
density at that point in space

Y m,foo(x,) = [[[ p(x)foo(x)dx
+ No big deal A

Approximating Inertia Tensors

» For complicated geometry, don'’t really
need exact answer

 Instead use numerical quadrature

« |f we can afford to spend a lot of time
precomputing, life is simple
» Simplest approach: Monte-Carlo
» Obviously stratified sampling etc. helps

Computing Inertia Tensors

Do the integrals: 1, = [[[ o(p" pd-pp")dp

Lots of fun! !

You may want to look them up instead

» E.g. Eric Weisstein’s World of Science on the web

Align axis perpendicular to planes of
symmetry (of p) in object space

» Guarantees some off-diagonal zeros
Example: sphere, uniform density, radius R

MR 0 0
0 IMR* O
0 0 MR
Combining Objects

What if object is union of two simpler objects?
Integrals are additive

 But be careful about adding I,(t)+l,(t):

» World-space formulas (x-X) use the X for the object: X,
and X, may be different

* Simplified Iy.q, formula based on having centre of mass
at origin

» Let’s work it out from the integral of I(t)
Combined mass: M=M;+M,
Centre of mass of combined object:

fglUszx _ M1X1 + M2X2

X =
Jore, M




Combined Inertia Tensor Numerical Method

10=[, . p(x=X)" (x-X) « For advancing V and X, can use any of
Q,uUQ, g y
= [ ool -X + X - X) (- X+ X, - X) + [ the second order schemes we

= [ =X (=X f, el =) (- X dscussedbelore f

o o « Often only gravity and small amount o
+ fg p(x-X,)" (X, - X) +fQ] p(X, - X)" (X, - X) +fg‘2" wind drag

=L+ (X =X)" [, pe=X)"+ [ p(x-X)" (X, - X) « For advancing angular stuff:

" g ’ « Constraint on R makes life a little more

+ M(X, - X)" (X, - X) + [ interesting

2

=L+ M(X,-X)" (X, - X)" + L)+ My(X, - X)" (X, - X)'

Advancing angular stuff Stability? Accuracy?
» Symplectic Euler-like algorithm simplest * Note R cannot blow up (we keep making it
choice: L =L +AT orthogonal)
w,, =1t)'L,  But if T=T(R,w) there is potential for L and w

R. =R +Atw, R, to blow up

n+l
Note: updated R isn’t quite orthogonal . Rar.elly th_e case (usually T=0, apart from isolated
collision impulses)

Need to correct (otherwise objects inflate) L o
Si | hoi G Schmid « If it is the case, can go implicit
'mp gst cholce. ) ram- chmidt _ ¢ May want to restrict At=O(w") to properly
e But introduces axis-bias, and expensive .
: ) sample rotations
Could also compute rotation matrix for Atw
e Even more expensive, still have some drift



Improving on R

» Expensive (and maybe biased) to keep R
orthogonal
¢ 9 numbers for 3 parameters
¢ Use a less redundant representation

* Quaternions work better!

« Still cheap and easy to deal with (unlike Euler
angles, for example)

e Only 4 numbers - still need to normalize
» But can do it without axis bias
 and for much cheaper

Rotating with quaternions

Instead of Rp, calculate ¢(0,p)qg
Composing a rotation of Atw to advance a

time step: :
, At —
> 4,

w
qn+l = 1_ Ata

For small Atw approximate:

w w
=|1,At—|g, =q, + At—
qn+1 2 qn Qn 2 qn

From this get the differential equation:

q=30q

Review quaternions

 Instead of R, use q=(s,x,y,z) with Igl=1
* Can think of g=s+xi+yj+zk
o i2=j2=k2=1, ij=-ji=k, jk=-kj=i, ki=-ik=j
* Don’t commute! q,0,%0,9;
* Represents “half” a rotation:
* g=co0s(6/2)
* Ix,y,zI>=sin3(6/2)
 Axis of rotation is (x,y,z)
» Conjugate (inverse for unit norm) is

a = (S,—X,—y,—Z)

Converting q to R

» Clearly superior to use quaternions for storing
and updating orientation

» But, slightly faster to transform points with
rotation matrix

* If you need to transform a lot of points
(collision detection...) may want to convert q
into R

e Basic idea: columns of R are rotated axes
R(1,0,0)T, R(0,1,0)T, and R(0,0,1)T

* Do the rotation with g instead.
» Can simplify and optimize for the zeros - look it up



