
Notes on Last Lecture

• Approximate interior normal may be quite
wrong [corner example]

• Lots of potential ways to fix this if it happens
• Fall back on collision detection (normal at collision

point on surface should work)

• If the object normal doesn’t work, use opposite of
particle velocity instead (maybe too inelastic)

• Use a repulsion impulse (and friction) to get out:
!vN = (-!/!t)n (dangerous: adds energy!)

• Unfortunately, to be robust enough, usually
need to throw in a bunch of hacks…

Notes

• Round-off error is also a problem

• In algorithms described before, can get into
infinite loops if not careful: vN

before+!vN "
vN

after

• If collision resolution doesn’t seem to ever
converge---could just be round-off

• Simple fix: stop after a fixed number of iterations,
keep the old particle position

• Not so easy with moving objects - really need to
update position

• So use very weak repulsions to push objects just
slightly clear of objects

Moving triangles

• Life is a little more complicated

• Assume corners of the triangles move in
linear trajectories too
• Note this is NOT rigid in general…

• At time s, corner is at xj+svj

• (assume s starts at 0 at start of time step)

• Normal is also changing in time
• So for plane intersection, need to substitute for n

the cross-product formula

• Thankfully, don’t need to normalize, since that
doesn’t change the plane

Moving triangles equation

• A cubic in s to solve:

• Only interested in real solutions between 0
and !t

• Solve iteratively
• Derivative=quadratic can be solved to tell us if any

extrema in interval

• Values at endpoints and at any extrema in interval
tell us the intervals that roots could be in

• Solve for those roots with secant/bisection search

!

(1" s)p + sq" x
1[] • x

2
(s) " x

1
(s)() # x

3
(s) " x

1
(s)()[] = 0

Acceleration

• Too slow to check every single triangle if
mesh is large

• Need acceleration

• Also critical if we have lots of distinct objects
(even if implicit)

• Lots of papers written on acceleration
structures
• Prune out unnecessary tests

Bounding Volume Hierarchy

• Surround each triangle (or small group of
triangles) with a simple bounding volume
• E.g. axis-aligned box, sphere, oriented box…

• Surround group of bounding volumes with a
parent bounding volume, and so on up

• End up with a tree

• To check a segment against scene, check if it
could overlap root of tree
• If not, we’re done

• If so, recurse on children

Grid Acceleration

• Or, put down a virtual grid in space
• Each grid cell has a list of which triangles overlap

• To test a segment, only look at triangles in
the grid cells the segment crosses

• Can use hash table for memory efficiency
• Hash on cell indices (i,j,k)

• Note trade-off:
• The finer the grid, the fewer extraneous triangles

• But: more grid cells to check, more memory used,
and more expensive to build grid

• Tune for your application!

Rigid Bodies

• Very well studied

• I’ll introduce them from a particle perspective
• Easy to get lost in abstract notions

• Particles are fundamental

• Discretize an object into small point masses
• xi, vi, mi

• Assume object doesn’t change shape
(doesn’t deform)
• What does that mean for the motion of the

particles? How do we describe it, solve for it?

World Space vs. Object Space

• World space: where the particles actually are
now
• This is where we will look at x, v, and almost every

other quantity

• Object space: imaginary “reference” place for
the particles
• Label the object space position pi

• Does not change as the object moves - things we
compute in object space stay constant

• We can define it arbitrarily

Mapping

• The map from pi to xi(t) cannot change
the shape
• The distance between any two particles

never changes

• Thus map has to be xi(t)=R(t)pi+X(t)

• R(t) is an orthogonal 3x3 matrix: RRT="

• The orientation (rotation) of the object

• X(t) is a vector
• The “location” of the object

Rigid Motion

• Differentiate map w.r.t. time (using dot
notation):

• Invert map for pi:

• Thus:

• 1st term: rotation, 2nd term: translation
• Let’s simplify the rotation

!

vi = ˙ R pi + V

!

pi = R
T
(xi " X)

!

v
i
= ˙ R R

T
(x

i
" X) + V

Skew-Symmetry

• Differentiate RRT=" w.r.t. time:

• Skew-symmetric! Thus can write as:

• Call this matrix #! (built from a vector #)

!

˙ R R
T + R ˙ R

T = 0 " ˙ R R
T = # ˙ R R

T()
T

!

˙ R R
T

=

0 "#
2

#
1

#
2

0 "#
0

"#
1

#
0

0

$

%

&
&
&

'

(

)
)
)

!

˙ R R
T

="#
$ ˙ R ="#

R

The cross-product matrix

• Note that:

• So we have:

• # is the angular velocity of the object
!

"#
x =

0 $"
2

"
1

"
2

0 $"
0

$"
1

"
0

0

%

&

'
'
'

(

)

*
*
*

x
0

x
1

x
2

%

&

'
'
'

(

)

*
*
*

=

"
1
x
2
$"

2
x
1

"
2
x
0
$"

0
x
2

"
0
x
1
$"

1
x
0

%

&

'
'
'

(

)

*
*
*

=" + x

!

v
i
=" # x

i
$ X() +V

Angular velocity

• Recall:

• |#| is the speed of rotation (radians per

second)

• # points along the axis of rotation (which in

this case passes through the point X)

• Convince yourself this makes sense with

the properties of the cross-product

Force

• Take another time derivative to get
acceleration:

• Use F=ma, sum up net force on system:

• Let the total mass be

• How to simplify the other term?

!

ai = ˙ v i = ˙ ̇ R pi + A

!

Fi = miai
i

"
i

" = mi
˙ ̇ R pi + A()

i
"

= ˙ ̇ R mi
i

" pi + A mi
i

"

!

M = m
i

i
"

Centre of Mass

• Let’s pick a new object space position:

• The mass-weighted average of the
positions is the centre of mass

• We translated the centre of mass (in object
space) to the point 0

• Now:

!

pi
new

= pi "
m j p j
j

#
M

!

mipi = 0
i

"

Force equation

• So now, assuming we’ve set up object space

right (centre of mass at 0), F=MA

• If there are no external forces, have F=0

• Internal forces must balance out, opposite and

equal

• Thus A=0, thus V=constant

• If there are external forces, can integrate

position of object just like a regular particle!

What about R?

• How does orientation change?

• Think about internal forces keeping the
particles in the rigid configuration
• Conceptual model: very stiff spring between every

pair of particles, maintaining the rest length

• So where fij is force on i due to j

• Of course fij+fji=0

• Also: fij is in the direction of xi-xj

• Thus
!

Fi = fij
j

"

!

xi " x j() # fij = 0

Net Torque

• Play around:

• Sum both sides (look for net force)

• The expression we just computed=0 is the net
torque on the object

!

(xi " X) " (x j " X)() # fij = 0

xi " X() # fij = x j " X() # f ij

= " x j " X() # f ji

!

xi " X() # fij
i, j

$ = " x j " X()
i, j

$ # f ji

xi " X() # Fi
i

$ = " x j " X() # Fj

j

$

= 0

Torque

• The torque of a force applied to a point is

• The net torque due to internal forces is 0

• [geometry of torque: at CM, with opposite
equal force elsewhere]

• Torque obviously has something to do with
rotation

• How do we get formula for change in angular
velocity?

!

"
i
= x

i
X() $ Fi

Angular Momentum

• Use F=ma in definition of torque:

• force=rate of change of linear momentum,

torque=rate of change of angular momentum

• The total angular momentum of the object is!

"
i
= x

i
X() $mi

a
i

= d

dt
m

i
x
i
X() $ vi[]

!

L = m
i
x
i
" X() # vi

i
$

= m
i
x
i
" X() # v

i
"V()

i
$

Getting to #

• Recall

• Plug this into angular momentum:

!

v
i
"V =# $ x

i
" X()

!

L = m
i
x
i
" X() # $ # x

i
" X()()

i
%

= " m
i
x
i
" X() # x

i
" X() #$()

i
%

= " m
i
x
i
" X()

&
x
i
" X()

&
$

i
%

= m
i
x
i
" X()

&T
x
i
" X()

&

i
%()

I(t)
1 2 4 4 4 4 3 4 4 4 4

$

Inertia Tensor

• I(t) is the inertia tensor

• Kind of like “angular mass”

• Linear momentum is mv

• Angular momentum is L=I(t)#

• Or we can go the other way: #=I(t)-1L

Equations of Motion

!

d

dt
V = F

M
d

dt
L = "

d

dt
X =V # = I(t)

$1
L

d

dt
R =#%

R

In the absence of external forces F=0, T=0

Reminder

• Before going on:

• Remember that this all boils down to particles

• Mass, position, velocity, (linear) momentum, force

are fundamental

• Inertia tensor, orientation, angular velocity, angular

momentum, torque are just abstractions

• Don’t get too puzzled about interpretation of

torque for example: it’s just a mathematical

convenience

Inertia Tensor Simplified

• Reduce expense of calculating I(t):

• Now use xi-X=Rpi and use RTR="

!

I(t) = m
i
x
i
" X()

#T
x
i
" X()

#

i
$

= m
i
x
i
" X()

T

x
i
" X()% " x

i
" X() xi " X()

T[]
i

$

!

I(t) = mi pi
T
R
T
Rpi" # Rpi pi

T
R
T[]

i
$

= R mi pi
T
pi" # pi pi

T()
i

$()
I
body

1 2 4 4 4 3 4 4 4
R
T

Inertia Tensor Simplified 2

• So just compute inertia tensor once, for object
space configuration

• Then I(t)=RIbodyR
T

• And I(t)=R(Ibody)
-1RT

• So precompute inverse too

• In fact, since I is symmetric, know we have an
orthogonal eigenbasis Q

• Rotate object-space orientation by Q
• Then Ibody is just diagonal!

Degenerate Inertia Tensors

• I is just sum of symmetric positive semi-
definite matrices
• Each one has null space: vectors parallel to xi-X

• If all the points line up (object is a rod) then
sum I has the same null space
• Singular: cannot be inverted

• We don’t care though, since we can’t track rotation
around that axis anyways

• So diagonalize I, and only invert nonzero elements

• Similarly for a single point…

Taking the limit

• Letting our decomposition of the object
into point masses go to infinity:
• Instead of sum over particles,

integral over object volume

• Instead of particle mass,
density at that point in space

• No big deal

!

m
i
foo(x

i
)" #(x)

x

$$$
i

% foo(x)dx

Computing Inertia Tensors

• Do the integrals:

• Lots of fun!

• You may want to look them up instead
• E.g. Eric Weisstein’s World of Science on the web

• Align axis perpendicular to planes of
symmetry (of $) in object space

• Guarantees some off-diagonal zeros

• Example: sphere, uniform density, radius R

!

Ibody = " p
T
p# $ ppT()dp

p

%%%

!

2

5
MR

2
0 0

0
2

5
MR

2
0

0 0
2

5
MR

2

"

$
$
$

%

&

'
'
'

Approximating Inertia Tensors

• For complicated geometry, don’t really
need exact answer

• Instead use numerical quadrature

• If we can afford to spend a lot of time

precomputing, life is simple

• Simplest approach: Monte-Carlo

• Obviously stratified sampling etc. helps

Combining Objects

• What if object is union of two simpler objects?
• Integrals are additive

• But be careful about adding I1(t)+I2(t):
• World-space formulas (x-X) use the X for the object: X1

and X2 may be different

• Simplified Ibody formula based on having centre of mass
at origin

• Let’s work it out from the integral of I(t)

• Combined mass: M=M1+M2

• Centre of mass of combined object:

!

X =
"x

#
1
$#

2

%
"

#
1
$#

2

%
=
M
1
X
1

+ M
2
X
2

M

Combined Inertia Tensor

!

I(t) = " x # X()
$T
x # X()

$

%1&%2

'
= " x # X

1
+ X

1
X()

$T
x # X

1
+ X

1
X()

$

%1
' + L

%2

'
= " x # X

1()
$T
x # X

1()
$

%1
' + " X

1
X()

$T
x # X

1()
$

%1
'

+ " x # X
1()
$T
X
1
X()

$

%1
' + " X

1
X()

$T
X
1
X()

$
+ L

%2

'
%1
'

= I
1
(t) + X

1
X()

$T
" x # X

1()
$

%1
'

0

1 2 4 4 3 4 4
+ " x # X

1()
$T

%1
'

0

1 2 4 4 3 4 4
X
1
X()

$

+ M
1
X
1
X()

$T
X
1
X()

$
+ L

%2

'
= I

1
(t) + M

1
X
1
X()

$T
X
1
X()

$
+ I

2
(t) + M

2
X
2
X()

$T
X
2
X()

$

Numerical Method

• For advancing V and X, can use any of
the second order schemes we
discussed before

• Often only gravity and small amount of

wind drag

• For advancing angular stuff:

• Constraint on R makes life a little more

interesting

Advancing angular stuff

• Symplectic Euler-like algorithm simplest
choice:

• Note: updated R isn’t quite orthogonal

• Need to correct (otherwise objects inflate)

• Simplest choice: Gram-Schmidt
• But introduces axis-bias, and expensive

• Could also compute rotation matrix for !t#

• Even more expensive, still have some drift

!

L
n+1 = L

n
+ "t#

$
n+1 = I(t

n
)
%1
L
n+1

R
n+1 = R

n
+ "t$

n+1

&
R
n

Stability? Accuracy?

• Note R cannot blow up (we keep making it

orthogonal)

• But if T=T(R,#) there is potential for L and #

to blow up

• Rarely the case (usually T=0, apart from isolated
collision impulses)

• If it is the case, can go implicit

• May want to restrict !t=O(#-1) to properly

sample rotations

Improving on R

• Expensive (and maybe biased) to keep R
orthogonal
• 9 numbers for 3 parameters

• Use a less redundant representation

• Quaternions work better!
• Still cheap and easy to deal with (unlike Euler

angles, for example)

• Only 4 numbers - still need to normalize

• But can do it without axis bias

• and for much cheaper

Review quaternions

• Instead of R, use q=(s,x,y,z) with |q|=1
• Can think of q=s+xi+yj+zk

• i2=j2=k2=1, ij=-ji=k, jk=-kj=i, ki=-ik=j

• Don’t commute! q1q2"q2q1

• Represents “half” a rotation:
• q=cos(%/2)

• |x,y,z|2=sin2(%/2)

• Axis of rotation is (x,y,z)

• Conjugate (inverse for unit norm) is

!

q = (s,"x,"y,"z)

Rotating with quaternions

• Instead of Rp, calculate

• Composing a rotation of !t# to advance a
time step:

• For small !t# approximate:

• From this get the differential equation:

!

q(0, p)q

!

qn+1 = 1" #t
$

2

2

,#t
$

2

%

&

'
'

(

)

*
*
qn

!

qn+1 = 1,"t
#

2

$

%
&

'

(
) qn = qn + "t

#

2
qn

!

˙ q = 1

2
"q

Converting q to R

• Clearly superior to use quaternions for storing
and updating orientation

• But, slightly faster to transform points with
rotation matrix

• If you need to transform a lot of points
(collision detection…) may want to convert q
into R

• Basic idea: columns of R are rotated axes
R(1,0,0)T, R(0,1,0)T, and R(0,0,1)T

• Do the rotation with q instead.
• Can simplify and optimize for the zeros - look it up

