Notes Moving objects

« Assignment 1 is due today » Same algorithms, and almost same formulas:

» Make sure | have everything by the time | ) Cj eeclj ts I:)Ok at relative velocity

. . article Y object
check my email tomorrow morning instead of just particle velocity
o Assignment 2 goes out today » As before, decompose into normal and tangential
. parts, process the collision, and reassemble a
* Check the website relative velocity
» [mention coefficient of restitution, stability » Add object velocity to relative velocity to get final

particle velocity

limit . :
] * Be careful when particles collide:
» Same relative Av but account for equal and
opposite forces/impulses with different masses...
Moving Objects... Almost there!
» Also, be careful with * We have basic time integration for particles in

place now

e Assumed we could just do interference
detection, but...

» Detecting collisions over particle trajectories

interference/collision detection

* Want to check for interference at end of
time step, so use object positions there

* Objects moving during time step mean can be dropped in for more robustness -
more complicated trajectory intersection for algorithms don’t change
collisions « But use the normal at the collision time

» Speaking of normals, what is the normal
inside the object?

* How are we detecting interference/collision?



Geometry

e The plane is easy
¢ Interference: y<0
» Collision: y became negative
¢ Normal: constant (0,1,0)

» Let’s try to generalize this

* Look at two types of representation, triangle
meshes and level sets

« Representative of general classes of explicit
(parameterized) surfaces and implicit surfaces

Implicit Surface Interference

* Interference is simple:
* Is F(x,y,z)<0?
» Collision is a little trickier:

* Assume constant velocity
x(t+h)=x(t)+hv
¢ Then solve for h: F(x(t+h))=0
* Could use Newton’s method!

» This is the same as ray-tracing implicit surfaces...

» But if moving, then need to solve
F(x(t+h), t+h)=0
e This is a little bit harder (Secant?)

Implicit Surfaces

Define surface as where some scalar function
of x,y,z is zero:

* {x,y,z | F(x,y,z)=0}

Interior (can only do closed surfaces!) is
where function is negative

* {x,y,z | F(x,y,z)<0}

Outside is where it’s positive

* {x,y,z | F(x,y,z)>0}

Ground is F=y

Unit sphere is F=x2+y2+z2-1

Implicit Surface Normals

. VF
Outward normal at surface is just n = W

Most obvious thing to use for normal at a

point inside the object (or anywhere in space)

is the same formula

» Gradient is steepest-descent direction, so
hopefully points to closest spot on surface

» We really want the implicit function to be
monotone as we move towards/away from the
surface

» More generally, think of using the normal from the
closest point on the surface... (save that thought)



Building Implicit Surfaces

Planes and spheres are useful, but want to be

able to represent (approximate) any object

Obviously can write down any sort of

functions, but want better control

» Exercise: write down functions for some common
shapes (e.g. cylinder?)

Constructive Solid Geometry (CSG)

¢ Look at set operations on two objects
e [Complement, Union, Intersection, ...]

» Using primitive F()’s, build up one massive F()
» But only sharp edges...

Problems with these

They work beautifully for some things!

e Some machine parts, water droplets, goo, ...
But, the more complex the surface, the more
expensive F() is to evaluate

* Need to get into more complicated data structures
to speed up to acceptable

Hard to directly approximate any given
geometry

Monotonicity - how reliable is the normal?

Getting back to particles

* “Metaballs”, “blobbies”, ...
» Take your particle system, and write an
implicit function: —x
P F(x)=2aif(M)—t
i r

« Kernel function f is something smooth like a
Gaussian f(x)=¢"

» Strength o and radius r of each particle (and its
position x) are up to you

» Threshold t is also up to you (controls how thick
the object is)

Signed Distance

* Note infinitely many different F represent the
same surface

* What'’s the nicest F we can pick?

» Obviously want smooth enough for gradient
(almost everywhere)

* It would be nice if gradient really did point to
closest point on surface

» Really nice (for repulsions etc.) if value
indicated how far from surface

» The answer: signed distance



Defining Signed Distance

Generally use the letter ¢ instead of F
Magnitude |p(x)| is the distance from
the surface

* Note that function is zero only at surface
Sign of ¢(x) indicates inside (<0) or
outside(>0)

[examples: plane, sphere, 1d]

Unit Gradient Property

Look along line from closest point on
surface to x

Value is distance along line
Therefore directional derivative is 1:

Vé-n=1

But plug in the formula for n [work out]

So gradient is unit length: ‘V(/)‘ ~1

Closest Point Property

e Gradient is steepest-ascent direction

e Therefore, in direction of closest point on
surface (shortest distance between two
points is a straight line)

» The closest point is by definition
distance l¢l away

» So closest point on surface from x is

_ o)LL
=IOy

Aside: Eikonal equation

« There’s a PDE! [V¢|=1
 Called the Eikonal equation
 Important for all sorts of things

* Later in the course: figure out signed
distance function by solving the PDE...



Aside: Spherical particles

» We have been assuming our particles were
just points

» More general (rigid) objects: next week

 But with signed distance, can simulate
nonzero radius spheres

» Sphere of radius r intersects object if and only if
b(x)<r

* i.e. if and only if ¢(x)-r<0

» So looks just like points and an “expanded”
version of the original implicit surface - normals
are exactly the same, ...

Building Level Sets

We'll get into level sets more later on

* Lots of tools for constructing them from other
representations, for sculpting them directly, or
simulating them...

For now: can assume given

max [show 1d]

 Just do it grid point by grid point

* Note that weird stuff could happen at sub-grid
resolution (with trilinear interpolation)

Or evaluate from analytical formula
* E.g. plane, sphere, cube, ...

Or CSG@G: union and intersection with min and

Level Sets

Use a discretized approximation of ¢

Instead of carrying around an exact formula
store samples of ¢ on a grid

Interpolate between grid points to get full
definition (fast to evaluate!)

» Almost always use trilinear [work out]

If the grid is fine enough, can approximate
any closed surface [draw it]

Note that properties of signed distance only
hold approximately!

Normals

We do have a function F defined everywhere
(with interpolation)
» Could take its gradient and normalize
« But (with trilinear) it’s not smooth enough
Instead use numerical approximation for
gradient:

¢i+l,j,k - ¢i—l.j,k ¢i,j+1,k - ¢i,j—l,k ¢f,j,k+1 - ¢i,j,k-1

8ijk = > >

2Ax 2Ay 20z

e Then, use trilinear interpolation to get (continuous)
approximate gradient anywhere

» Normalize to get unit-length normal



Alternatively

» Use the same finite difference formula,
but directly at point we’re evaluating at
* Need to trilinearly interpolate 6 points
* Reuse coefficients

» Mathematically equivalent; costs are
comparable (architecture dependent!)
[exercise: check this!]

e Could be useful for...

Explicit Surfaces

» An explicit formula to generate points on
surface from 2D parameter space
* E.g. x(a,b)=(a,0,b) is the plane
¢ X is a convex combination of 3 fixed points chosen
from a list of triples: triangle mesh

* Interference - does a ray cast to infinity cross
surface an odd number of times

» Or check outward normal at closest point on
surface, after finding it!

» Note: can do open surfaces with no interior

Evaluating outside the grid

» Usually need to check if evaluation point x is
outside the grid

* If outside - that’s enough for interference test

» But repulsion forces etc. may need an actual
value

* Most reasonable extrapolation:
* A = distance to closest point on grid
e B = ¢ at that point

. Return sign(B)VA® + B’

» Lower bound on distance, correct asymptotically,
continuous.

Explicit Surfaces...

. CoIIision.- so!ve Xsurface(@:0)=Xparicie(t) fOr
t in collision time step
» Want first solution if one exists
* Note: 3 unknowns in general: a,b,t

* Normal: finally something easy

» Explicit formula from cross-product of

partial derivatives x/ xox
n(a,b) - /é’(l ob

‘&%a % a%b



Normals not on the surface

» Can take our cue from implicit surfaces

» Take the direction to the closest point (or a
reasonable approximation of it)
* Note that this kind of looks like figuring out

signed distance (or some other implicit
surface function)

Segment-triangle intersection

Important for ray-tracing (understatement)

Several algorithms out there...

Here: for checking linear particle trajectory
 Also checking if inside a closed triangulated object
First check if segment intersects plane

» Do endpoint signed distances (p-x,)* n
and (g-x4)* n have different sign?

Find plane-intersection point along segment
» Parameter s such that (p(1-s)+gs - x;)* n=0

* [work out]

Find barycentric coordinates of intersection

Triangle Meshes

» Simplest general purpose explicit surface
 Let’s start with one triangle
» Corners X4, X,, X3 means
(= x)x(x; - x)

B |(x2 - x) % (x; - x1)|

« Can then define implicit function for plane the
triangle liesin: (x-x,)-n=0
¢ Actually signed distance if we think of n as pointing
outwards...

Barycentric coordinates

How the triangle is parameterized:
x(a,b) =x, + a(x, — x,) + b(x; — x,)

=X, +au+bv

a and b are the barycentric coordinates

If a>=0 and b>=0 and a+b<=1 then we’re
inside the triangle

How do we compute them for the plane
intersection point?



Computing Barycentric Coords

» We could equate plane-intersection point xp
with parametric point on triangle
» Problem: 3 equations, 2 unknowns (a,b)

* If xp isn’t exactly on plane (e.g. round-off error),
there will be no solution...

» Least squares!
» Compute closest parameterized point to xp

. 2
min_,|[x, — X, —au—bv|

a,b

Round-Off Error

» Always a big concern for collision detection
 [draw fuzzy triangles in mesh]
 Particles can fly through the corners/edges of a
triangle mesh
* Need to stick in tolerances for all inequalities
» Tricky part: tuning
« Very difficult to actually prove what tolerance you
should use
» Other approaches based on consistent primitives -
cross-products with edges

Normal equations

* [derive] (u'u u'V)( )=(u-(xp—x]))
u-v v-v\b) \v-(xp,-x,)
* Determinant formula for solution:
a 1 v oouev\fu(x, - x)
(b)= v —(u-v)? (u-v u’ )(V'(xP —xl))
* Note this formula works for any point in space,

not just on the plane...
» Useful if we want to know closest point in triangle



