Notes

- Assignment 1 is due today
 - Make sure I have everything by the time I check my email tomorrow morning
- Assignment 2 goes out today
 - · Check the website
 - [mention coefficient of restitution, stability limit]

Moving objects

- Same algorithms, and almost same formulas:
 - Need to look at relative velocity V_{particle}-V_{object} instead of just particle velocity
 - As before, decompose into normal and tangential parts, process the collision, and reassemble a relative velocity
 - Add object velocity to relative velocity to get final particle velocity
- Be careful when particles collide:
 - Same relative Δv but account for equal and opposite forces/impulses with different masses...

Moving Objects...

- Also, be careful with interference/collision detection
 - Want to check for interference at end of time step, so use object positions there
 - Objects moving during time step mean more complicated trajectory intersection for collisions

Almost there!

- We have basic time integration for particles in place now
- Assumed we could just do interference detection, but...
- Detecting collisions over particle trajectories can be dropped in for more robustness algorithms don't change
 - But use the normal at the collision time
- Speaking of normals, what is the normal inside the object?
- · How are we detecting interference/collision?

Geometry

- The plane is easy
 - Interference: y<0
 - Collision: y became negative
 - Normal: constant (0,1,0)
- Let's try to generalize this
 - Look at two types of representation, triangle meshes and level sets
 - Representative of general classes of explicit (parameterized) surfaces and implicit surfaces

Implicit Surfaces

- Define surface as where some scalar function of x,y,z is zero:
 - {x,y,z | F(x,y,z)=0}
- Interior (can only do closed surfaces!) is where function is negative
 - {x,y,z | F(x,y,z)<0}
- Outside is where it's positive
 - {x,y,z | F(x,y,z)>0}
- Ground is F=y
- Unit sphere is F=x²+y²+z²-1

Implicit Surface Interference

- Interference is simple:
 - Is F(x,y,z)<0?
- Collision is a little trickier:
 - Assume constant velocity x(t+h)=x(t)+hv
 - Then solve for h: F(x(t+h))=0
 - Could use Newton's method!
 - This is the same as ray-tracing implicit surfaces...
 - But if moving, then need to solve F(x(t+h), t+h)=0
 - This is a little bit harder (Secant?)

Implicit Surface Normals

- Outward normal at surface is just $n = \frac{\nabla F}{|\nabla F|}$
- Most obvious thing to use for normal at a point inside the object (or anywhere in space) is the same formula
 - Gradient is steepest-descent direction, so hopefully points to closest spot on surface
 - We really want the implicit function to be monotone as we move towards/away from the surface
 - More generally, think of using the normal from the closest point on the surface... (save that thought)

Building Implicit Surfaces

- Planes and spheres are useful, but want to be able to represent (approximate) any object
- Obviously can write down any sort of functions, but want better control
 - Exercise: write down functions for some common shapes (e.g. cylinder?)
- Constructive Solid Geometry (CSG)
 - Look at set operations on two objects
 - [Complement, Union, Intersection, ...]
 - Using primitive F()'s, build up one massive F()
 - But only sharp edges...

Getting back to particles

- "Metaballs", "blobbies", ...
- Take your particle system, and write an implicit function: $F(x) = \sum_{i} \alpha_{i} f\left(\frac{|x - x_{i}|}{r_{i}}\right) - t$
 - Kernel function f is something smooth like a Gaussian $f(x) = e^{-x^2}$
 - Strength α and radius r of each particle (and its position x) are up to you
 - Threshold t is also up to you (controls how thick the object is)

Problems with these

- They work beautifully for some things!
 - Some machine parts, water droplets, goo, ...
- But, the more complex the surface, the more expensive F() is to evaluate
 - Need to get into more complicated data structures to speed up to acceptable
- Hard to directly approximate any given geometry
- Monotonicity how reliable is the normal?

Signed Distance

- Note infinitely many different F represent the same surface
- What's the nicest F we can pick?
- Obviously want smooth enough for gradient (almost everywhere)
- It would be nice if gradient really did point to closest point on surface
- Really nice (for repulsions etc.) if value indicated how far from surface
- The answer: signed distance

Defining Signed Distance

- Generally use the letter φ instead of F
- Magnitude $|\phi(x)|$ is the distance from the surface
 - Note that function is zero only at surface
- Sign of φ(x) indicates inside (<0) or outside(>0)
- [examples: plane, sphere, 1d]

Unit Gradient Property

- Look along line from closest point on surface to x
- Value is distance along line
- Therefore directional derivative is 1:

 $\nabla \phi \cdot n = 1$

- But plug in the formula for n [work out]
- So gradient is unit length: $|\nabla \phi| = 1$

Closest Point Property

- · Gradient is steepest-ascent direction
 - Therefore, in direction of closest point on surface (shortest distance between two points is a straight line)
- The closest point is by definition distance lφl away
- So closest point on surface from x is

Aside: Eikonal equation

- There's a PDE! $|\nabla \phi| = 1$
 - Called the Eikonal equation
 - Important for all sorts of things
 - Later in the course: figure out signed distance function by solving the PDE...

Aside: Spherical particles

- We have been assuming our particles were just points
- More general (rigid) objects: next week
- But with signed distance, can simulate nonzero radius spheres
 - Sphere of radius r intersects object if and only if $\varphi(x){<}r$
 - i.e. if and only if $\phi(x)$ -r<0
 - So looks just like points and an "expanded" version of the original implicit surface normals are exactly the same, ...

Level Sets

- Use a discretized approximation of $\boldsymbol{\varphi}$
- Instead of carrying around an exact formula store samples of $\boldsymbol{\varphi}$ on a grid
- Interpolate between grid points to get full definition (fast to evaluate!)
 - Almost always use trilinear [work out]
- If the grid is fine enough, can approximate any closed surface [draw it]
- Note that properties of signed distance only hold approximately!

Building Level Sets

- We'll get into level sets more later on
 - Lots of tools for constructing them from other representations, for sculpting them directly, or simulating them...
- For now: can assume given
- Or CSG: union and intersection with min and max [show 1d]
 - Just do it grid point by grid point
 - Note that weird stuff could happen at sub-grid resolution (with trilinear interpolation)
- Or evaluate from analytical formula
 - E.g. plane, sphere, cube, ...

Normals

- We do have a function F defined everywhere (with interpolation)
 - Could take its gradient and normalize
 - But (with trilinear) it's not smooth enough
- Instead use numerical approximation for gradient:

$$g_{i,j,k} = \left(\frac{\phi_{i+1,j,k} - \phi_{i-1,j,k}}{2\Delta x}, \frac{\phi_{i,j+1,k} - \phi_{i,j-1,k}}{2\Delta y}, \frac{\phi_{i,j,k+1} - \phi_{i,j,k-1}}{2\Delta z}\right)$$

- Then, use trilinear interpolation to get (continuous) approximate gradient anywhere
- Normalize to get unit-length normal

Alternatively

- Use the same finite difference formula, but directly at point we're evaluating at
 - Need to trilinearly interpolate 6 points
 - Reuse coefficients
 - Mathematically equivalent; costs are comparable (architecture dependent!) [exercise: check this!]
- Could be useful for...

Evaluating outside the grid

- Usually need to check if evaluation point x is outside the grid
- · If outside that's enough for interference test
- But repulsion forces etc. may need an actual value
- Most reasonable extrapolation:
 - A = distance to closest point on grid
 - $B = \phi$ at that point
 - Return $\operatorname{sign}(B)\sqrt{A^2 + B^2}$
 - Lower bound on distance, correct asymptotically, continuous.

Explicit Surfaces

- An explicit formula to generate points on surface from 2D parameter space
 - E.g. x(a,b)=(a,0,b) is the plane
 - x is a convex combination of 3 fixed points chosen from a list of triples: triangle mesh
- Interference does a ray cast to infinity cross surface an odd number of times
 - Or check outward normal at closest point on surface, after finding it!
- Note: can do open surfaces with no interior

Explicit Surfaces...

- Collision solve x_{surface}(a,b)=x_{particle}(t) for t in collision time step
 - Want first solution if one exists
 - Note: 3 unknowns in general: a,b,t
- Normal: finally something easy
 - Explicit formula from cross-product of partial derivatives $\frac{\partial x}{\partial x} \times \frac{\partial x}{\partial x}$

$$n(a,b) = \frac{\frac{\partial x}{\partial a} \times \frac{\partial x}{\partial b}}{\left|\frac{\partial x}{\partial a} \times \frac{\partial x}{\partial b}\right|}$$

Normals not on the surface

- · Can take our cue from implicit surfaces
 - Take the direction to the closest point (or a reasonable approximation of it)
 - Note that this kind of looks like figuring out signed distance (or some other implicit surface function)

Triangle Meshes

- · Simplest general purpose explicit surface
- · Let's start with one triangle
 - Corners x_1, x_2, x_3 means

$$n = \frac{(x_2 - x_1) \times (x_3 - x_1)}{|(x_2 - x_1) \times (x_3 - x_1)|}$$

- Can then define implicit function for plane the triangle lies in: $(x x_1) \cdot n = 0$
 - Actually signed distance if we think of n as pointing outwards...

Segment-triangle intersection

- Important for ray-tracing (Understatement)
- Several algorithms out there...
- Here: for checking linear particle trajectory
 - Also checking if inside a closed triangulated object
- First check if segment intersects plane
 - Do endpoint signed distances (p-x₁)• n and (q-x₁)• n have different sign?
- Find plane-intersection point along segment
 - Parameter s such that $(p(1-s)+qs x_1) \cdot n=0$
 - [work out]
- · Find barycentric coordinates of intersection

Barycentric coordinates

• How the triangle is parameterized:

$$x(a,b) = x_1 + a(x_2 - x_1) + b(x_3 - x_1)$$

= x₁ + au + bv

- · a and b are the barycentric coordinates
- If a>=0 and b>=0 and a+b<=1 then we're inside the triangle
- How do we compute them for the plane intersection point?

Computing Barycentric Coords

- We could equate plane-intersection point x_P with parametric point on triangle
 - Problem: 3 equations, 2 unknowns (a,b)
 - If x_p isn't exactly on plane (e.g. round-off error), there will be no solution...
- Least squares!
- Compute closest parameterized point to x_P

$\min_{a,b} \left| x_P - x_1 - au - bv \right|^2$

Normal equations

- [derive] $\begin{pmatrix} u \cdot u & u \cdot v \\ u \cdot v & v \cdot v \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} u \cdot (x_p x_1) \\ v \cdot (x_p x_1) \end{pmatrix}$
- Determinant formula for solution:

$$\binom{a}{b} = \frac{1}{u^2 v^2 - (u \cdot v)^2} \binom{v^2 \quad u \cdot v}{u \cdot v \quad u^2} \binom{u \cdot (x_p - x_1)}{v \cdot (x_p - x_1)}$$

- Note this formula works for any point in space, not just on the plane...
 - Useful if we want to know closest point in triangle

Round-Off Error

- · Always a big concern for collision detection
 - [draw fuzzy triangles in mesh]
 - Particles can fly through the corners/edges of a triangle mesh
- · Need to stick in tolerances for all inequalities
 - Tricky part: tuning
 - Very difficult to actually prove what tolerance you should use
 - Other approaches based on consistent primitives cross-products with edges