
Notes

• Assignment 1 is due today

• Make sure I have everything by the time I
check my email tomorrow morning

• Assignment 2 goes out today

• Check the website

• [mention coefficient of restitution, stability
limit]

Moving objects

• Same algorithms, and almost same formulas:
• Need to look at relative velocity

vparticle-vobject

instead of just particle velocity

• As before, decompose into normal and tangential
parts, process the collision, and reassemble a
relative velocity

• Add object velocity to relative velocity to get final
particle velocity

• Be careful when particles collide:
• Same relative !v but account for equal and

opposite forces/impulses with different masses…

Moving Objects…

• Also, be careful with

interference/collision detection

• Want to check for interference at end of
time step, so use object positions there

• Objects moving during time step mean
more complicated trajectory intersection for
collisions

Almost there!

• We have basic time integration for particles in
place now

• Assumed we could just do interference
detection, but…

• Detecting collisions over particle trajectories
can be dropped in for more robustness -
algorithms don’t change
• But use the normal at the collision time

• Speaking of normals, what is the normal
inside the object?

• How are we detecting interference/collision?

Geometry

• The plane is easy

• Interference: y<0

• Collision: y became negative

• Normal: constant (0,1,0)

• Let’s try to generalize this

• Look at two types of representation, triangle

meshes and level sets

• Representative of general classes of explicit

(parameterized) surfaces and implicit surfaces

Implicit Surfaces

• Define surface as where some scalar function
of x,y,z is zero:
• {x,y,z | F(x,y,z)=0}

• Interior (can only do closed surfaces!) is
where function is negative
• {x,y,z | F(x,y,z)<0}

• Outside is where it’s positive
• {x,y,z | F(x,y,z)>0}

• Ground is F=y

• Unit sphere is F=x2+y2+z2-1

Implicit Surface Interference

• Interference is simple:
• Is F(x,y,z)<0?

• Collision is a little trickier:
• Assume constant velocity

x(t+h)=x(t)+hv

• Then solve for h: F(x(t+h))=0
• Could use Newton’s method!

• This is the same as ray-tracing implicit surfaces…

• But if moving, then need to solve
F(x(t+h), t+h)=0

• This is a little bit harder (Secant?)

Implicit Surface Normals

• Outward normal at surface is just

• Most obvious thing to use for normal at a
point inside the object (or anywhere in space)
is the same formula
• Gradient is steepest-descent direction, so

hopefully points to closest spot on surface

• We really want the implicit function to be
monotone as we move towards/away from the
surface

• More generally, think of using the normal from the
closest point on the surface… (save that thought)

!

n =
"F

"F

Building Implicit Surfaces

• Planes and spheres are useful, but want to be
able to represent (approximate) any object

• Obviously can write down any sort of
functions, but want better control
• Exercise: write down functions for some common

shapes (e.g. cylinder?)

• Constructive Solid Geometry (CSG)
• Look at set operations on two objects

• [Complement, Union, Intersection, …]

• Using primitive F()’s, build up one massive F()

• But only sharp edges…

Getting back to particles

• “Metaballs”, “blobbies”, …

• Take your particle system, and write an
implicit function:

• Kernel function f is something smooth like a
Gaussian

• Strength ! and radius r of each particle (and its
position x) are up to you

• Threshold t is also up to you (controls how thick
the object is)

!

F(x) = " i f
x # xi
ri

$

%
&

'

(
)

i

* # t

!

f (x) = e
"x

2

Problems with these

• They work beautifully for some things!
• Some machine parts, water droplets, goo, …

• But, the more complex the surface, the more
expensive F() is to evaluate
• Need to get into more complicated data structures

to speed up to acceptable

• Hard to directly approximate any given
geometry

• Monotonicity - how reliable is the normal?

Signed Distance

• Note infinitely many different F represent the
same surface

• What’s the nicest F we can pick?

• Obviously want smooth enough for gradient
(almost everywhere)

• It would be nice if gradient really did point to
closest point on surface

• Really nice (for repulsions etc.) if value
indicated how far from surface

• The answer: signed distance

Defining Signed Distance

• Generally use the letter " instead of F

• Magnitude is the distance from

the surface

• Note that function is zero only at surface

• Sign of "(x) indicates inside (<0) or

outside(>0)

• [examples: plane, sphere, 1d]

!

"(x)

Closest Point Property

• Gradient is steepest-ascent direction

• Therefore, in direction of closest point on
surface (shortest distance between two
points is a straight line)

• The closest point is by definition
distance |"| away

• So closest point on surface from x is

!

x "#(x)
$#

$#

Unit Gradient Property

• Look along line from closest point on
surface to x

• Value is distance along line

• Therefore directional derivative is 1:

• But plug in the formula for n [work out]

• So gradient is unit length:

!

"# $ n =1

!

"# =1

Aside: Eikonal equation

• There’s a PDE!

• Called the Eikonal equation

• Important for all sorts of things

• Later in the course: figure out signed

distance function by solving the PDE…
!

"# =1

Aside: Spherical particles

• We have been assuming our particles were
just points

• More general (rigid) objects: next week

• But with signed distance, can simulate
nonzero radius spheres
• Sphere of radius r intersects object if and only if
"(x)<r

• i.e. if and only if "(x)-r<0

• So looks just like points and an “expanded”
version of the original implicit surface - normals
are exactly the same, …

Level Sets

• Use a discretized approximation of "

• Instead of carrying around an exact formula
store samples of " on a grid

• Interpolate between grid points to get full
definition (fast to evaluate!)
• Almost always use trilinear [work out]

• If the grid is fine enough, can approximate
any closed surface [draw it]

• Note that properties of signed distance only
hold approximately!

Building Level Sets

• We’ll get into level sets more later on
• Lots of tools for constructing them from other

representations, for sculpting them directly, or
simulating them…

• For now: can assume given

• Or CSG: union and intersection with min and
max [show 1d]
• Just do it grid point by grid point

• Note that weird stuff could happen at sub-grid
resolution (with trilinear interpolation)

• Or evaluate from analytical formula
• E.g. plane, sphere, cube, …

Normals

• We do have a function F defined everywhere
(with interpolation)
• Could take its gradient and normalize

• But (with trilinear) it’s not smooth enough

• Instead use numerical approximation for
gradient:

• Then, use trilinear interpolation to get (continuous)
approximate gradient anywhere

• Normalize to get unit-length normal!

gi, j ,k =
"i+1, j,k #"i#1, j,k

2$x
,
"i, j+1,k #"i, j#1,k

2$y
,
"i, j,k+1 #"i, j,k#1

2$z

%

&
'

(

)
*

Alternatively

• Use the same finite difference formula,

but directly at point we’re evaluating at

• Need to trilinearly interpolate 6 points

• Reuse coefficients

• Mathematically equivalent; costs are
comparable (architecture dependent!)

[exercise: check this!]

• Could be useful for…

Evaluating outside the grid

• Usually need to check if evaluation point x is
outside the grid

• If outside - that’s enough for interference test

• But repulsion forces etc. may need an actual
value

• Most reasonable extrapolation:
• A = distance to closest point on grid

• B = " at that point

• Return

• Lower bound on distance, correct asymptotically,
continuous.

!

sign(B) A
2

+ B
2

Explicit Surfaces

• An explicit formula to generate points on
surface from 2D parameter space
• E.g. x(a,b)=(a,0,b) is the plane

• x is a convex combination of 3 fixed points chosen
from a list of triples: triangle mesh

• Interference - does a ray cast to infinity cross
surface an odd number of times
• Or check outward normal at closest point on

surface, after finding it!

• Note: can do open surfaces with no interior

Explicit Surfaces…

• Collision - solve xsurface(a,b)=xparticle(t) for

t in collision time step

• Want first solution if one exists

• Note: 3 unknowns in general: a,b,t

• Normal: finally something easy

• Explicit formula from cross-product of
partial derivatives

!

n(a,b) =

"x
"a
#"x

"b
"x
"a
#"x

"b

Normals not on the surface

• Can take our cue from implicit surfaces

• Take the direction to the closest point (or a
reasonable approximation of it)

• Note that this kind of looks like figuring out
signed distance (or some other implicit
surface function)

Triangle Meshes

• Simplest general purpose explicit surface

• Let’s start with one triangle

• Corners x1, x2, x3 means

• Can then define implicit function for plane the

triangle lies in:

• Actually signed distance if we think of n as pointing

outwards…
!

n =
(x

2
" x

1
) # (x

3
" x

1
)

(x
2
" x

1
) # (x

3
" x

1
)

!

(x " x
1
) # n = 0

Segment-triangle intersection

• Important for ray-tracing (Understatement)

• Several algorithms out there…

• Here: for checking linear particle trajectory
• Also checking if inside a closed triangulated object

• First check if segment intersects plane
• Do endpoint signed distances (p-x1)• n

and (q-x1)• n have different sign?

• Find plane-intersection point along segment
• Parameter s such that (p(1-s)+qs - x1)• n=0

• [work out]

• Find barycentric coordinates of intersection

Barycentric coordinates

• How the triangle is parameterized:

• a and b are the barycentric coordinates

• If a>=0 and b>=0 and a+b<=1 then we’re
inside the triangle

• How do we compute them for the plane
intersection point?

!

x(a,b) = x
1
+ a(x

2
" x

1
) + b(x

3
" x

1
)

= x
1
+ au + bv

Computing Barycentric Coords

• We could equate plane-intersection point xP

with parametric point on triangle

• Problem: 3 equations, 2 unknowns (a,b)

• If xP isn’t exactly on plane (e.g. round-off error),

there will be no solution…

• Least squares!

• Compute closest parameterized point to xP

!

min
a,b
x
P
" x

1
" au " bv

2

Normal equations

• [derive]

• Determinant formula for solution:

• Note this formula works for any point in space,
not just on the plane…
• Useful if we want to know closest point in triangle

!

u " u u " v

u " v v " v

$
%

&

'
(
a

b

$
%
&

'
(=

u " (x
P
) x

1
)

v " (x
P
) x

1
)

$
%

&

'
(

!

a

b

"

$
%

&
' =

1

u
2
v
2 ((u) v)2

v
2

u) v

u) v u
2

"

$

%

&
'
u) (x

P
(x

1
)

v) (x
P
(x

1
)

"

$

%

&
'

Round-Off Error

• Always a big concern for collision detection
• [draw fuzzy triangles in mesh]

• Particles can fly through the corners/edges of a
triangle mesh

• Need to stick in tolerances for all inequalities
• Tricky part: tuning

• Very difficult to actually prove what tolerance you
should use

• Other approaches based on consistent primitives -
cross-products with edges

