
Notes

• Assignment 1:

• Check on the web site for a software

particle renderer (w/o OpenGL, with

antialiasing and alpha-blending)

• Please read Stam & Fiume, “Turbulent
wind fields…”, SIGGRAPH’93

Aside: noise

• You know there should be some detail in
there, but you don’t know what detail
• So use random numbers

• The physics comes in to guide the random
distribution

• Things get interesting when you look at “noise”
fields
• n(x,y,z,t)

• White noise - no correlation (and no smoothness) -
isn’t so useful

• Need to introduce correlation/smoothness

Perlin Noise

• (sort of) standard in graphics

• See web-page for references

• In a nutshell:
• Randomly decide on (unit) gradient of n at grid

points:

• Enforce n=0 at grid points

• Interpolate with (sort of) spline

• Result is smooth with irregular variations on
the scale of the grid spacing but no larger

!

"ni, j ,k =GH (i, j ,k) (with Gh =1)

Combining noise

• While Perlin noise is very useful (fast to

evaluate!), how do you control it?

• Can use f(n(x,y,z)), but that still doesn’t

introduce different length scales

• Graphics notion of “turbulence”:

• Add dilated noise:

• Use

!

" i f n(#
i
x)()

i= 0

N

$

!

" # 2, $
i
%

1

" i()
s

Spectral perspective

• Smooth noise function is (approximately)
band-limited:
• Close to no frequencies below grid scale,

• Fast decay of higher frequencies
(smoother=faster)

• Adding dilated noise makes sense if we want
to shape spectrum better

• Why not just directly go for spectrum?
• Many physical models give you a spectrum

anyways

Spectral noise

• Specify amplitude as function of frequency
(wave number)
• Randomize phase shifts

• Can randomize amplitude a little too

• Use Fast Fourier Transform to get a (periodic)
grid of noise

• Then interpolate from the grid

• Avoid periodicity by adding 2+ different size
grids (not integer multiples!)

!

n x,y,z() = Ai, j ,k cos ix + jy + kz + "i, j,k()
i, j,k

#

Collision and Contact

• We can integrate particles forward in time,
have some ideas for velocity or force fields

• But what do we do when a particle hits an
object?

• No simple answer - depends on problem as
always

• General breakdown:
• Interference vs. collision detection

• What sort of collision response: (in)elastic, friction

• Robustness: do we allow particles to actually be
inside an object?

Interference vs. Collision

• Interference (=penetration)
• Simply detect if particle has ended up inside object,

push it out if so

• Works fine if [w=object width]

• Otherwise could miss interaction, or push
dramatically the wrong way

• The ground, thick objects and slow particles

• Collision
• Check if particle trajectory intersects object

• Can be more complicated, especially if object is
moving too…

• For now, let’s stick with the ground (y=0)

!

v"t < 1

2
w

Repulsion Forces

• Simplest idea (conceptually)
• Add a force repelling particles from objects when

they get close (or when they penetrate)

• Then just integrate: business as usual

• Related to penalty method:
instead of directly enforcing constraint (particles
stay outside of objects), add forces to encourage
constraint

• For the ground:
• Frepulsion=-Ky when y<0 [think about gravity!]

• …or -K(y-y0)-Dv when y<y0 [still not robust]

• …or K(1/y-1/y0)-Dv when y<y0

Repulsion forces

• Difficult to tune:
• Too large extent: visible artifact

• Too small extent: particles jump straight through,
not robust (or time step restriction)

• Too strong: stiff time step restriction, or have to go
with implicit method - but Newton will not converge
if we guess past a singular repulsion force

• Too weak: won’t stop particles

• Rule-of-thumb: don’t use them unless they
really are part of physics
• Magnetic field, aerodynamic effects, …

Collision and Contact

• Collision is when a particle hits an
object

• Instantaneous change of velocity

(discontinuous)

• Contact is when particle stays on object
surface for positive time

• Velocity is continuous

• Force is only discontinuous at start

Frictionless Collision Response

• At point of contact, find normal n
• For ground, n=(0,1,0)

• Decompose velocity into
• normal component vN=(v•n)n and

• tangential component vT=v-vN

• Normal response:
• !=0 is fully inelastic

• !=1 is elastic

• Tangential response
• Frictionless:

• Then reassemble velocity v=vN+vT

!

vN
after = "#vN

before
, # $ 0,1[]

!

vT
after

= vT
before

Contact Friction

• Some normal force is keeping vN=0

• Coulomb’s law (“dry” friction)
• If sliding, then kinetic friction:

• If static (vT=0) then stay static as long as

• “Wet” friction = damping!

Ffriction = "µk Fnormal
vT

vT

!

Ffriction " µs Fnormal

!

Ffriction = "DFnormal vT

Collision Friction

• Impulse assumption:
• Collision takes place over a very small time

interval (with very large forces)

• Assume forces don’t vary significantly over that
interval---then can replace forces in friction laws
with impulses

• This is a little controversial, and for articulated rigid
bodies can be demonstrably false

• But nevertheless…

• Normal impulse is just m!vN=m(1+!)vN

• Tangential impulse is m!vT

Wet Collision Friction

• So replacing force with impulse:

• Divide through by m, use

• Clearly could have monotonicity/stability issue

• Fix by capping at vT=0, or better
approximation for time interval
e.g.

!

m"v
T

= #Dm"v
N
v
T

!

vT
after

= vT
before

+ "vT

!

vT
after = vT

before
"D#vN vT

before

= 1"D#vN()vT
before

!

vT
after

= e
"D #vN vT

before

Dry Collision Friction

• Coulomb friction: assume µs = µk

• (though in general, µs " µk)

• Sliding:

• Static:

• Divide through by m to find change in

tangential velocity!

m"vT = #µm"vN
vT
before

vT
before

!

m"v
T
µm"v

N

Simplifying…

• Use

• Static case is
when

• Sliding case is

• Common quantities!

!

vT
after

= vT
before

+ "vT

!

vT
after

= 0 " #vT = $vT
before

!

vT
before

" µ#vN

!

vT
after = vT

before
"µ#vN

vT
before

vT
before

Dry Collision Friction Formula

• Combine into a max

• First case is static where vT drops to zero if

inequality is obeyed

• Second case is sliding, where vT reduced

in magnitude (but doesn’t change signed

direction)

!

vT
after =max 0,1"

µ#vN
vT
before

$

%

&
&

'

(

)
) vT

before

Where are we?

• So we now have a simplified physics
model for

• Frictionless, dry friction, and wet friction

collision

• Some idea of what contact is

• So now let’s start on numerical methods
to simulate this

“Exact” Collisions

• For very simple systems (linear or maybe
parabolic trajectories, polygonal objects)
• Find exact collision time (solve equations)

• Advance particle to collision time

• Apply formula to change velocity
(usually dry friction, unless there is lubricant)

• Keep advancing particle until end of frame or next
collision

• Can extend to more general cases with
conservative ETA’s, or root-finding
techniques

• expensive! [think springs]

Fixed collision time stepping

• Even “exact” collisions are just first order
accurate in general
• [hit or miss example]

• So instead fix !tcollision and don’t worry about
exact collision times
• Could be one frame, or 1/8th of a frame, or …

• Instead just need to know did a collision
happen during !tcollision

• If so, process it with formulas

Relationship with regular time
integration

• Forgetting collisions, advance from x(t) to
x(t+!tcollision)
• Could use just one time step, or subdivide into lots

of small time steps

• We approximate velocity (for collision
processing) as constant over time step:

• If no collisions, forget this average v, and
keep going with underlying integration

!

v =
x(t + "t) # x(t)

"t

Numerical Implementation 1

• Get candidate x(t+!t)

• Check to see if x(t+!t) is inside object
(interference)

• If so
• Get normal n at t+!t

• Get new velocity v from collision response
formulas and average v

• Replay x(t+!t)=x(t)+!tv

Robustness?

• If a particle penetrates an object at end of
candidate time step, we fix that

• But new position (after collision processing)
could penetrate another object!

• Maybe this is fine-let it go until next time step

• But then collision formulas are on shaky
ground… [show example in concavity]
• Switch to repulsion impulse if x(t) and x(t+!t) both

penetrate

• Find !vN proportional to final penetration depth,
apply friction as usual

Making it more robust

• Other alternative:

• After collision, check if new x(t+!t) also penetrates

• If so, assume a 2nd collision happened during the

time step: process that one

• Check again, repeat until no penetration

• To avoid infinite loop make sure you lose kinetic
energy (don’t take perfectly elastic bounces, at

least not after first time through)

• Let’s write that down:

Numerical Implementation 2

• Get candidate x(t+!t)

• While x(t+!t) is inside object (interference)
• Get normal n at t+!t

• Get new velocity v from collision response
formulas and average v

• Replay x(t+!t)=x(t) + !t v

• Now can guarantee that if we start outside
objects, we end up outside objects

Micro-Collisions

• These are “micro-collision” algorithms

• Contact is modeled as a sequence of small
collisions
• We’re replacing a continuous contact force with a

sequence of collision impulses

• Is this a good idea?
• [block on incline example]

• More philosophical question: how can contact
possibly begin without fully inelastic collision?

Improving Micro-Collisions

• Really need to treat contact and
collision differently, even if we use the
same friction formulas

• Idea:

• Collision occurs at start of time step

• Contact occurs during whole duration of

time step

Numerical Implementation 3

• Start at x(t) with velocity v(t), get candidate
position x(t+!t)

• Check if x(t+!t) penetrates object
• If so, process elastic collision using v(t) from

start of step, not average velocity

• Replay from x(t) with modified v(t)

• Could add !t!v to x(t+!t) instead of re-integrating

• Repeat check a few (e.g. 3) times if you want

• While x(t+!t) penetrates object
• Process inelastic contact (!=0) using average v

• Replay x(t+!t)=x(t)+!t v

Why does this work?

• If object resting on plane y=0, v(t)=0, though
gravity will pull it down by t+!t

• In the new algorithm, elastic bounce works
with pre-gravity velocity v(t)=0
• So no bounce

• Then contact, which is inelastic, simply adds
just enough !v to get back to v(t+!t)=0
• Then x(t+!t)=0 too

• NOTE: if !=0 anyways, no point in doing
special first step - this algorithm is equivalent
to the previous one

