
Notes

• Some example values for common materials:
(VERY approximate)

• Aluminum: E=70 GPa !=0.34

• Concrete: E=23 GPa !=0.2

• Diamond: E=950 GPa !=0.2

• Glass: E=50 GPa !=0.25

• Nylon: E=3 GPa !=0.4

• Rubber: E=1.7 MPa !=0.49…

• Steel: E=200 GPa !=0.3

Finite Volume Method

• We discretize integral equation (complete
with boundary integrals) over finite volumes

• Typically Voronoi regions (from Delaunay
triangulation) or quads from grid

• Each finite volume has a vertex in the middle
• Assume volume quantities are constant (equal to

value at vertex)

• Assume deformation affine in each triangle
(constant strain --> constant stress)

• [evaluate each term]

• Exact choice of control volumes not critical -
constant times normal integrates to zero

2D FVM strain

• Triangle with corners i, j, k

• Coordinates xi=X(pi), xj=X(pj), xk=X(pk)

• Assume affine in this triangle: X(p)=Ap+b (so
!X/!p)

• Then xi-xj = (Api+b)-(Apj+b) = A(pi-pj)

• And xi-xk = A(pi-pk)

• Let "x=[xi-xj | xi-xk] and "p=[pi-pj | pi-pk]

• Thus A"p = "x

• Then A = "x "p-1

• Can precompute and store "p-1

2D FVM stress calculation

• Look at single triangle i,j,k again

• Write part of path integral of "n for volume i

• Take constant " out

• Note integral of normals around closed curve
is 0

• Switch to integrating normals along triangle
boundary

• So force on i due to this triangle’s strain is
• Fi += -"((xi-xk)

+ (xj-xi)
#)/2

• Use the integral of normal=0 over triangle:
• Fi += "(xk-xj)

#/2

Path independence

• Note: trick involving switching path integral to
triangle boundary works independent of the
choice of finite volume
• Force we compute only depends on where the

finite volumes cut the triangle edges - always
assume midpoint

• Choice of finite volume does affect body
forces and mass calculation

• Might want to connect to centroids instead of
circumcentres
• always well defined (even if not Delaunay)

• formulas much simpler: sum 1/3 triangle area

Boundary Conditions

• Actually easier to think about numerically

• Control volumes automatically include boundary

• Free boundary: do nothing

• Specified traction: integrate over decomposed

boundary mesh

• E.g. wind forces…

• Specified displacement (position): just set x to

what it’s supposed to be

Finite Element Method

• #1 most popular method for elasticity
problems (and many others too)

• FEM originally began with simple idea:
• Can solve idealized problems (e.g. that strain is

constant over a triangle)

• Call one of these problems an element

• Can stick together elements to get better
approximation

• Since then has evolved into a rigourous
mathematical algorithm, a general purpose
black-box method
• Well, almost black-box…

Modern Approach

• Galerkin framework (the most common)

• Find vector space of functions that solution
(e.g. X(p)) lives in
• E.g. bounded weak 1st derivative: H1

• Say the PDE is L[X]=0 everywhere (“strong”)

• The “weak” statement is # Y(p)L[X(p)]dp=0
for every Y in vector space

• Issue: L might involve second derivatives
• E.g. one for strain, then one for div sigma

• So L, and the strong form, difficult to define for H1

• Integration by parts saves the day

Weak Momentum Equation

• Ignore time derivatives - treat

acceleration as an independent quantity

• We discretize space first, then use “method
of lines”: plug in any time integrator

!

L X[] = " ˙ ̇ X # fbody #$ %&

!

Y L X[]
"

= Y $ ˙ ̇ X % fbody %& '(()
"

#

= Y$ ˙ ̇ X
"

% Yfbody

"

% Y& '(
"

#

= Y$ ˙ ̇ X
"

% Yfbody

"

+ (&Y
"

#

Making it finite

• The Galerkin FEM just takes the weak
equation, and restricts the vector space to a
finite-dimensional one
• E.g. Continuous piecewise linear - constant

gradient over each triangle in mesh, just like we
used for Finite Volume Method

• This means instead of infinitely many test
functions Y to consider, we only need to
check a finite basis

• The method is defined by the basis
• Very general: plug in whatever you want -

polynomials, splines, wavelets, RBF’s, …

Linear Triangle Elements

• Simplest choice

• Take basis {$i} where
$i(p)=1 at pi and 0 at all the other pj’s

• It’s a “hat” function

• Then X(p)=$i xi$i(p) is the continuous
piecewise linear function that interpolates
particle positions

• Similarly interpolate velocity and acceleration

• Plug this choice of X and an arbitrary Y= $j

(for any j) into the weak form of the equation

• Get a system of equations (3 eq. for each j)

The equations

!

" j #˙ ̇ x i"i
i

$
%

& ' " j fbody

%

& + ()" j

%

& = 0

#" j"i
˙ ̇ x i

%

&
i

$ = " j fbody

%

& ' ()" j

%

&

•Note that $j is zero on all but the triangles

surrounding j, so integrals simplify

•Also: naturally split integration into separate

triangles

Change in momentum term

• Let

• Then the first term is just

• Let M=[mij]: then first term is

• M is called the mass matrix
• Obviously symmetric (actually SPD)

• Not diagonal!

• Note that once we have the forces (the other
integrals), we need to invert M to get
accelerations

!

mij = "#i# j$

!

m ji
˙ ̇ x i

i
"

!

M˙ ̇ x

Body force term

• Usually just gravity: fbody=%g

• Rather than do the integral with density all
over again, use the fact that $I sum to 1

• They form a “partition of unity”

• They represent constant functions exactly - just
about necessary for convergence

• Then body force term is gM1

• More specifically, can just add g to the
accelerations; don’t bother with integrals or
mass matrix at all

Stress term

• Calculate constant strain and strain rate (so
constant stress) for each triangle separately

• Note &$j is constant too

• So just take "&$j times triangle area

• [derive what &$j is]

• Magic: exact same as FVM!
• In fact, proof of convergence of FVM is often (in

other settings too) proved by showing it’s
equivalent or close to some kind of FEM

The algorithm

• Loop over triangles

• Loop over corners

• Compute integral terms

• only need to compute M once though - it’s
constant

• End up with row of M and a “force”

• Solve Ma=f

• Plug this a into time integration scheme

Lumped Mass

• Inverting mass matrix unsatisfactory
• For particles and FVM, each particle had a mass,

so we just did a division

• Here mass is spread out, need to do a big linear
solve - even for explicit time stepping

• Idea of lumping: replace M with the “lumped
mass matrix”
• A diagonal matrix with the same row sums

• Inverting diagonal matrix is just divisions - so
diagonal entries of lumped mass matrix are the
particle masses

• Equivalent to FVM with centroid-based volumes

Consistent vs. Lumped

• Original mass matrix called “consistent”

• Turns out its strongly diagonal dominant
(fairly easy to solve)

• Multiplying by mass matrix = smoothing

• Inverting mass matrix = sharpening

• Rule of thumb:
• Implicit time stepping - use consistent M

(counteract over-smoothing, solving system
anyways)

• Explicit time stepping - use lumped M
(avoid solving systems, don’t need extra
sharpening)

Locking

• Simple linear basis actually has a major
problem: locking

• Notion of numerical stiffness
• Instead of thinking of numerical method as just

getting an approximate solution to a real problem,

• Think of numerical method as exactly solving a
problem that’s nearby

• For elasticity, we’re exactly solving the equations
for a material with slightly different (and not quite
homogeneous/isotropic) stiffness

• Locking comes up when numerical stiffness is
MUCH higher than real stiffness

Locking and linear elements

• Look at nearly incompressible materials

• Can a linear triangle mesh deform
incompressibly?
• [derive problem]

• Then linear elements will resist far too much:
numerical stiffness much too high

• Numerical material “locks”

• FEM isn’t really a black box!

• Solutions:
• Don’t do incompressibility

• Use other sorts of elements (quads, higher order)

Quadrature

• Formulas for linear triangle elements and
constant density simple to work out

• Formulas for subdivision surfaces (or high-
order polynomials, or splines, or wavelets…)
and varying density are NASTY

• Instead use “quadrature”
• I.e. numerical approximation to integrals

• Generalizations of midpoint rule
• E.g. Gaussian quadrature (for intervals, triangles,

tets) or tensor products (for quads, hexes)

• Make sure to match order of accuracy [or not]

Accuracy

• At least for SPD linear problems (e.g. linear
elasticity) FEM selects function from finite
space that is “closest” to solution

• Measured in a least-squares, energy-norm sense

• Thus it’s all about how well you can
approximate functions with the finite space
you chose

• Linear or bilinear elements: O(h2)

• Higher order polynomials, splines, etc.: better

Other elements

• Not so obvious ones:
• Isoparametric elements (meshes with

curved edges)

• Radial-basis functions (mesh-free
methods)

• Mixed element meshes (triangles and
quads together)

• Embedded elements

• Special-purpose elements (e.g. for cracks)

