Notes Cloth Collisions

e Please read Pentland and Williams, « From last time
“Good vibrations”, SIGGRAPH’89 + Use the same basic algorithm as for particle
. . systems
* 1st bug In aSSIgnment 4 « But ignore elastic collisions - elastic/inelastic
* Thanks Igor and Richard comes from internal dynamics (damping), not

collisions
 Also update post-collision velocity with an implicit
step (smoothing filter from damping)

» Looking at collision resolution pipeline now

 v=calloc(3*nv,sizeof(float)) fixed online

Repulsions Pointwise collisions
» Pipeline starts with repulsion forces » Next stage in pipeline: need to check for
e Simplest thing for resting contact fast moving simple collisions
 Can even model the thickness of the cloth, » Do point vs. triangle and edge vs. edge
its compressibility, etc. (as before, talking about rigid bodies)
* Avoids chainmail friction « Solve cubic for collision time, check if close
» Without a soft buffer, sharp folds lock together enough to collision, etc.

like alligator teeth . . .
o Will want to iterate a few times



Rigid impact zones Why it works

» Last stage in pipeline * If the points in a mesh move rigidly, mesh
» Need a last resort to clean up complicated cannot self-intersect
collisions « Thus no self-intersections inside an impact zone
* Provot’s approximation: « We keep merging zones: very quickly end up
« Glue together elements that are still colliding with no more collisions
» Too stable (too much friction, too inelastic) but  Technical detail: if we use an Euler step to
that's OK advance positions with rigid bodies, we
* Algorithm: actually induce a dilation
* Start off with each triangle as a separate “impact « But non-intersection property still holds for general
zone affine maps!
* Check if any two zones collide - if so, merge, « In fact, can generalize momentum... related to
rigidify (preserve linear and angular momentum) modal analysis
When this fails Wind force on cloth
» Constraints on cloth are incompatible with » Use simple approximation: ignore effect of
rigid impact zone cloth on wind
+ Could cut time step to solve, » Take given wind velocity field v,,;.q
or relax constraints, _ « Look at a piece of cloth with velocity v and normal
or solve cloth self-intersection problem n
 Collision adjustments strain the cloth too o Apply traction t=D(vy;,4-v)*n n
much (and strain limiting etc. goes crazy) « Implement triangle by triangle: multiply traction by
* See this around sharp points area of triangle to get force
« Ultimately, may want to forget black-box approach: « Distribute force on triangle equally to vertices
directly incorporate contact forces into implicit time * D>0 is some parameter to tune
stepping, e.g. Baraff & Witkin, “Large steps...”, « This misses some effects, but is often

SIGGRAPH’98 (but they don’t get robustness) adequate



Cloth speed-ups

Curvature-accelerated interference detection
» Form a hierarchy, find normal cone for each

 Self-intersection is unlikely if normals all lie in
same half-space

» See Volino and Magnenat-Thalmann EG’94
Take liberties with implicit integration

* More approximations for speed

Use selective collisions

* Only run collision code on parts of clothing that are

likely to come into contact with other things

Inverted elements

If too much force is applied to an element, it
will be crushed and even inverted

e The constitutive model should not let this happen
 [simple example with springs]

In cloth (2d material in 3d world) this is not an
issue

» But 2d in 2d has exactly the same problem!
Usually not a problem for stiff materials, but
often with soft objects undergoing large
deformation (e.g. point-based collisions!)

Can patrtially alleviate with design of mesh

3D Elasticity

We basically covered the theory earlier
» Tensors are now 3x3 instead of 2x2 or 3x2

What about numerics?

e [work out FVM/FEM on tetrahedra]
Tetrahedra can lock - may prefer
hexahedra

* Meshing is more difficult - may prefer
embedding geometry in elements

Volume springs

Volume of tetrahedron Xy, ..., X, iS
V=1(x,-x)x(x;-x)(x, - x)
* Actually signed (to indicate right- or left-handed
labeling)
Crushed element: V=0
Inverted element: V<0

We generally want to control excess volume
changes (most materials are incompressible
in bulk), so natural to add soft constraint
(potential energy) K/2(V-V,)?



Volume springs

Take derivative w.r.t. x; to get force
« Example:
P By = —LK(V = V) (x, = x,) % (5 = x,)
» To do the other forces easily, rewrite volume
formula so that x; appears only in the dot-product
Note cross-product is proportional to area-

weighted normal of opposite triangle

» So these are “altitude springs”
(with the right scaling automatically)

To fully enforce no inversion, can change
force to go to infinity as V approaches 0
* But may have stiffness problems...

Modal Analysis

Discretization of linear elasticity boils down to

Mx=-Kx-Dx+F,,
M, K, and D are constant matrices
* Mis the mass matrix (often diagonal)
e Kis the stiffness matrix

* D is the damping matrix: assume a multiple of K
This a large system of coupled ODE’s now
We can solve eigen problem to diagonalize
and decouple into scalar ODE’s

* M and K are symmetric, so no problems here -
complete orthogonal basis of real eigenvectors

Small deformation

» We can use linear elasticity
» Except if there’s rigid body rotation

 Can fix this: rotate to approximate rest
configuration, do linear elasticity, rotate back
* Rigid body + small deformation

* May need to keep track of Coriolis and centripetal
pseudo-forces

» Terzopoulos & Witkin GI'88, others
» Use of linear elasticity opens up new doors

« Modal Analysis
 BEM

» Also: appropriate for acoustics

Eigenstuff
e Say U=(uylu, I ... [ 'ug,) is a matrix with the
columns the eigenvectors of M-'K (and also

M-1D)

* M'Ku=Nu; and M'Du=uyu,

* Assume A,; are increasing

* We know A,=...=As=0 and w,=...=ug=0
(with uy, ..., ug the rigid body modes)

e The rest are the deformation modes: the larger
that A, is, the smaller scale the mode is

e Use this with x — _M—le _ M—ID)-C + M—IF

ext



Decoupling into modes

Take y=UTx (so x=Uy) - decompose positions
(and velocities, accelerations) into a sum of

modes
00 1y = -M"'KUy-M"'DUy + M"'F,,,

Multiply by UT to decompose equations into
modal components:
U'Uy=-U"M"'KUy-U"M"'DUy +U"M'F,,
y =—diag(7,)y - diag(u,)y + U'M'F,,

So now we have 3n independent ODE’s

* If F,, is constant over the time step, can even
write down exact formula for each

Throw out high frequencies

Only track a few low-frequency modes (e.g.

5-10)

Time integration is blazingly fast!

Essentially reduced the degrees of freedom

from thousands or millions down to 10 or so

» But keeping full geometry, just like embedded
element approach

Collision impulses need to be decomposed

into modes just like external forces

» But may have a harder time resolving collisions,
like rigid bodies - not much freedom left

Examining modes

Modei: §. =-Ay -uwy. +u-M'F,_

Rigid body modes have zero eigenvalues, so
just depend on force

* Roughly speaking, rigid translations will take
average of force, rigid rotations will take cross-
product of force with positions (torque)

» Better to handle these as rigid body...

The large eigenvalues (large i) have small
length scale, oscillate (or damp) very fast

* Important acoustically, generally not visually
Left with small eigenvalues being important

Simplifying eigenproblem

Low frequency modes not affected much by

high frequency geometry

¢ And visually, difficult for observers to quantify if a
mode is actually accurate

So we can use a very coarse mesh to get the

modes, or even analytic solutions for a block

of comparable mass distribution

Or use a Rayleigh-Ritz approximation to the
eigensystem (eigen-version of Galerkin FEM)

» E.g. assume low frequency modes are made up of
affine and quadratic deformations

e [Do FEM, get eigenvectors to combine them]



More savings

» External forces (other than gravity,
which is in the rigid body modes) rarely
applied to interior, and we rarely see the
interior deformation

» So just compute and store the boundary
particles

* E.g. see James and Pai, “DyRT...”,
SIGGRAPH’02 -- did this in graphics
hardware!



