
Notes

• Please read Pentland and Williams,
“Good vibrations”, SIGGRAPH’89

• 1st bug in assignment 4

• Thanks Igor and Richard

• v=calloc(3*nv,sizeof(float)) fixed online

Cloth Collisions

• From last time

• Use the same basic algorithm as for particle
systems

• But ignore elastic collisions - elastic/inelastic
comes from internal dynamics (damping), not

collisions

• Also update post-collision velocity with an implicit

step (smoothing filter from damping)

• Looking at collision resolution pipeline now

Repulsions

• Pipeline starts with repulsion forces

• Simplest thing for resting contact

• Can even model the thickness of the cloth,

its compressibility, etc.

• Avoids chainmail friction

• Without a soft buffer, sharp folds lock together
like alligator teeth

Pointwise collisions

• Next stage in pipeline: need to check for
fast moving simple collisions

• Do point vs. triangle and edge vs. edge
(as before, talking about rigid bodies)

• Solve cubic for collision time, check if close

enough to collision, etc.

• Will want to iterate a few times

Rigid impact zones

• Last stage in pipeline
• Need a last resort to clean up complicated

collisions

• Provot’s approximation:
• Glue together elements that are still colliding

• Too stable (too much friction, too inelastic) but
that’s OK

• Algorithm:
• Start off with each triangle as a separate “impact

zone”

• Check if any two zones collide - if so, merge,
rigidify (preserve linear and angular momentum)

Why it works

• If the points in a mesh move rigidly, mesh
cannot self-intersect
• Thus no self-intersections inside an impact zone

• We keep merging zones: very quickly end up
with no more collisions

• Technical detail: if we use an Euler step to
advance positions with rigid bodies, we
actually induce a dilation
• But non-intersection property still holds for general

affine maps!

• In fact, can generalize momentum… related to
modal analysis

When this fails

• Constraints on cloth are incompatible with
rigid impact zone
• Could cut time step to solve,

or relax constraints,
or solve cloth self-intersection problem

• Collision adjustments strain the cloth too
much (and strain limiting etc. goes crazy)
• See this around sharp points

• Ultimately, may want to forget black-box approach:
directly incorporate contact forces into implicit time
stepping, e.g. Baraff & Witkin, “Large steps…”,
SIGGRAPH’98 (but they don’t get robustness)

Wind force on cloth

• Use simple approximation: ignore effect of
cloth on wind
• Take given wind velocity field vwind

• Look at a piece of cloth with velocity v and normal
n

• Apply traction t=D(vwind-v)•n n

• Implement triangle by triangle: multiply traction by
area of triangle to get force

• Distribute force on triangle equally to vertices

• D>0 is some parameter to tune

• This misses some effects, but is often
adequate

Cloth speed-ups

• Curvature-accelerated interference detection
• Form a hierarchy, find normal cone for each

• Self-intersection is unlikely if normals all lie in
same half-space

• See Volino and Magnenat-Thalmann EG’94

• Take liberties with implicit integration
• More approximations for speed

• Use selective collisions
• Only run collision code on parts of clothing that are

likely to come into contact with other things

• …

3D Elasticity

• We basically covered the theory earlier
• Tensors are now 3x3 instead of 2x2 or 3x2

• What about numerics?
• [work out FVM/FEM on tetrahedra]

• Tetrahedra can lock - may prefer
hexahedra
• Meshing is more difficult - may prefer

embedding geometry in elements

Inverted elements

• If too much force is applied to an element, it
will be crushed and even inverted
• The constitutive model should not let this happen

• [simple example with springs]

• In cloth (2d material in 3d world) this is not an
issue
• But 2d in 2d has exactly the same problem!

• Usually not a problem for stiff materials, but
often with soft objects undergoing large
deformation (e.g. point-based collisions!)

• Can partially alleviate with design of mesh

Volume springs

• Volume of tetrahedron x1, …, x4 is

• Actually signed (to indicate right- or left-handed
labeling)

• Crushed element: V=0

• Inverted element: V<0

• We generally want to control excess volume
changes (most materials are incompressible
in bulk), so natural to add soft constraint
(potential energy) K/2(V-V0)

2

!

V = 1

6
x
2
" x

1() # x
3
" x

1() • x
4
" x

1()

Volume springs

• Take derivative w.r.t. xi to get force
• Example:

• To do the other forces easily, rewrite volume
formula so that xi appears only in the dot-product

• Note cross-product is proportional to area-
weighted normal of opposite triangle
• So these are “altitude springs”

(with the right scaling automatically)

• To fully enforce no inversion, can change
force to go to infinity as V approaches 0
• But may have stiffness problems…

!

F
4

= " 1

6
K V "V

0() x2 " x1() # x
3
" x

1()

Small deformation

• We can use linear elasticity
• Except if there’s rigid body rotation

• Can fix this: rotate to approximate rest
configuration, do linear elasticity, rotate back
• Rigid body + small deformation

• May need to keep track of Coriolis and centripetal
pseudo-forces

• Terzopoulos & Witkin GI’88, others

• Use of linear elasticity opens up new doors
• Modal Analysis

• BEM

• Also: appropriate for acoustics

Modal Analysis

• Discretization of linear elasticity boils down to

• M, K, and D are constant matrices
• M is the mass matrix (often diagonal)

• K is the stiffness matrix

• D is the damping matrix: assume a multiple of K

• This a large system of coupled ODE’s now

• We can solve eigen problem to diagonalize
and decouple into scalar ODE’s
• M and K are symmetric, so no problems here -

complete orthogonal basis of real eigenvectors

!

M˙ ̇ x = "Kx "D˙ x + F
ext

Eigenstuff

• Say U=(u1 | u2 | … | u3n) is a matrix with the
columns the eigenvectors of M-1K (and also
M-1D)
• M-1Kui=!iui and M-1Dui=µiui

• Assume !i are increasing

• We know !1=…=!6=0 and µ1=…=µ6=0
(with u1, …, u6 the rigid body modes)

• The rest are the deformation modes: the larger
that !i is, the smaller scale the mode is

• Use this with

!

˙ ̇ x = "M
"1

Kx " M
"1

D˙ x + M
"1

F
ext

Decoupling into modes

• Take y=UTx (so x=Uy) - decompose positions
(and velocities, accelerations) into a sum of
modes

• Multiply by UT to decompose equations into
modal components:

• So now we have 3n independent ODE’s
• If Fext is constant over the time step, can even

write down exact formula for each

!

U˙ ̇ y = "M
"1

KUy " M
"1

DU˙ y + M
"1

Fext

!

U
T
U˙ ̇ y = "U

T
M

"1
KUy "U

T
M

"1
DU˙ y + U

T
M

"1
Fext

˙ ̇ y = "diag #i()y " diag µi() ˙ y + U
T
M

"1
Fext

Examining modes

• Mode i:

• Rigid body modes have zero eigenvalues, so
just depend on force
• Roughly speaking, rigid translations will take

average of force, rigid rotations will take cross-
product of force with positions (torque)

• Better to handle these as rigid body…

• The large eigenvalues (large i) have small
length scale, oscillate (or damp) very fast
• Important acoustically, generally not visually

• Left with small eigenvalues being important

!

˙ ̇ y i = "#iyi "µi
˙ y i + ui $ M

"1
Fext

Throw out high frequencies

• Only track a few low-frequency modes (e.g.
5-10)

• Time integration is blazingly fast!

• Essentially reduced the degrees of freedom
from thousands or millions down to 10 or so
• But keeping full geometry, just like embedded

element approach

• Collision impulses need to be decomposed
into modes just like external forces
• But may have a harder time resolving collisions,

like rigid bodies - not much freedom left

Simplifying eigenproblem

• Low frequency modes not affected much by
high frequency geometry
• And visually, difficult for observers to quantify if a

mode is actually accurate

• So we can use a very coarse mesh to get the
modes, or even analytic solutions for a block
of comparable mass distribution

• Or use a Rayleigh-Ritz approximation to the
eigensystem (eigen-version of Galerkin FEM)
• E.g. assume low frequency modes are made up of

affine and quadratic deformations

• [Do FEM, get eigenvectors to combine them]

More savings

• External forces (other than gravity,
which is in the rigid body modes) rarely
applied to interior, and we rarely see the
interior deformation

• So just compute and store the boundary
particles
• E.g. see James and Pai, “DyRT…”,

SIGGRAPH’02 -- did this in graphics
hardware!

