
Notes

• Homework 3 is now due Friday
• (really Saturday when I check my email)

• Make a mesh of a sphere by projecting mesh
of a cube to the sphere

• Rendering bug - malloc doesn’t necessarily
initialize normals to 0

• Start this class with review of the details of
rigid body collisions (for the assignment)

Rigid Body Collisions

• Advance rigid bodies over a collision time
step (get candidate new X, q, V)

• Process the elastic collisions first, using
velocities from start of collision time step
• Check each body against all others and ground

• For each pair of objects
• Apply collision impulse to deepest non-separating point

• This impulse changes candidate new X, q, V

• Iterate a few (3-5) times

• Repeat whole elastic collision loop if you want

• Then process inelastic contacts the same
way, but using average velocities

Average velocities

• Define the average velocities the same way
that you update the candidate new X, q
• For example:

• Xnew=X(t)+!tVafter means use
Vavg=(X(t+!t)-X(t)) / !t

• qnew=q(t)+!t/2 !after (before normalization) means
use !avg=2(q(t+!t)-q(t)) / !t

• Or qnew=rotate(!t!)q(t) means use
 !avg=unrotate(qnew q-1)/!t
(see jan20 slides for what I mean by rotate)

Setting up collision

• Point from object 1 is intersecting object 2

• World space position is x

• Object space position in object 1 is p1

• Object space position in object 2 is p2

• Normal n comes from object 2’s level set (but
remember that this is the world space normal,
not the object space normal: have to rotate
object space normal with q2)

• Check if relative velocity v has negative
normal component: the separating condition
(if separating, no collision)

Velocities

• v1=!#(x-X1)+V1 and v2=!#(x-X2)+V2

• Note for ground, v2=0

• Relative velocity v=v1-v2

• We will apply an impulse J to object 1 and -J
to object 2

• V1
after=V1+J/M1 and V2

after=V2-J/M2

• L1
after=L1+(x-X1)#J and L2

after=L2-(x-X2)#J

• !1
after=!1+I1

-1[(x-X1)#J] and
!2

after=!2-I2
-1[(x-X2)#J]

!

More velocities

• So post-impulse relative velocity is
vafter=v+KJ where K=K1+K2

• Take K2=0 for the ground
(infinite mass, infinite inertia tensor)!

v
1

after = v
1

+
J

M
1

+ I
1

"1
x " X

1() # J[][] # x " X
1()

= v
1

+ 1

M
1

J " x " X
1()
$
I
1

"1
x " X

1()
$
J

= v
1

+ 1

M
1

% + x " X
1()
$T
I
1

"1
x " X

1()
$()J

= v
1

+ K
1
J

v
2

after = v
2
"K

2
J

Finding the impulse

• Now we just need to figure out J of a
particular form that gives us a particular
post-impulse relative velocity

• For frictionless collision:
• Find J=jn such that vn

after=-"vn

• For Coulomb friction:
• Find static friction J (such that vn

after=-"vn and
vT

after=0)

• Check if that J is in friction cone

• If not, find sliding friction J instead: J=j(n-µT)
which has to be on friction cone. Solve for j so that
vn

after=-"vn

Frictionless case

• Use impulse in normal direction: J=jn

• Want nTvafter=-"nTv

• Plug in vafter formula and our choice of J:
nT(v+Knj)=-"nTv

• Simplify:
nTKn j = -(1+")nTv

• Solve:

!

j =
" 1+ #()nTv
n
T
Kn

Static friction

• Use general impulse J

• Want nTvafter=-"nTv (=0 for inelastic)

AND vT
after=0 (no sliding)

• Since vT=v-nnTv, can write this as
vafter=-"nnTv

• Plug it in: v+KJ=-"nnTv

• Solve:

!

J = "K"1
v + #nnTv()

= "K"1
v + #(v $ n)n()

Static friction test

• Check if J from last slide satisfies

• This is the friction cone test

• Remember Coulomb friction is defined by the
friction force always satisfying this inequality

• If J doesn’t satisfy inequality, throw it away:
look for a sliding friction impulse on the
friction cone

!

J
T

= J " J # n()n $ µ J # n

!

J
T

= µ J " n

Sliding friction

• Find tangential relative velocity:
vT=v-(v• n)n

• Normalize to get sliding direction:
T=vT/|vT|
• If vT=0 then no friction force…

• Take J=j(n-µT) (has to be on friction cone)

• Want nTvafter=-"nTv

• Plug in: nT(v+K(n-µT)j)=-"nTv

• Solve:

!

j = "
1+ #()nTv

n
T
K n "µT()

Other elements for FEM

• Not so obvious ones:
• Isoparametric elements (meshes with

curved edges)

• Radial-basis functions (mesh-free
methods)

• Mixed element meshes (triangles and
quads together)

• Embedded elements

• Special-purpose elements (e.g. for cracks)

Elastic Surfaces

• We’ve covered basic 2D elasticity
• Actually, 3D isn’t much different

• This class: stick with 2D objects, but embed
in 3D
• E.g. cloth

• Somewhat more complicated
• Object space is 2D, world space is 3D

• Deformation gradient A is 3x2, not square

• Green strain G is 2x2, but we want 3x3 stress!

• (springs often work fine still)

First steps

• We want to rotate surface element into xy

plane, forget (constant) z coordinate

• Do the usual 2D stuff in xy plane

• Rotate tractions back

• This is fairly messy, but the way to go for

completely general constitutive model

• But, do we need more physics?

• [line/arc]

Hyper-elasticity

• Want a framework that can handle all this
stuff easily

• Instead define an elastic potential energy
• Strain energy density W=W(A)

• W=0 for no deformation, W>0 for deformation

• Total potential energy is integral of W over object

• This is called hyper-elasticity or Green
elasticity

• For most (the ones that make sense)
stress-strain relationships can define W
• E.g. linear relationship: W=$:"

Variational Derivatives

• Force is the negative gradient of potential
• Just like gravity

• What does this mean for a continuum?
• W=W("X/"p), how do you do -d/dX?

• Variational derivative:

• So variational derivative is
-%•"W/"A

• And f=%•"W/"A

• Then stress is "W/"A

!

Wtotal X + "Y[] = W
#X

#p
+ "

#Y

#p

$

%
&

'

(
) *

+ W
#X

#p

$

%
&

'

(
) + "

#W

#A

#Y

#p
*

=Wtotal + "
#W

#A

#Y

#p
*

=Wtotal ," Y- .
#W

#A
*

Numerics

• Simpler approach: find discrete Wtotal as a
sum of W’s for each element
• Evaluate just like FEM, or any way you want

• Take gradient w.r.t. positions {xi}
• Ends up being a Galerkin method

• We’ve actually done this before:
soft constraints
• Total energy was 1/2 CTC

• And we know how to do Rayleigh damping for this

• See Jan 27 lecture

• Here each element’s W(A) corresponds to an
entry in C

Curve / Springs

• Take W(A)=1/2 E(|A|-1)2 L for each segment
• Note factor of L: this is approximation to an

integral over segment in object space of length L

• A=(xi+1-xi)/L is the deformation gradient for
piecewise linear elements

• Then take derivative w.r.t. xi to get this
element’s contribution to force on i

• Lo and behold [exercise] get exactly the
original spring force from first week

Surface elasticity

• For linear stress-strain, can use W(A)=$:G=
$ijGij

• The simplest model from before gives
W=&Gkk

2 + µGijGij

• Remember G=1/2(ATA-I)

• Tedious to differentiate, but doable
• Tensors and chain rule over and over

• Let’s leave it that
• In practice, springs with speed-of-sound heuristic

are good enough most of the time

Cloth modeling

• Cloth behaves in a fairly nonlinear way

• In extension, biphasic
• For small stretching, only weak resistance: the

threads are simply straightening out

• For large stretching, strong resistance:
the threads are being pulled apart

• If we model with springs, need to introduce
nonlinearity

• Simplest approach to getting strong
resistance: inequality constraints (springs
may not stretch more than, say, 10%)

Strain limiting

• Solving inequality constraints is difficult

• We’re happy with approximation

• Loop through mesh:
• Whenever a spring has strain beyond some limit,

apply impulse to return it to legal strain

• (constraint impulse as before: find impulse parallel
to spring that causes updated positions to be
exactly the right distance apart)

• Iterate if you want, just like collisions etc. (but
usually once per time step is enough)

Qualitative behaviour

• Strain limiting with weak spring constants

means small wrinkles, creases, etc. can form

easily

• Stiff materials can’t easily wrinkle in non-metric-

preserving ways

• Stiff springs or FEM induce additional unwanted

numerical stiffness resisting bending

• But large sagging, rubbery stretching, etc. are

eliminated

Compression and buckling

• Cloth also behaves oddly under compression
• Almost never compresses, like 2D materials in 2D

or 3D materials in 3D

• Instead buckles out of plane

• Two (good) ways to go:
• Assume mesh can’t resolve buckling, but let it

happen anyways (subgrid modeling)
• Good for coarse meshes

• Force mesh to resolve buckling
• Good for fine meshes

Subgrid modeling

• From Choi & Ko (SIGGRAPH’02)

• Make the springs much weaker in
compression

• Can actually derive formula based on

model of a buckled beam

• Simpler approach: k=0 or much smaller

when compressed

• [draw model]

Enforced buckling

• Require that the mesh resolves the out-of-
plane buckling:
• Do not allow springs to compress

• Another inequality constraint

• Again, take simple route:

• Loop over springs
• If spring in compression (strain < -0.001), apply

corrective impulse to get it back to rest length

• Can repeat if wanted

• Naturally goes together with strain limiting

Simple bending

• Can fake bending resistance by adding
extra springs between second
neighbours

• When mesh bends, these extra springs
compress and push it back to planar

• Not so obvious what to do for
unstructured meshes
• Or how to scale the bending springs

Bending energy

• Bending is very difficult to get a handle on
without variational approach

• Bending strain energy density:
W=1/2 B '2

• Here ' is mean curvature

• Look at circles that fit surface

• Maximum radius R and minimum radius r

• '=(1/R + 1/r)/2

• Can define directly from second derivatives of X(p)

• Uh-oh - second derivatives?

