Notes

 Homework 3 is now due Friday
* (really Saturday when | check my email)

» Make a mesh of a sphere by projecting mesh
of a cube to the sphere

» Rendering bug - malloc doesn’t necessarily
initialize normals to 0

 Start this class with review of the details of
rigid body collisions (for the assignment)

Average velocities

» Define the average velocities the same way
that you update the candidate new X, g
* For example:
o Xnew=X(t)+AtVafter means use
Vave=(X(t+At)-X(t)) / At
o gnew=q(t)+At/2 wafter (before normalization) means
use w29=2(q(t+At)-q(t)) / At
e Or g"ew=rotate(Atw)q(t) means use
wa9=unrotate(qnew gq1)/At
(see jan20 slides for what | mean by rotate)

Rigid Body Collisions

Advance rigid bodies over a collision time
step (get candidate new X, q, V)

Process the elastic collisions first, using
velocities from start of collision time step

» Check each body against all others and ground

e For each pair of objects
» Apply collision impulse to deepest non-separating point
 This impulse changes candidate new X, q, V
* lterate a few (3-5) times

Repeat whole elastic collision loop if you want

Then process inelastic contacts the same
way, but using average velocities

Setting up collision

Point from object 1 is intersecting object 2
World space position is x

Object space position in object 1 is p;

Object space position in object 2 is p,

Normal n comes from object 2’s level set (but
remember that this is the world space normal,

not the object space normal: have to rotate
object space normal with g,)

Check if relative velocity v has negative
normal component: the separating condition
(if separating, no collision)



Velocities

Vi=ox(X-X{)+V; and  Vo=wx(X-X,)+V,

* Note for ground, v,=0

Relative velocity v=v,-v,

We will apply an impulse J to object 1 and -J
to object 2

Vater=V_ +J/M; and V,ater=V,-J/M,
L,after=L  +(x-X,)xJ and Lafter=] ,-(x-X,)xJ
2=, +1;-1[(x-X;)xJ] and

2 =051, T[(X-Xp) xJ]

Finding the impulse

Now we just need to figure out J of a
particular form that gives us a particular
post-impulse relative velocity

For frictionless collision:
 Find J=jn such that v, after=-gv,|

For Coulomb friction:

« Find static friction J (such that v after=-gv_ and
VTafter=0)

e Check if that J is in friction cone

« If not, find sliding friction J instead: J=j(n-uT)
which has to be on friction cone. Solve for j so that
Vnafter=_€vn

More velocities
v =y o+ %+ [Il'l[(x - X)) xJ]] x(x-X,)

1

&

=vi+o-J—(x-X) [ (x-X,)J
v+ (0 (= X) T (- X))
=v,+K,J

vgﬁ” =v,-K,J

So post-impulse relative velocity is
vatter=y+KJ  where K=K, +K,

» Take K,=0 for the ground
(infinite mass, infinite inertia tensor)

Frictionless case

Use impulse in normal direction: J=jn
Want nTvafter=-gnTy

Plug in vater formula and our choice of J:
nT(v+Knj)=-enTv

Simplify:

NTKnj=-(1+¢)nTv

Solve: (e ey
/= n'Kn



Static friction

Use general impulse J
Want nTvalter=-¢nTy (=0 for inelastic)
AND v 2fte=0 (no sliding)

Since v=v-nnTv, can write this as
vafter—=_ennTv

Plug it in: v+KJ=-ennTv
Solve:  j_ —K_](v + ennTv)

=-K"'(v+e&(v-n)n)

Sliding friction

Find tangential relative velocity:

v=V-(v* n)n

Normalize to get sliding direction:

T=v/Iv4l

* If v;=0 then no friction force...

Take J=j(n-uT) (has to be on friction cone)
Want nTvafter=-gnTy

Plug in: nT(v+K(n-uT)j)=-enTv

Solve: (1+&)n'v

/ =_nTK(n—uT)

Static friction test

e Check if J from last slide satisfies
| =7 = (T n)n|< g - n

e This is the friction cone test

 Remember Coulomb friction is defined by the
friction force always satisfying this inequality

 If J doesn’t satisfy inequality, throw it away:
look for a sliding friction impulse on the

friction cone ‘JT‘ _ M‘J' n‘

Other elements for FEM

* Not so obvious ones:

* Isoparametric elements (meshes with
curved edges)

» Radial-basis functions (mesh-free
methods)

» Mixed element meshes (triangles and
quads together)

* Embedded elements
» Special-purpose elements (e.g. for cracks)



Elastic Surfaces

We’ve covered basic 2D elasticity

 Actually, 3D isn’t much different

This class: stick with 2D objects, but embed
in 3D

» E.g. cloth

Somewhat more complicated

« Object space is 2D, world space is 3D

» Deformation gradient A is 3x2, not square

* Green strain G is 2x2, but we want 3x3 stress!
(springs often work fine still)

Hyper-elasticity

Want a framework that can handle all this
stuff easily

Instead define an elastic potential energy
 Strain energy density W=W(A)

+ W=0 for no deformation, W>0 for deformation
» Total potential energy is integral of W over object
This is called hyper-elasticity or Green
elasticity

For most (the ones that make sense)
stress-strain relationships can define W

* E.g. linear relationship: W=c:¢

First steps

* We want to rotate surface element into xy
plane, forget (constant) z coordinate

* Do the usual 2D stuff in xy plane
* Rotate tractions back

» This is fairly messy, but the way to go for
completely general constitutive model

e But, do we need more physics?
* [line/arc]

Variational Derivatives

» Force is the negative gradient of potential
 Just like gravity

» What does this mean for a continuum?
* W=W(0X/dp), how do you do -d/dX?

« Variational derivative: w,,,[X+eY]= [ W(f;”‘g)
« So variational derivative is ~f W(a)()+€wvm/
-V-0W/0A dp JA dp
* And f=V-dW/A _w, +e [V
* Then stress is OW/0A JdA dp
W -t fYV-

A



Numerics

Simpler approach: find discrete W, as a
sum of W’s for each element

e Evaluate just like FEM, or any way you want
Take gradient w.r.t. positions {x;}

* Ends up being a Galerkin method

We’ve actually done this before:

soft constraints

» Total energy was 1/2 C'C

* And we know how to do Rayleigh damping for this
» See Jan 27 lecture

e Here each element’s W(A) corresponds to an
entry in C

Surface elasticity

For linear stress-strain, can use W(A)=0.G=
0;G;

The simplest model from before gives
W=AGy2 + uG;G;

Remember G=1/2(ATA-)

Tedious to differentiate, but doable

e Tensors and chain rule over and over

Let’s leave it that

* In practice, springs with speed-of-sound heuristic
are good enough most of the time

Curve / Springs

Take W(A)=1/2 E(IAI-1)2 L for each segment

» Note factor of L: this is approximation to an
integral over segment in object space of length L

A=(x;,1-x;)/L is the deformation gradient for
piecewise linear elements

Then take derivative w.r.t. x; to get this
element’s contribution to force on i

Lo and behold [exercise] get exactly the
original spring force from first week

Cloth modeling

Cloth behaves in a fairly nonlinear way

In extension, biphasic
» For small stretching, only weak resistance: the
threads are simply straightening out
» For large stretching, strong resistance:
the threads are being pulled apart
If we model with springs, need to introduce
nonlinearity

Simplest approach to getting strong

resistance: inequality constraints (springs
may not stretch more than, say, 10%)



Strain limiting Qualitative behaviour

» Solving inequality constraints is difficult  Strain limiting with weak spring constants
» We’re happy with approximation means small wrinkles, creases, etc. can form
« Loop through mesh: easily
» Whenever a spring has strain beyond some limit, « Stiff materials can’t easily wrinkle in non-metric-
apply impulse to return it to legal strain preserving ways
* (constraint impulse as before: find impulse parallel « Stiff springs or FEM induce additional unwanted
to spring that causes updated positions to be numerical stiffness resisting bending

exactly the right distance apart)

lterate if you want, just like collisions etc. (but * Butlarge sagging, rubbery stretching, etc. are

usually once per time step is enough) eliminated
Compression and buckling Subgrid modeling
 Cloth also behaves oddly under compression e From Choi & Ko (SIGGRAPH’02)
¢ Almost never compresses, like 2D materials in 2D . .
or 3D materials in 3D » Make the springs much weaker in
* Instead buckles out of plane compression
* Two (good) ways to go: « Can actually derive formula based on
» Assume mesh can’t resolve buckling, but let it model of a buckled beam
happen anyways (subgrid modeling) i
« Good for coarse meshes » Simpler approach: k=0 or much smaller
« Force mesh to resolve buckling when compressed

* Good for fine meshes

e [draw model]



Enforced buckling

Require that the mesh resolves the out-of-
plane buckling:

* Do not allow springs to compress

Another inequality constraint

Again, take simple route:

Loop over springs

* If spring in compression (strain <-0.001), apply
corrective impulse to get it back to rest length

Can repeat if wanted
Naturally goes together with strain limiting

Bending energy

Bending is very difficult to get a handle on
without variational approach

Bending strain energy density:

W=1/2 B k2

Here x is mean curvature

* Look at circles that fit surface

Maximum radius R and minimum radius r

k=(1/R + 1/r)/2

Can define directly from second derivatives of X(p)
Uh-oh - second derivatives?

Simple bending

» Can fake bending resistance by adding
extra springs between second
neighbours

 When mesh bends, these extra springs
compress and push it back to planar

» Not so obvious what to do for
unstructured meshes
* Or how to scale the bending springs



