
A Survey of Schema Versioning Issues for Database Systems

John F. Roddick

Advanced Computing Research Centre
School of Computer and Information Science

University of South Australia
The Levels, SA 5095, Australia

roddick@unisa.edu.au

Abstract

Schema versioning is one of a number of related areas dealing with the same general problem - that

of using multiple heterogeneous schemata for various database related tasks. In particular, schema

versioning, and its weaker companion, schema evolution, deal with the need to retain current data

and software system functionality in the face of changing database structure. Schema versioning

and schema evolution offer a solution to the problem by enabling intelligent handling of any

temporal mismatch between data and data structure. This survey discusses the modelling,

architectural and query language issues relating to the support of evolving schemata in database

systems. An indication of the future directions of schema versioning research are also given.

Keywords

Schema Evolution, Schema Versioning, Evolving Database Systems

1. Introduction

1.1. Background

Database and software systems are rarely stable following initial implementation. Although

estimates differ, most agree that 50% or more of programmer effort arises as a result of system

modifications after implementation (Lientz 1983) and facilitating those changes is complicated if

large numbers of programs or large quantities of data are involved. Moreover, system modifications

that result in changes to database structure are relatively frequent (Sjøberg 1992, 1993). As a result,

modifying the database schema is a common, but often troublesome, occurrence in database

administration. These are significant industrial concerns, both from the viewpoint of database system

manufacturers and information system users. Schema evolution, and its stronger companion, schema

versioning, have arisen in response to a need to retain data entered under schema definitions that have

since been amended. A more formal definition of schema evolution is given later but a loose definition

can be given as the ability for a database schema to evolve without the loss of existing information.

Schema evolution and schema versioning can also be considered to contribute to the solution of a number

of identified deficiencies in current database systems research, for example, in the database support

for legacy systems (Stonebraker, et al. 1993) and non-stop, industrial strength databases (Selinger

1993).

Interest in evolving database systems has predominantly resulted from research in two areas. Firstly,

as a logical extension from work with temporal data modelling and temporal databases, and secondly

from within the object-oriented paradigm, specifically with a view to producing architectures

suitable for CAD and other Engineering domains. A recent (and growing) bibliography of schema

evolution research (Roddick 1994) lists over 50 papers in the area of which only a handful are dated

prior to 1987. This research has been in connection with both relational (Clifford and Croker 1987;

Dadam and Teuhola 1987; McKenzie and Snodgrass 1990; Ariav 1991; Roddick 1991, 1992b; Ventrone

and Heiler 1991) and object-oriented databases (Banerjee, et al. 1986, 1987a, 1987b; Skarra and Zdonik

1986, 1987; Zdonik 1986; Penney and Stein 1987; Chou and Kim 1988; Kim and Chou 1988; Bretl, et al.

1989; Kim, et al. 1989; Nguyen and Rieu 1989a, 1989b; Osborn 1989; Lerner and Habermann 1990).

1.2. Pragmatic considerations

Before looking in detail at the issues, since the demand for evolving schemata is being driven by the

user community, this section discusses briefly some of the constraints or practical considerations for any

proposed solution to the problems.

First, it is recognised that schema modifications need to be, to a greater or lesser extent, guided by the

database administrator. However, it is desirable that schema modification should require the

minimum level of intervention appropriate to the change being performed. Details of the

implementation (such as decisions between strict or lazy data conversion, for example) are dependent

more on the operational environment rather than the user’s requirements and thus should not be the

direct concern of database administrators. Not withstanding this, it is unlikely, and probably

undesirable, that the database design process will ever be totally automated.

Second, the schema modification should be as symmetric as possible so that not only can existing data

be viewed through new schema definitions but also so that data recorded later can be viewed under

previous schemata. This would also promote a stability of operation by not requiring existing

applications to be recompiled. In addition, changes should be as reversible as possible so that

erroneous changes can be removed. This implies, for example, that data definition functions should

operate losslessly.

Third, as far as possible, the modifications should be expressed in terms of definable algebraic

operations on the schema and should allow for formal verification of the schema change within the

system as a whole. This would provide for a known and complete mechanism for schema

manipulation. Furthermore, rather than supplying a large numbers of schema change operators,

changes on a larger scale might be made available through a composition of more elementary

operations.

Finally, while many models require some level of transaction-time support for schema definitions (in

order to identify the versions) it should not be a requirement to support time in the base architecture

(although see the parallels discussed in §2.3). The advantages of doing so have been examined in

depth elsewhere (see for example (Snodgrass and Ahn 1986; Roddick and Patrick 1992; Tansel, et al.

1993)) but it would defeat the purpose to enforce this as a prerequisite.

1.3. Outline of this paper

This paper surveys the field of schema versioning in database systems and is organised as follows.

Section 2 provides a number of definitions including refinements to those presented by Jensen, et al.

(1994). The associated areas of data and view integration and temporal data modelling are also

discussed. Sections 3 to 6 discuss various issues in schema versioning outlining current proposals and

prototypes. Section 3 looks at data modelling issues, section 4 looks at architectural issues while

section 5 looks at query language considerations. Section 6 discusses a few issues which do not fit easily

under the other headings. Finally section 7 draws these issues together and presents a number of areas

for future research.

2. Handling heterogeneous schemata

This section gives some definitions and discusses the wider field of accommodating heterogeneous

schemata in database systems. For completeness, this section also introduces the concepts of data and

view integration and temporal data modelling and discusses their relationship with schema

evolution.

2.1. Schema modification, evolution and versioning

The distinction between modification, evolution and versioning of database schemata has been, in

some cases, confused and, where distinction has been made, there have been various usages of the

terms. The following definitions, however, are implicitly consistent with the majority of the research

dealing with schema evolution and versioning issues (Beech and Mahbod 1988; Narayanaswamy and

Bapa Rao 1988; Bjornerstedt and Hulten 1989; Osborn 1989; Andany, Leonard and Palisser 1991; Ariav

1991; Monk and Sommerville 1992, 1993) and were included by the author in a recent glossary of

temporal database concepts (Jensen, et al. 1994).

Definition - Schema Modification

Schema Modification is accommodated when a database system allows

changes to the schema definition of a populated database. n

Definition - Schema Evolution

Schema Evolution is accommodated when a database system facilitates the

modification of the database schema without loss of existing data. n

Definition - Schema Versioning

Schema Versioning is accommodated when a database system allows the

accessing of all data, both retrospectively and prospectively, through user

definable version interfaces. n

A number of points should be made about these definitions:

i . In its simplest sense, schema evolution does not imply full historical support for the schema;

only the ability to change the schema definition without loss of data. In practice, retention

of past definitions will often be appropriate. In contrast, schema versioning, even in its

simplest form, requires that a history of changes be maintained to enable the retention of past

schema definitions.

i i . The significant difference between evolution and versioning is the ability for users to identify

quiescent or stable points in the definition and label the definition in force at that time for

later reference. Schema evolution does not require the ability to version data except in so far

as each changed schema can be considered a new version. Nor does it require that the

database system provide a viewing mechanism using past schema definitions.

i i i . Schema changes will not necessarily result in a new version. Typically schema changes will

be of a finer grain than the definable versions.

iv. Versions will tend to be labelled either by the (transaction) time of the schema change or by

some user-defined method whereas schema evolution changes are referred to more often only

by the time of change.

As will be discussed in this paper, the accommodation of schema versioning presents various open

problems relating to the update of data through historical schemata. The definition of schema

versioning is therefore refined further by distinguishing between retrieval and update activity as

follows:

Definition - Partial Schema Versioning

Partial Schema Versioning is accommodated when a database system allows

the viewing of all data, both retrospectively and prospectively, through user

definable version interfaces. Data updates are allowable through reference to

one designated (normally the current) schema definition only. n

Definition - Full Schema Versioning

Full Schema Versioning is accommodated when a database system allows the

viewing and update of all data, both retrospectively and prospectively,

through user definable version interfaces. n

It should be noted that the term “evolutionary” is also used in relation to systems using a genetic or

natural systems approach. An example is presented by van Bommel who presents a methodology

which enables the development of structurally optimised data models (van Bommel 1993). The

approach searches the solution space of possible internal representations of a conceptual model by

random mutation. Although using an evolutionary approach, the accommodation of schema evolution

of populated databases is not discussed.

2.2. Data and view integration

A closely associated research area is that of data and view integration which aims to facilitate the

merging of schemata for update or viewing purposes. Research in this area has largely been directed

at integrating heterogeneous systems but the applicability to the evolution of schemata is clear.

Miller, Ioannidis and Ramakrishnan (1993) for example, investigate the concept of the information

capacity of a schema to decide whether data or view integration would be lossless. A taxonomy is

given in which the translation ability for two schemata is distinguished by their ability to retain

information during update and retrieval. This aspect is also investigated by Orlowska and Ewald

(1991, 1992; Ewald and Orlowska 1994) who view schema integration as a schema evolution process in

which the integration of two or more schemata is effected by choosing one and applying the facts held

in the others. Geller, et al. (1992) present a method which allows the integration of structurally

similar but semantically dissimilar datasets by using a “dual” model which maintains separate

representations for structure and semantics. Other work in this area includes Atzeni, et al. (1982) and

Larson, Navathe and Elmasri (1989). To the knowledge of the author, schema and view integration of

temporal database systems has not been investigated (see §2.3).

The four terms, schema evolution, data integration, view integration and schema versioning may be

considered as flavours of the same general problem - that of using multiple heterogeneous schemata for

various database related tasks. A taxonomy of research emphases for the various areas may be

promoted by examining the temporal relationships between the data format and the schemata for the

tasks required which, for simplicity in Table 1 below, are data retrieval, data updating and effecting

structural alterations. These are tabulated against the schema used for the retrieval etc. and the

format through which the data was stored. In all cases a populated, tractable, online database is

assumed. The primary schema in the case of schema evolution and schema versioning corresponds to

the current schema while in the case of data and view integration it corresponds to the integrated

schema. Similarly, the secondary schema corresponds to either the historical or local schemata or

user views as appropriate. The pathological cases where the user-view equals the integrated view

and when the local schema is the same as the integrated schema are shown parenthetically.

Schema
used for
function

Data held in the
format corresponding

to…

Data
Retrieval

Data
Update

Structural
Alterations

Primary Primary schema SE, SV, DI,
(VI)

SE, SV, DI,
(VI)

SE, SV

Secondary schema SE, SV, DI SE, SV, DI

Secondary Primary schema SV, VI FSV, VI ?

Secondary schema SV, VI, (DI) FSV, VI, (DI)

Key
SE = Schema Evolution,
SV = Schema Versioning (Partial or Full),
FSV = Full Schema Versioning,
DI = Data Integration,
VI = View Integration
? = Little published research

Table 1. Connection between areas of interest aims of schema handling research

Although very similar to data and view integration and although many aspects of this work are

common, the accommodation of historical data and the ability to retain, and in some cases to influence,

the evolutionary history of schemata enable and necessitate a different treatment of the problem.

2.3. Temporal database systems

As many of the concepts used in schema versioning are similar to those associated with temporal

database systems, for completeness, a brief overview of temporal database systems is now given.

Readers are, however, directed to other sources for a far more complete treatments of this area

(Clifford and Ariav 1986; Snodgrass and Ahn 1986; Dean and McDermott 1987; Roddick and Patrick

1992; Tansel, et al. 1993). Only those aspects of temporal databases relevant to this survey are

discussed here.

Temporal data models are concerned with the accommodation of the inherent temporal nature of the

object world and the time-dependent recording of facts from a representation of this object world in a

database system. Temporal data models are thus concerned with two orthogonal time dimensions,

“real-world time”, referred to in the temporal database literature as valid-time, and “database

system time”, referred to as transaction-time. Temporal database systems accommodating these are

known as valid-time databases, transaction-time databases or bitemporal databases depending on

their capacity to handle either of both of the two temporal dimensions. The proposed query languages

defined to handle bitemporal data are augmented to allow a user to specify either or both of valid-

time and transaction-time expressions for data retrieval or valid-time expressions for data update

(transaction-time is a function of the time of update and cannot therefore be specified by the user).

Furthermore, the time dimensions may be referenced in two ways; either by reference to a time

continuum, known as absolute time referencing, or by reference to other events, commonly termed

relative or indirect time referencing. Finally, the term temporal density refers to the manner by

which data values are inferred at time points not explicitly recorded in the database. Various

mechanisms have been proposed, including stepwise change, discrete event and continuous change. For

the purposes of schema evolution, the stepwise change of database objects is usually assumed.

In common with schema versioning and schema evolution, temporal extensions have been defined for a

number of database paradigms including relational, extended relational, object-oriented and

deductive.

3. Data Modelling Issues

Miller et al. (1993) have shown that in order to update data stored under two different schemata using

the opposite schemata, they must be equivalent, ie. all valid instances of some schema S1 must be able

to be stored under S2 and vice-versa. Since it is not possible (generally) to foresee the future

requirements of the database, and hence the changes required to the data structure, and since neither

the active nor the historical schemata can be changed (in general it is only possible to create a new

version which supersedes the old), this is too strong a condition to impose in many cases. Most papers

dealing with the issue of modelling evolution in databases therefore adopt the weaker concept of

partial schema versioning in which data stored under any historical schema may be viewed through

any other schema but may only be updated through the current or active schema. Even this level of

support often necessitates imposing some form of restriction on the schema modifications which can be

achieved without database reorganisation and data coercion. This section discusses various data

modelling issues associated with evolving schemata. As would be expected, a number of the issues

raised here are revisited in Section 5 when the characteristics of query language design are discussed.

3.1. Domain/type evolution

It is significant that while the evolution of a domain is one of the simplest modifications that can be

made to a data model, it still represents a non-trivial amendment to the database schema1. Consider

the trivial (but common) example suggested by Roddick (1992a) in which a salary relation holds the

following fields:

Staff Id Position Code Salary

1 G55 $33,000

2 G56 $37,000

3 A05 $45,500

4 A09 $65,400

5 G51 $32,000

Figure 2. Example salary relation from Roddick (1992a)

Suppose that the existing position codes are to be replaced with new codes based on new incompatible

domains, for example, a position code based entirely on a domain of four-digit integers. The database

administrator is faced with the problems arising from the retention of the current data such as:

i . Is the position code attribute to be defined as (the hybrid) alphanumeric despite the new

position codes being purely numeric?

i i . Is another attribute required to store the old codes, if so, for how long is this attribute

retained? How is this old field related to the new one by the applications?

i i i . What about position histories and retired employees for whom no new format position code

may be allocated?

As another example, consider the reduction in size of the domain of a primary key which, in the worst

case, may result in the illegal introduction of duplicate values.

Ventrone and Heiler (1991) discuss data interpretation problems caused by a change to a domain. They

present a number of examples of changes to the semantics of a domain which may result in lost or

misleading information. These examples can be grouped into two sets; those that are Object System

generated, such as cardinality or granularity changes, and those that are Database Administration

1 The schema is considered to be the repository for knowledge about the (evolving) structure of the database.
Under some paradigms this may be hard to isolate, nevertheless the abstract idea of an all knowing schema is used
here to represent its equivalent in various paradigms.

generated, such as field recycling or data encoding changes. Their suggestions towards a proposed

solution emphasise the importance of capturing the semantics of a domain and the identification of

that semantic content within the metadata thus replacing the problems of semantic heterogeneity by

more tractable problems of syntactic heterogeneity (Ventrone and Heiler 1991). There is a strong

suggestion that the semantic capabilities of data dictionaries (ie. schemata) should be enhanced and

tied more closely with the interpretation of values in the database.

The domain evolution problem is strongly associated with the expressiveness and the structure of the

type system adopted by the database system. The SQL approach of using character strings, exact

numeric types and approximate numeric types requires more database administrator intervention than

one in which a C-like cast is available (such as in SQL-92) or when weak typing is adopted. The

TSQL2 language design proposal for example, utilises the SQL-92 casting mechanism with some rules

for data conversion and a fall-back position of the null or some other value when data are not

convertible2.

Domain evolution is a good example of the distinction between schema evolution and schema

versioning. Under schema evolution, existing instances must be converted to the new format (the

mechanisms for achieving this are discussed in Section 4.2) and thus existing applications are rendered

incompatible. Versioning promotes program compatibility by leaving the existing definition in place

(Zdonik 1990; Clamen 1992).

3.2. Relation/class evolution

Relation and class evolution include attribute and relation/class definition, redefinition and deletion

and class lattice modification. Within the temporal database paradigm this may also include

attribute and relation/class deactivation and reactivation. Suggestions in the literature indicate that

modification of the database schema to accommodate changes at the relation or class level (and

above) can be achieved in a number of ways. For instance, within the object-oriented paradigm a

common method is to establish a set of invariants to ensure the semantic integrity of the schema and a

set of rules or primitives for effecting the schema changes (Banerjee, et al. 1986; Bretl, et al. 1989;

Lerner and Habermann 1990) while within the relational model a set of atomic operations is proposed

which result in a consistent and, as far as possible, reversible database structure (Shneiderman and

Thomas 1982).

It is important that the evolutionary history of the database's relational or class structure be

traceable. The DDL statements must therefore be both logically complete, so that users need not resort

2 This exercise, known as the TSQL2 language design proposal, aimed to define a temporal extension to the SQL92
standard. Relevant papers relating to this effort include (Hsu, Jensen and Snodgrass 1992a, 1992b; Snodgrass
1992; Roddick and Snodgrass 1993, 1994; Snodgrass, et al. 1994) .

to DML support (to directly modify data), and clear, both in their specification and their action. In

earlier work (Roddick 1993; Roddick, Craske and Richards 1993) a taxonomy for schema evolution is

proposed which uses a transaction-time meta-relation approach; ie. previous schemata may be

constructed through temporal rollback of the meta-relations.

Many schema change requirements will involve composite operations and thus a mechanism for

schema level (DDL) commit and rollback functions are suggested which should be separate from the

data level (DML) commit and rollback operations. In addition, the data level commit operations

might function differently when schema level transactions are active. For example, since data

updated to a revised schema may be inapplicable if the schema change is not itself committed, it may

not be considered appropriate to allow data to be committed outside of the scope of the current session

until the schema-level commit is issued. This allows for the definition and population of attributes to

be completed as one molecular operation. As an example, the following sequence of database

operations may be issued to test a program:

Add attribute(s) to relation;
Populate attribute(s);
Data level commit;
Run test programs;
If tests successful

Schema-level-commit;
else

Schema-level-rollback;

It should be noted that the issue of long-lived and nested transactions is the subject of much current

research and any proposals in this area should not be isolated from this research. See also the

discussions in Section 4.4 on the use of multiple concurrent versions.

3.3. Algebras supporting schema evolution

The relational model (Codd 1970) and its extension (Codd 1979) provide for a logically complete

language with which to describe data transformations (Codd 1972) and a number of time-related

algebras have been proposed to extend the static relational model (Clifford and Tansel 1985; Tansel

1986; Clifford and Croker 1987; McKenzie and Snodgrass 1987a, 1987c, 1990; Gadia 1988; Lorentzos and

Johnson 1988; Sarda 1990; Tuzhilin and Clifford 1990). A survey of valid-time and bitemporal

algebras is given in McKenzie and Snodgrass (1991) which includes an evaluation of twelve

representative algebras against various criteria. Of these, only the proposals by McKenzie and

Snodgrass (McKenzie and Snodgrass 1987b, 1990; McKenzie 1988) are extended to deal explicitly with

schema evolution3.

3 The nomenclature outlined in (Jensen, et al. 1994) is adopted in this paper in which the term bitemporal refers to
the accommodation of both valid-time (the time when the fact is true in the modelled world) and transaction-time
(the time when it was physically recorded in the database). In a previous taxonomy (Snodgrass and Ahn 1985)

4. Architectural Issues

4.1. Schema conversion mechanisms

A number of suggestions have been proposed for the conversion of the schema at the physical level.

Firstly, the complete schema can be converted to a new version as in Orion (Banerjee, et al. 1986; Kim,

et al. 1989, 1990). This method, while being conceptually simple, prohibits the parallel schema

versions required in some application environments. The approach of Skarra and Zdonik in Encore

(Skarra and Zdonik 1986, 1987; Zdonik 1986) is to version at class level and thus permit parallel

changes as long as they are in different classes. Secondly, Kim and Chou (1988), and later Andany,

Leonard and Palisser (1991), present a system whereby views (or contexts) are constructed and schema

evolution is achieved through view creation. This allows multiple concurrent versions of the schema.

The relational equivalent can be considered as the creation of a completed or meta-schema. Thirdly,

as in Charly (Palisser 1989), the objects can be made self descriptive thus making object and schema

modification homogeneous. This method, while being potentially powerful, leads to other problems

(for example, schema versioning by this method is difficult) and was later rejected by Andary et al. in

favour of the Kim and Chou approach in a subsequent system.

4.2. Data conversion mechanisms

Currently, when a change to a schema is required any changes made by the Database Administrator

are propagated to the data immediately (this parallels the concept of strict evaluation in functional

programming languages). This results in the database being unavailable while the data are being

modified and encourages a centralised schema change operation. This method is exemplified by the

strict (or eager or early) conversion method adopted in GemStone (Penney and Stein 1987) in which a

change to the schema results in an immediate propagation of that change to the data. This results in

longer schema modification time but reduces subsequent data access time. An interesting extension to

this approach is given by Lerner and Habermann (1990) where a data transformation table generator is

used to produce routines to assist the Database Administrator with the data conversion.

As an alternative, Tan and Katayama (1989) propose a lazy mechanism for converting data in a

database to the current version only when required. Given the assumptions that routines exist and may

be run at any time to effect the conversion, the lazy evaluation method has the following advantages:

i . Changes to the schema can be made more rapidly,

the term temporal was used although this is now used to refer more widely to data models which support some
aspect of time. Similarly the term historical has been replaced by valid-time and the term rollback has been
replaced by the term transaction-time.

i i . Data are changed only when required and thus the identification of obsolete data is not

required,

i i i . The immediate withdrawal of a schema change operation is possible without effect.

Furthermore, compensating schema changes may result in no physical data change at all4.

The method proposed in ORION argues for a logical conversion only (Banerjee, et al. 1986, 1987b; Kim

and Chou 1988). A system of screens is proposed which translates the attribute into the required

format at data access time. No conversion is therefore required. This method has neither the schema

modification overhead of GemStone, nor some of the data access overhead of the lazy conversion

method of Tan and Katayama. However, the method leads towards a database of increasing

complexity and therefore one needing to be rationalised at appropriate quiet points. Skarra and

Zdonik introduce a method similar to that of ORION whereby identifiable versions are defined

periodically to link all instances in a database (Skarra and Zdonik 1986, 1987; Zdonik 1986). A

schema change in itself may not be sufficient to create a new version and individual instances which

differ from the version interface are dealt with by an error handling routine. Thus access to data may

involve instance variables being modified twice, the first time to ensure they adhere to the version

interface and the second time for conversion to the required format.

4.3. Access right considerations

In object-oriented database systems where methods and attributes can be inherited from classes higher

in the hierarchy, schema evolution changes can result in violations of access rights. Consider, for

example, a change to an Employee class from which attributes are inherited to an Engineer class and

for which the modifying user has no legitimate access. Any change to the definition of these inherited

attributes can be considered to violate the access rights of the class. Moreover, in some systems

ownership of a class does not imply ownership of all instances of that class. In GemStone (Bretl, et al.

1989) ownership of the class is considered sufficient authorisation to allow modification to all

instances of that class and any subclasses that may inherit attributes.

4.4. Concurrency considerations and concurrent schemata

In a multi-user environment, it may be possible to modify the database schema while another user is

currently accessing the database. This aspect is explored by Sockut and Iyer (1993). These problems

can be overcome if schema versioning is accommodated but are significant if static schema evolution

only is supported. This problem becomes more acute when two users are modifying related schema

definitions at one time.

4 Consider for example the reversed business decision not to hold cents on financial values.

Multiple concurrent versions have been proposed by a number of researchers, most notably by Zdonik

(1986) who proposes the concept of a surface of consistency. Under this approach two users may both

read, modify and update the same schema version resulting in two, probably inconsistent versions but

which are both consistent with the remaining definition in the database. In this way a surface of

consistency is developed linking consistent parts of the database definition. New transactions are

required to choose between the alternative surfaces of consistency when the transaction is started and a

system of conversational merging is used to coalesce divergent paths. This aspect also relates to the

meta-level transactions discussed in Section 3.2. If multiple versions are permitted multiple future

schema version(s) could be tested and refined as alternatives to the current schema until

implementation time when conversational merging would take place in the form of merging the

requirements of the new versions and the imposition of translation functions from the current to the,

now unified, new version.

5. Issues in query language support

With the possibility of multiple versions coexisting within a database system, the availability of

data being retrievable through versions other than the current one becomes apparent. As discussed

earlier, research into temporal databases (qv. work by Ben-Zvi (1982) and Snodgrass (1987)) has

illustrated the difference in temporal perspective that users can adopt when viewing database data.

By adding the facility of schema evolution users can view data by three independent mechanisms.

i . Valid-time (The time line pertaining to reality)

i i . Transaction-time (The time data was stored in the database)

i i i . Schema-time (The time indicating the format of the data through reference to the

schema active at that time)

The first two have been examined widely and will not be of concern here. The latter provides a

mechanism which ensures that the data adheres to a specified version. The time the object model

structure changed (the meta-database equivalent of valid time) can be considered as a fourth type of

time. The sections below examine some of the issues of incorporating schema-time into a query

language5.

5 This was first published as part of an SQL extension presented in Roddick (1992b). Parts also appeared as
commentaries in the current TSQL2 collaborative effort to accommodate temporal support within the SQL92
standard (ISO 1992; Roddick and Snodgrass 1993, 1994; Snodgrass, et al. 1994).

5.1. Levels of support for schema evolution in query languages

Five approaches may be taken to the handling of changing database structure by database query

languages.

i . It can be ignored. That is, it is assumed that the schema is immutable once set up or that

queries using an old schema definition are illegal. This is the current assumption used by most

database query languages. Note that this does not preclude the use of temporal database

systems as long as all data adhere to the same schema definition.

i i . A restriction can be included that no schema changes may have taken place during the

interval(s) used to satisfy the query.

i i i . It can be accommodated fully allowing database queries to be asked using any or all of the

three (or more) temporal dimensions (valid, transaction and schema-time)6. A query using all

three dimensions would be “Find all employees who earned more than $40,000 in 1992, as

recorded on January 1, 1993, and report the details using the format in use in March 1993”.

This approach would provide the maximum resilience for application programs.

iv. Schemata can be allowed to change and the effective schema definition is that of a schema

containing all attributes that were defined for the relation at all points during the

transaction-time intervals used to satisfy the query.

v. Schemata can be allowed to change and the effective schema definition is that of a

completed schema containing the union of all attributes that were defined for the relation at

any point during the transaction-time intervals used to satisfy the query, cf. (Clifford and

Warren 1983; Roddick 1991).

The first two approaches are simple but overly restrictive as, in many practical situations, schemata

do change (qv. (Sjøberg 1992, 1993)). The third approach is the most expressive while the latter two

are simplifications on this approach. Option v. is an attractive alternative to option iii. for the

following reasons:

i . It degrades to the static case in the case where schema evolution is not used for the relation.

i i . Query language semantics can intuitively be fashioned to degrade to conventional (static)

database query languages.

i i i . It enables all relevant attributes to be displayed but without intuitively irrelevant attributes

also being displayed.

iv. It is conceptually simple (although not as simple as the static case).

v. It enables database schema to be free of inactive attributes while still providing a

mechanism for retrieval of the historical data.

6 Some researchers have identified situations where more than three time dimensions are necessary.

5.2. Completed schemata

It is often necessary to obtain a complete listing of the data held in a database for such purposes as

audit or backup. In their temporal modelling research, Clifford and Warren examine the concept of

the completed relation as a relation containing a tuple for every key that has existed in that relation

(Clifford and Warren 1983). This concept can be applied to the schema to create (in relational

database terminology) a completed schema with relations containing the union of attributes that has

ever been defined for them, each with the least general domain which can include all domain values.

In cases where a general domain cannot be used it is necessary to duplicate the attribute with enough

different domains to hold all necessary values.

This completed schema can be considered as an overarching version and can be used to extract data

across versions. This facility is difficult to implement in some of the proposals presented (most

notably by Palisser (1989)) due to the searching necessary to compile the completed schema.

5.3. Problems presented by null values

The three-valued null logic proposed by Zaniolo (1984) and Roth, Korth and Silberschatz (1989)

presupposes a static schema. The introduction of attributes (or relations) undefined at a given point in

time introduces new semantics to null values in the database. Indeed, Zaniolo's 3-valued null logic can

be extended by a dimension as follows:

Attribute is Defined Attribute is Not Defined

Value is
Known

Value is
Unknown

Value is
Known

Value is
Unknown

Attribute is
Applicable

value ω1= UNK ω4 ω5

Attribute is
Inapplicable

ω2 = DNE ω6

Applicability is
Unknown

ω3 = NI ω7

Table 3 Null value interpretations

For example, for attributes not currently defined their value is dependent on the reason behind their

non-existence. Intuitively, a student does not cease to have a marital status simply because the

information is no longer collected. Thus in this case a value unknown null would be an appropriate

interpretation for the missing data. However a change in the object system (such as the subdivision of

a University into Faculties) may result in additional attributes being introduced. In this case an

attribute inapplicable would be appropriate for extant data7.

5.4. Schema valid-time support

Many of the temporal models proposed in the literature suggest a duality of time lines with respect to

stored data; the date the real world event occurred and the date the data about that event was stored

in the database. This duality exists also in the definition of the schema; the date the schema change

is to take effect and the date the schema modification is recorded in the (meta) database. McKenzie

and Snodgrass propose an extension to the relational algebra to support schema transaction time but

argue that schema valid time is not necessary since it (schema evolution) defines how reality is

modeled by the database (McKenzie and Snodgrass 1990). It could be argued however that the same

reasons advanced for the holding of valid-time data (rollback, auditing, etc.) can be advanced for

accommodating schema valid time. The utility of adding this aspect to the query language is largely

dependent on the user's auditing requirements for the information system and the system's capacity to

hold such data.

5.5. Schema-time projection

The relation project operator involves the specification of a subset of the relation’s attributes through

which the base relation is viewed. Versioning requires that we determine the effective schema used

for data retrieval, which can be considered as one of a number of possible views of the underlying data.

The term schema projection is therefore used to describe this viewing operation, the two foremost

aspects of which are the method of schema specification and the method of effective schema

construction.

5.5.1. Implicit .v. explicit specification

The specification of the schema version required may either be implicit in the rest of the query or

explicitly stated by the user. If implicit there are a number of ways in which the schema could be

selected, including:

7 The problems presented by null values is becoming increasingly complex and can be associated with the problems
of fuzzy data, unreliable data, unavailable data and granularity mismatch. For example, researchers looking at
access authorisation, especially in an OODBMS context, have suggested a null indicating Not Authorised (Gal-
Oz, Gudes and Fernandez 1993). Other researchers, including the author, have suggested nulls for Temporally
Inapplicable Attributes (Roddick 1991) and for attribute values representing higher level concepts of the correct
data. Table 3, for example, shows that Zaniolo’s 3-valued null logic may be expanded to a 7-valued null logic
with the current understanding of a null being a set Φ ≡ {ω1 - ω7}. ω4 - ω7 have different semantics from ω1 - ω3.
ω4, for example, indicates that the database holds a known value in an applicable attribute but that the schema
being used prohibits its display (although for structural rather than for security reasons). Much of this work,
however, is outside the scope of this paper and is the subject of future work. See also Atzeni and De Antonellis
(1993).

i . the current schema;

i i . a default schema (which may not be the current schema);

i i i . a function of the (implicit or explicit) transaction-time of the query; or

iv. a function of the (implicit or explicit) valid-time of the query.

The first option is the simplest and, given the need to accommodate legacy applications, arguably the

most attractive. The other two require temporal query language support in addition to schema

versioning (which may be provided separately).

Alternatively, the user may explicitly state the version by either:

i . specifying by version date;

i i . specifying by version name (if applicable);

i i i . specifying by reference to the transaction-time interval specified in the query;

iv. specifying by reference to valid-time interval specified in the query.

The first option allows for some measure of program stability by allowing embedded database queries

within an application to specify version as at <compile-time>. As above, the latter two require

temporal query language support.

5.5.2. Simple .v. constructed schemata

In addition to the aspect above, the explicit specification of schema-time may be given as either an

event (the schema current at a specified time) or as an interval (some function of the schemata current

during a specified period). The former results in the use of a schema definition as defined at some

point in time. This mode of schema specification is termed simple. For simple schema specification it

is sufficient to give an absolute time or the version name. For the latter a schema is constructed from

those active versions during the specified (or implied) interval. The two obvious functions are the

intersection and union (completion) of the attributes active for the relations during that period.

5.6. Schema-time selection

Schema-time selection is used to access data based on the schema employed to store the data or the

format the data currently adheres to. This may be necessary in some systems in order to access old

format data. As discussed earlier, the ability to remove erroneous schema changes is linked to the

mechanisms invoked when changes are required to the data. From the query language design

viewpoint these are largely architectural considerations although some approaches result in data

being held in heterogeneous formats, some of which may be excessively old. In these situations the

query language must support the periodic “updating” of such data by providing selection predicates

indicating schema format time. Note that the transaction-time values used in temporal query

languages may not necessarily be sufficient as they indicate only the date of the last modification by a

user, rather than of a modification by the system for performance purposes.

5.7. Version naming

Versioning of schemata requires that a method of version naming be adopted. This can be any (or all)

of a user-defined naming convention, a system-defined naming convention or system-defined time-

stamping mechanism. This may be employed when a new schema is committed as follows:

i . A new version is created which can be referenced through either (a function of) the time of

creation or with a user-defined name;

i i . A new version is created which can only be referenced through (a function of) the time of

creation;

i i i . A new version is not created, ie. there may be multiple evolutionary transactions between

versions.

The naming of versions is most likely to occur at schema-level commit time for two reasons. Firstly,

many query languages, including SQL, have no transaction start command and secondly, version naming

is only required if the schema change is committed.

5.8. Casting of output attribute domains

While not directly necessary for schema evolution, a casting or user-defined conversion mechanism

(such as in C and in the SQL92 language standard) may provide stability for applications which use

embedded queries by allowing applications to coerce the data value to the required format. The

conversion routines are intuitively simple and the null, or some other specified value, may be used in

cases where conversion is not possible. In earlier work (Roddick 1993) a user-defined value

(essentially a second null value) is proposed which can be used when a datum is incompatible with the

target format.

6. Other related research issues

A number of research areas are related to the problems of database schema versioning/evolution. For

example, work by Sjøberg (1992, 1993) investigates the quantification of schema changes within

database systems in order to understand the ways in which schema changes are applied to actual

systems both under development and in use. Such knowledge may be used to influence the architectural

considerations for databases with schema evolution support; for instance in the choice of lazy or eager

data conversion.

In temporal databases the concept of vacuuming allows for the physical deletion of temporal data in

cases where the utility of holding the data is outweighed by the cost of doing so (Jensen 1993). Similar

consideration must be given to the retention of old schema definitions, especially in cases where no

data exists adhering to either that version (physically) or referring, through its transaction-time

values, to the period in which the definition was active. In (Roddick and Snodgrass 1994) two

pragmatic positions are proposed:

i . All schema definitions which pre-date all data (both in format and in transaction-time

values) are to be considered obsolete and should be deleted;

i i . Old schema definitions are considered valuable independent of whether data exists and may

only be deleted through a special form of vacuuming.

For the sake of simplicity, the option adopted in (Roddick and Snodgrass 1994) was the former,

however, both options are worth further research.

7. Further Research

This paper introduced the area of schema versioning and schema evolution in database systems

including some of the associated areas such as query language support. Although various prototype

systems have been developed and many of the ideas are starting to be incorporated into commercial

systems, particularly object-oriented systems, significant research areas remain. In particular the

following issues need to be addressed in more detail.

i . The ability to accommodate schema evolution within existing database systems. This

includes accommodating schema evolution into existing query languages.

i i . The relationship of database schema evolution to the evolution of software systems.

i i i . The pragmatic limitations of automated schema evolution. That is, to what extent should a

database system assume that existing data can be accommodated under the revised structure

and when should the DBA be required to direct changes?

A prototype database system Boswell is currently being constructed which aims to incorporate not only

schema evolution (structure driven changes) but also transient inductively generated facts discovered

through data mining (changes to which can be considered as update-driven schema evolution)

(Roddick, Craske and Richards 1994). Some of the issues discussed here are thus one part of a larger

project aimed at capturing and using the dynamic nature of database systems.

Some of the ideas contained here have also been proposed as background to a temporal extension to the

SQL92 standard, TSQL2. The commentaries giving background discussions on this initiative are

available on-line in the tsql/doc directory at FTP.cs.arizona.edu via anonymous FTP while

further information on this initiative may be obtained from Prof. Richard Snodgrass at the University

of Arizona.

Acknowledgments

I would like to acknowledge helpful support and comments from A/Prof. Tom Richards, La Trobe

University, Dr Noel Craske, Monash University, Prof. Chris Marlin, Flinders University and Prof.

Richard Snodgrass, University of Arizona. This work was done while on study leave at La Trobe

University, Victoria, Australia and at the Flinders University of South Australia. The research was

supported, in part, by a research grant from the University of South Australia.

I would also like to thank the anonymous referees for their useful comments on a previous version of

this article.

References

Andany, J., Leonard, M. and Palisser, C. 1991. ‘Management of schema evolution in databases’. In Proc.

17th International Conference on Very Large Databases, Barcelona, Spain. G.M. Lohman, A.

Sernadas and R. Camps (eds.). Morgan Kaufmann, San Mateo, CA. 161-170.

Ariav, G. 1991. ‘Temporally oriented data definitions: managing schema evolution in temporally

oriented databases’. Data Knowl. Eng. 6(6):451-467.

Atzeni, P., Ausiello, C., Batini, C. and Moscarini, M. 1982. ‘Inclusion and equivalence between

relational database schemata’. Theoretical Computer Science. 19267-285.

Atzeni, P. and De Antonellis, V. 1993. Relational database theory. Benjamin/Cummings, Redwood

City, SA.

Banerjee, J., Chou, H.-T., Garza, J.F., Kim, W., Woelk, D. and Ballou, N. 1987a. ‘Data model issues for

object-oriented applications’. ACM Trans. Off. Inf. Syst. 5(1):3-26.

Banerjee, J., Chou, H.-T., Kim, H.J. and Korth, H.F. 1986. ‘Schema evolution in object-oriented

persistent databases’. In Proc. 6th Advanced Database Symposium, Tokyo. 23-31.

Banerjee, J., Chou, H.-T., Kim, H.J. and Korth, H.F. 1987b. ‘Semantics and implementation of schema

evolution in object-oriented databases’. ACM SIGMOD conference, SIGMOD Record. 16(3):311-

322.

Beech, D. and Mahbod, B. 1988. ‘Generalised version control in an Object-oriented database’. In Proc.

4th IEEE International Conference on Data Engineering, Los Angeles, CA. IEEE Computer Society

Press. 14-22.

Ben–Zvi, J. 1982. ‘The time relational model’. Ph.D. thesis, University of California, Los Angeles.

Bjornerstedt, A. and Hulten, C. 1989. ‘Version control in an object-oriented architecture’. In Object-

Oriented Concepts, Databases and Applications. W. Kim and F. Lochovsky (eds.), Addison-

Wesley/ACM Press, New York. 451-485.

Bretl, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J., Williams, E.H. and Williams, M.

1989. ‘The GemStone data management system’. In Object-oriented Concepts, Databases and

Applications. W. Kim and F. Lochovsky (eds.), ACM Press, New York. 283-308.

Chou, H. and Kim, W. 1988. ‘Versions and change notification in an object-oriented database system’.

In Proc. 25th ACM/IEEE Design Automation Conference,

Clamen, S.W. 1992. ‘Class evolution and instance adaptation’. Technical Report CMU-CS-92-133.

Carnegie Mellon University, Pittsburge, PA.

Clifford, J. and Ariav, G. 1986. ‘Temporal data management: models and systems’. In New Directions

for Database Systems Ch. 12. ABLEX Publishing Co., Norwood, N.J. 168-185.

Clifford, J. and Croker, A. 1987. ‘The historical relational data model (HRDM) and algebra based on

lifespans’. In Proc. 3rd IEEE International Conference on Data Engineering, Los Angeles, CA.

IEEE Computer Society Press. 528-537.

Clifford, J. and Tansel, A.U. 1985. ‘On an algebra for historical relational databases: two views’.

SIGMOD Rec. 14(4):247-265.

Clifford, J. and Warren, D.S. 1983. ‘Formal semantics for time in databases’. ACM Trans. Database

Syst. 8(2):214–254.

Codd, E.F. 1970. ‘A relational model for large shared data banks’. Commun. ACM. 13(6):377-387.

Codd, E.F. 1972. ‘Relational completeness of data base sublanguages’. In Data Base Systems. Courant

Computer Symposia Series, Vol. 6. Prentice-Hall, Englewood Cliffs. 65-98.

Codd, E.F. 1979. ‘Extending the database relational model to capture more meaning’. ACM Trans.

Database Syst. 4(4):397-434. An early version of this work was presented at the 2nd Australian

Computer Science Conference in Hobart, TAS.

Dadam, P. and Teuhola, J. 1987. ‘Managing schema versions in a time-versioned non-first-normal-form

relational database’. Technical Report 87.01.001. IBM Heidelberg Scientific Center, Germany.

Also published in Proc. Datenbanksysteme in Buro, Technik und Wissenschaft. Darmstadt, West

Germany, Springer-Verlag, 161-179, in German.

Dean, T.L. and McDermott, D.V. 1987. ‘Temporal database management’. Artif. Intell. 32(1):1-55.

Ewald, C.A. and Orlowska, M.E. 1994. ‘A theoretical approach to the understanding of relational

schema evolution’. Technical Report 287. Key Centre for Software Technology, University of

Queensland.

Gadia, S.K. 1988. ‘A homogeneous relational model and query languages for temporal databases’.

ACM Trans. Database Syst. 13(4):418-448.

Gal-Oz, N., Gudes, E. and Fernandez, E.B. 1993. ‘A model of methods access authorisation in object-

oriented databases’. In Proc. 19th International Conference on Very Large Databases, Dublin,

Ireland. R. Agrawal, S. Baker and D. Bell (eds.). Morgan Kaufmann, Palo Alto, CA. 52-61.

Geller, J., Perl, Y., Neuhold, E. and Sheth, A. 1992. ‘Structural schema integration with full and

partial correspondence using the dual model’. Inf. Syst. 17(6):443-464.

Hsu, S., Jensen, C.S. and Snodgrass, R. 1992a. ‘Valid-time projection in TSQL2’. TempIS Document No

30. University of Arizona. Also available as a TSQL2 commentary, TSQL2 language design

committee.

Hsu, S., Jensen, C.S. and Snodgrass, R. 1992b. ‘Valid-time selection in TSQL2’. TempIS Document No

30. University of Arizona. Also available as a TSQL2 commentary, TSQL2 language design

committee.

ISO 1992. ‘Information processing systems - database language SQL with integrity enhancement’. ISO

Standard 9075:1992. International Standards Organisation. Also available as Australian

Standard AS 3968-1991 and American Standard ANSI X3.135:1992.

Jensen, C., et al. 1994. ‘A consensus glossary of temporal database concepts’. SIGMOD Rec. 23(1):52-64.

Also Technical Report R93-2035, Department of Mathematics and Computer Science, Aalborg

University, Denmark, November, 1993.

Jensen, C.S. 1993. ‘Vacuuming in TSQL2’. TSQL2 Commentary TSQL2 language design committee.

Kim, W., Ballou, N., Chou, H.-T., Garza, J.F. and Woelk, D. 1989. ‘Features of the Orion object-

oriented database system’. In Object-oriented Concepts, Databases and Applications. W. Kim

and F. Lochovsky (eds.), ACM Press, New York. 251-282.

Kim, W. and Chou, H.-T. 1988. ‘Versions of schema for object-oriented databases’. In Proc. 14th

International Conference on Very Large Databases, Los Angeles, CA. F. Bancilhon and D.J.

DeWitt (eds.). Morgan Kaufmann, Palo Alto, CA. 148-159.

Kim, W., Garza, J.F., Ballou, N. and Woelk, D. 1990. ‘Architecture of the ORION next-generation

database system’. IEEE Trans. Knowl. and Data Eng. 2(1):109-124.

Larson, J., Navathe, S.B. and Elmasri, R. 1989. ‘A theory of attribute equivalence in databases with

application to schema integration’. IEEE Trans. Softw. Engng. 15(4):449-463.

Lerner, B.S. and Habermann, A.N. 1990. ‘Beyond schema evolution to database reorganisation’.

SIGPLAN Not. 25(10):67-76.

Lientz, B.P. 1983. ‘Issues in software maintenance’. ACM Comput. Surv. 15(3):271-278.

Lorentzos, N.A. and Johnson, R.G. 1988. ‘TRA: a model for a temporal relational algebra’. In Proc. IFIP

TC 8/WG 81 Working Conference on Temporal Aspects in Information Systems, Sophia-Antipolis,

France. C. Rolland, F. Bodart and M. Leonard (eds.). Elsevier Science Publ. (North-Holland)

Amsterdam. 95-108.

McKenzie, L.E. 1988. ‘An algebraic language for query and update of temporal databases’. Ph.D.

thesis, University of North Carolina.

McKenzie, L.E. and Snodgrass, R.T. 1987a. ‘Extending the relational algebra to support transaction

time’. SIGMOD Rec. 16(3):467-478.

McKenzie, L.E. and Snodgrass, R.T. 1987b. ‘Scheme evolution and the relational algebra’. Technical

Report 87-003. Department of Computer Science, University of North Carolina, Chapel Hill, NC.

McKenzie, L.E. and Snodgrass, R.T. 1987c. ‘Supporting valid time: an historical algebra and

evaluation’. Technical Report TR87-008. Computer Science Department, University of North

Carolina, Chapel Hill.

McKenzie, L.E. and Snodgrass, R.T. 1990. ‘Schema evolution and the relational algebra’. Inf. Syst.

15(2):207-232.

McKenzie, L.E. and Snodgrass, R.T. 1991. ‘Evaluation of relational algebras incorporating the time

dimension in databases’. ACM Comput. Surv. 23(4):501-543.

Miller, R.J., Ioannidis, Y.E. and Ramakrishnan, R. 1993. ‘The use of information capacity in schema

integration and translation’. In Proc. 19th International Conference on Very Large Databases,

Dublin, Ireland. R. Agrawal, S. Baker and D. Bell (eds.). Morgan Kaufmann, Palo Alto, CA. 120-

133.

Monk, S.R. and Sommerville, I. 1992. ‘A model for versioning of classes in object-oriented databases’.

In Proc. 10th British National Conference on Databases, Aberdeen. P.M.D. Gray and R.J. Lucas

(eds.). Springer-Verlag. 42-58.

Monk, S.R. and Sommerville, I. 1993. ‘Schema evolution in OODBs using class versioning’. SIGMOD

Rec. 22(3):16-22.

Narayanaswamy, K. and Bapa Rao, K.V. 1988. ‘An incremental mechanism for schema evolution in

engineering domains’. In Proc. 4th IEEE International Conference on Data Engineering, Los

Angeles, CA. IEEE Computer Society Press. 294-301.

Nguyen, G.T. and Rieu, D. 1989a. ‘Schema change propagation in object-oriented databases’. In Proc.

IFIP 11th World Computer Conference, San Francisco, CA. G.X. Ritter (ed.) North-Holland. 815-

820.

Nguyen, G.T. and Rieu, D. 1989b. ‘Schema evolution in object-oriented database systems’. Data

Knowl. Eng. 4(1):43-67.

Orlowska, M.E. and Ewald, C.A. 1991. ‘Meta-level updates: the evolution of fact-based schemata’.

Technical Report 211. Key Centre for Software Technology, Department of Computer Science,

University of Queensland.

Orlowska, M.E. and Ewald, C.A. 1992. ‘Schema evolution - the design and integration of fact-based

schemata’. In Research and Practical Issues in Databases, Proc. 3rd Australian Database

Conference. B. Srinivasan and J. Zeleznikow (eds.), World Scientific, La Trobe University. 306-

320.

Osborn, S.L. 1989. ‘The role of polymorphism in schema evolution in an object-oriented database’.

IEEE Trans. Knowl. and Data Eng. 1(3):310-317.

Palisser, C. 1989. ‘Charly, un gestionnaire de versions pour la CAO en architecture’. Doctoral thesis,

Aix-Marseilles.

Penney, D.J. and Stein, J. 1987. ‘Class modification in the GemStone object-oriented DBMS’. SIGPLAN

Not. (Proc. OOPSLA ‘87). 22(12):111-117.

Roddick, J.F. 1991. ‘Dynamically changing schemas within database models’. Aust. Comput. J.

23(3):105-109.

Roddick, J.F. 1992a. ‘Schema evolution in database systems - an annotated bibliography’. SIGMOD

Rec. 21(4):35-40. An updated version of the bibliography may be obtained from the author.

Roddick, J.F. 1992b. ‘SQL/SE - a query language extension for databases supporting schema evolution’.

SIGMOD Rec. 21(3):10-16.

Roddick, J.F. 1993. ‘Implementing schema evolution in relational database systems: an approach

based on historical schemata’. Technical Report 10/93. Department of Computer Science and

Computer Engineering, La Trobe University.

Roddick, J.F. 1994. ‘Schema evolution in database systems - an updated bibliography’. Technical

Report CIS-94-012. School of Computer and Information Science, University of South Australia.

An earlier version appeared in SIGMOD Rec. vol. 21, no. 4, pp. 35-40. 1992.

Roddick, J.F., Craske, N.G. and Richards, T.J. 1993. ‘A taxonomy for schema versioning based on the

relational and entity relationship models’. In Proc. 12th International Conference on Entity-

Relationship Approach, Dallas, Texas. R. Elmasri (ed.) 139-150. Also appears in Lecture Notes

in Computer Science, Springer-Verlag, 143-154.

Roddick, J.F., Craske, N.G. and Richards, T.J. 1994. ‘Handling discovered structure in database

systems’. IEEE Trans. Knowl. and Data Eng. Accepted for Publication.

Roddick, J.F. and Patrick, J.D. 1992. ‘Temporal semantics in information systems - a survey’. Inf. Syst.

17(3):249-267.

Roddick, J.F. and Snodgrass, R.T. 1993. ‘Transaction-time support in TSQL2’. TSQL2 Commentary

TSQL2 language design committee.

Roddick, J.F. and Snodgrass, R.T. 1994. ‘Schema versioning support in TSQL2’. TSQL2 Commentary

TSQL2 language design committee.

Roth, M.A., Korth, H.F. and Silberschatz, A. 1989. ‘Null values in nested relational databases’. Acta

Inf. 26(7):615-642.

Sarda, N.L. 1990. ‘Algebra and query language for a historical data model’. Comput. J. 33(1):11-18.

Selinger, P.G. 1993. ‘Predictions and challenges for database systems in the year 2000’. In Proc. 19th

International Conference on Very Large Databases, Dublin, Ireland. R. Agrawal, S. Baker and D.

Bell (eds.). Morgan Kaufmann, Palo Alto, CA. 667-675.

Shneiderman, B. and Thomas, G. 1982. ‘An architecture for automatic relational database system

conversion’. ACM Trans. Database Syst. 7(2):235-257.

Sjøberg, D. 1992. ‘Measuring schema evolution’. Technical Report FIDE/92/36. Department of

Computer Science, University of Glasgow.

Sjøberg, D. 1993. ‘Quantifying schema evolution’. Inf. Softw. Technol. 35(1):35-44.

Skarra, A.H. and Zdonik, S.B. 1986. ‘The management of changing types in an object-oriented

database’. SIGPLAN Not. (Proc. OOPSLA ‘86). 21(11):483-495.

Skarra, A.H. and Zdonik, S.B. 1987. ‘Type evolution in an object-oriented database’. In Research

directions in object-oriented programming. B. Shriver (ed.) MIT Press, Cambridge, MA. 393-416.

Snodgrass, R. 1987. ‘The temporal query language TQUEL’. ACM Trans. Database Syst. 12(2):247–298.

Snodgrass, R. 1992. ‘Schema specification in TSQL2’. TSQL2 Commentary TSQL2 language design

committee.

Snodgrass, R. and Ahn, I. 1985. ‘A taxonomy of time in databases’. SIGMOD Rec. 14236–246.

Snodgrass, R. and Ahn, I. 1986. ‘Temporal databases’. IEEE Computer. 1935–42.

Snodgrass, R.T., Ahn, I., Ariav, G., Batory, D.S., Clifford, J., Dyerson, C.E., Elmasri, R., Grandi, F.,

Jensen, C.S., Käfer, W., Kline, N., Kulkarni, K., Leung, T.Y.C., Lorentzos, N., Roddick, J.F., Segev,

A., Soo, M.D. and Sripada, S.M. 1994. ‘TSQL2 language specification’. SIGMOD Rec. 23(1):65-86.

Sockut, G.H. and Iyer, B.R. 1993. ‘Reorganising databases concurrently with usage’. Technical Report

TR 03.488. IBM Santa Teresa Laboratory.

Stonebraker, M., Agrawal, R., Dayal, U., Neuhold, E.J. and Reuter, A. 1993. ‘DBMS research at the

crossroads: the Vienna update’. In Proc. 19th International Conference on Very Large Databases,

Dublin, Ireland. R. Agrawal, S. Baker and D. Bell (eds.). Morgan Kaufmann, Palo Alto, CA. 688-

692.

Tan, L. and Katayama, T. 1989. ‘Meta operations for type management in object-oriented databases - a

lazy mechanism for schema evolution’. In Proc. First International Conference on Deductive and

Object-Oriented Databases, DOOD ‘89., Kyoto, Japan. W. Kim, J.-M. Nicolas and S. Nishio

(eds.). North-Holland. 241-258.

Tansel, A.U. 1986. ‘Adding time dimension to relational model and extending relational algebra’. Inf.

Syst. 11(4):343-355.

Tansel, A.U., Clifford, J., Gadia, S.K., Jajodia, S., Segev, A. and Snodgrass, R.T. 1993. Temporal

databases: theory, design and implementation. Benjamin Cummings, Redwood City, CA.

Tuzhilin, A. and Clifford, J. 1990. ‘A temporal relational algebra as a basis for temporal relational

completeness’. In Proc. 16th International Conference on Very Large Databases, Brisbane. D.

McLeod, R. Sacks-Davis and H. Schek (eds.). Morgan Kaufmann. 13-23.

van Bommel, P. 1993. ‘A randomised schema mutator for evolutionary database optimisation’. Aust.

Comput. J. 25(2):61-69.

Ventrone, V. and Heiler, S. 1991. ‘Semantic heterogeneity as a result of domain evolution’. SIGMOD

Rec. 20(4):16-20.

Zaniolo, C. 1984. ‘Database relations with null values’. J. Comput. Syst. Sci. 28(1):142-166.

Zdonik, S.B. 1986. ‘Version management in an object-oriented database’. In R. Conradi, T.M.

Didriksen and D.H. Wanvik (eds.), Lecture Notes in Computer Science, Vol. 244. Springer-

Verlag, Berlin. 405-422.

Zdonik, S.B. 1990. ‘Object-oriented type evolution’. In Advances in Database Programming Languages.

F. Bancilon and P. Buneman (eds.), ACM Press/Addison-Wesley, New York. 277-288.

