
Industrial-Strength Schema Matching

Philip A. Bernstein, Sergey Melnik, Michalis Petropoulos, Christoph Quix

Microsoft Research
Redmond, WA, U.S.A.

{philbe, melnik}@microsoft.com, mpetropo@cs.ucsd.edu, quix@informatik.rwth-aachen.de

Abstract
Schema matching identifies elements of two
given schemas that correspond to each other.
Although there are many algorithms for schema
matching, little has been written about building a
system that can be used in practice. We describe
our initial experience building such a system, a
customizable schema matcher called Protoplasm.

1 Schema Matching
Most systems-integration work requires creating
mappings between models, such as database schemas,
message formats, interface definitions, and user-interface
forms. As a design activity, schema mapping is similar to
database design in that it requires digging deeply into the
semantics of schemas. This is usually quite time
consuming, not only in level-of-effort but also in elapsed-
time, because the process of teasing out semantics is slow.
It can benefit from the development of improved tools,
but it is unlikely such tools will provide a silver bullet that
automates all of the work. For example, it is hard to
imagine how the best tool could eliminate the need for a
designer to read documentation, ask developers and end-
users how they use the data, or review test runs to check
for unexpected results. In a sense, the problem is AI-com-
plete, that is, as hard as reproducing human intelligence.

The best commercially-available model mapping tools
we know of are basically graphical programming tools.
That is, they allow one to specify a schema mapping as a
directed graph where nodes are simple data transforma-
tions and edges are data flows. Such tools help specify: a
mapping between two messages, a data warehouse
loading script, or a database query. While such graphical
programming is an improvement over typing code, no
database design intelligence is being offered. Despite the
limited expectations expressed in the previous paragraph,
we should certainly be able to offer some intelligence ⎯
automated help, in addition to attractive graphics.

There are two steps to automating the creation of
mappings between schemas: schema matching and query
discovery. Schema matching identifies elements that
correspond to each other, but does not explain how they
correspond. For example, it might say that FirstName and

LastName in one schema are related to Name in the other,
but not say that concatenating the former yields the latter.
Query discovery picks up where schema matching leaves
off. Given the correspondences, it obtains queries to trans-
late instances of the source schema into instances of the
target, e.g., using query analysis and data mining [5].

This paper focuses on schema matching. There are
many algorithms to solve it [8]. They exploit name
similarity, thesauri, schema structure, instances, value
distribution of instances, past mappings, constraints,
cluster analysis of a schema corpus, and similarity to
standard schemas. All of these algorithms have merit. So
what we need is a toolset that incorporates them in an
integrated package. This is the subject of this paper.

The published work on schema matching is mostly
about algorithms, not systems. This algorithm work is
helpful, offering new ways to produce mappings that pre-
vious algorithms were unable to find. However, all of the
published algorithms are fragile: they often need manual
tuning, such as setting thresholds, providing a thesaurus,
or being trained on examples; even after tuning, it is easy
to find schemas that the algorithms do not map correctly;
and many of them do not scale to large schemas.

COMA is the first work to address engineering issues
of a schema matching system [1]. Its architecture offers
multiple schema-level matchers and a fixed process to
combine their results. Matchers exploit linguistic, data-
type, and structural information, plus previous matches, to
produce similarity matrices forming a cube. The cube is
aggregated to a matrix. Then particular similarity values
are selected as good match candidates, which are com-
bined to a single value. This process is executed for whole
schemas or for two schema elements, and is repeated after
the user provides feedback. Experimentation showed that
finding good combinations of matchers depends on char-
acteristics of the schemas being matched, demonstrating
that customizability of the combination process is crucial.

Inspired by COMA’s approach, we felt it was impor-
tant to push further toward building an industrial-strength
schema matcher, one that avoids fragility problems, is
customizable for use in practical applications, and extends
the range of matching solutions being offered.

We believe fragility is inherent in the problem. To
mitigate it, we need a system that can exploit the best

SIGMOD Record, Vol. 33, No. 4, December 2004 38

algorithms and is customizable by a human designer. De-
signers use all of the techniques found in specific schema
matching algorithms: name similarity, thesauri, common
schema structure, overlapping instances, common value
distribution, re-use of past mappings, constraints, similar-
ity to standard schemas, and common-sense reasoning. A
system should use all of these techniques too.

Customizability is needed for several reasons. First, a
user can improve a schema matching tool by selecting
particular techniques and combining them in a way that
works best for the types of schemas being matched. For
example, if a version ID is prepended to element names in
evolving schemas, then a user may want to delete the ID
before applying any matcher. The degree of such custom-
izability depends on the user’s sophistication. An end-user
who is matching two schemas wants a limited range of
options to choose from. By contrast, a sophisticated user,
such as an application vendor, wants to customize the tool
to work well when matching its schemas to those of other
parties. A second reason for customizability is to control
an algorithm’s scalability, e.g., by trading off response-
time for the quality of the result. A third reason is extensi-
bility, meaning that new techniques can be easily added to
the tool. This helps sophisticated users, and researchers
who want to experiment with new or modified algorithms.

We therefore embarked on a project to build such a
customizable schema matcher, one that could be used in
commercial settings. This paper describes our early
experience in developing this tool, called Protoplasm (a
PROTOtype PLAtform for Schema Matching). In
addition to arguing for the importance of research on
industrial-strength schema matching, we offer two main
contributions: (i) a new architecture for schema matching,
which includes two new internal schema representations,
interfaces for operators that comprise a matching algor-
ithm, and a flexible approach to combining operators; and
(ii) experience in tuning the prototype for scalability and
using its customization features to add another algorithm.
These are covered in Sections 2 and 3 respectively. We
close in Section 4 with a discussion of future work.

2 Architecture
Figure 1 presents the three-layer architecture of Proto-
plasm. The bottom layer consists of two supporting struc-
tures. The Schema Matching Model Graph (SMM Graph)
is the internal representation of input schemas: a rooted
node- and edge-labeled directed graph. The Similarity
Matrix holds correspondences between two SMM graphs.
The middle layer defines a set of Operator Interfaces that
declare the inputs and outputs of generic schema-match-
ing tasks such as import, transformation and export of
schemas, creation and manipulation of similarity matrices,
and match. Protoplasm offers implementations of these
interfaces. Custom ones are easy to plug in, which is one
dimension of the extensibility of the platform. The other
dimension is the Strategy Scripts in the top layer, which

implement match algorithms consisting of interconnected
operators. Each script combines a set of operator
implementations by passing SMM graphs and similarity
matrices from one to another. Ideally, strategies would be
designed using a Graphical Interface that generates the
strategy script from its graphical representation.

Graphical
Interface

Auxiliary
InfoSchemas

Custom
Impls

SMM
Graph

Similarity
Matrix

Consuming
Application

Protoplasm
Impls

Strategy
Execution

Engine

Strategy
Scripts

Operator
Interfaces

Figure 1 Protoplasm Architecture

The Strategy Execution Engine takes as input a
strategy script, the Protoplasm-provided and custom
operator implementations, and SMM graphs and similar-
ity matrices. During the execution, the engine accesses
schema repositories and other auxiliary information, e.g.,
a thesaurus or glossary, used by implementations of
operators in the strategy script. The execution of the script
results in a similarity matrix exported in a format
compatible with an external Consuming Application.
2.1 Representing Models

The input schemas can be in any meta-model, e.g.,
SQL DDL, ODMG or XML Schema Definition (XSD)
Language. Since no existing meta-model is expressive
enough to subsume all others, Protoplasm defines SMM
Graphs as a meta-model-independent representation. An
SMM graph is a rooted, node- and edge-labeled directed
graph, where each node and edge has a unique identifier.
Figure 2 shows an example SMM Graph describing the
SQL DDL in the shaded box that defines a relational
table. The root (i.e., id=1) is indicated by a thick circle.
The graph identifier (i.e., id=0) and label are in boldface
above the root. The database, table and column names are
denoted by white circles, typing information by light gray
circles, and constraints (e.g., primary key) by dark gray
circles. SMM is a variation of the Object Exchange Model
(OEM) [7], a data model defined for semistructured data,
thus inheriting its simplicity and self-describing nature.

Protoplasm builds on widely-used XML technologies
to implement SMM graphs. An XML syntax is defined to
describe and store SMM graphs in secondary memory
(e.g. disk), an extended XML parser is employed to load
them into main memory, a variation of DOM is used to
enable programmatic navigation and editing, and an
XPath engine is modified to execute simple queries
against SMM graphs. The XML syntax describing SMM
graphs uses the node ids to establish the edges between
them and is validated using an XML schema that makes
use of the key and keyref definition elements. We used
.NET tools for the XPath engine, XSD validator, etc.

39 SIGMOD Record, Vol. 33, No. 4, December 2004

datatype

Create Table CUSTOMER(
C_ID Numeric,
C_UNAME varchar,

) Primary Key (C_ID)

PK_Customer

1RDB

3CUSTOMER

9C_UNAME
5C_ID

table

columncolumn

4

Table

6

Column

type
type

type

type

7Numeric

10Varchar
8

ColumnType
type

datatype

2

Database

type

0
MySMMGraph

column

11
type

key

PrimaryKey
12

Figure 2 Example SMM Graph

DOM is not used “as-is” for navigation since it does
not provide a way to navigate gracefully across keys and
keyrefs. We resolve this issue by deriving from DOM
an object model for SMM, called Graph Document Object
Model (GDOM), which specializes DOM as follows: (i)
GDOM graph, nodes and edges are DOM elements with
label and id properties only; (ii) nodes have a list of
outgoing edges as children; (iii) edges have their start
node as parent and their end node as their only child.

The GDOM main memory representation of SMM
graphs is constructed directly during parsing. A DOM
parser was extended to construct GDOM elements and
establish their connections based on the node ids.

GDOM also inherits the editing capabilities of DOM.
But in the case of SMM graphs, DOM editing capabilities
are more powerful than needed and allow the construction
of invalid SMM graphs. For this reason, Protoplasm
provides a GDOM wrapper interface that exports only the
editing methods that result in valid SMM graphs.

GDOM documents cannot be queried conveniently by
XPath expressions, since XPath does not provide a way to
navigate across keys and keyrefs. Instead, GDOM
documents are queried by XGPath, a variant of XPath that
we implemented to overcome this limitation. XGPath
defines two macros, node() and edge(), to recognize
nodes and edges when computing a transitive closure, and
allows only child and descendant axes. For example,
query Q1 below finds all nodes in the graph. Q2 finds all
nodes having at least one outgoing edge.
(Q1) /descendant::*[g:node()]
(Q2) /descendant::*[g:node()][*[g:edge()]]
2.2 Similarity Matrix
A Similarity Matrix holds the degree of similarity
between items (nodes and/or edges) of two SMM graphs.
As in COMA, it is the main integration point for combin-
ing results from different match algorithms. The rows and
columns of a similarity matrix represent lists of items
from the source and target graphs, respectively. The lists
can be constructed by running an XGPath query over the
graphs. Each cell of the matrix holds the ids of the target
and source items and the similarity value between them.

2.3 Operators
Protoplasm declares a set of operator interfaces to carry
out individual schema matching tasks. SMM graphs,
similarity matrices and cells are the possible input and
output types. These operators are organized in the
following three groups according to their functionality:

Import, Transform and Export. These handle the
starting and ending stages of a match algorithm. One
Import operator interface takes as input a schema express-
ed in some meta-model and outputs a corresponding
SMM graph. Another import interface is declared to load
an existing SMM graph or similarity matrix. Implementa-
tions of the import interface are meta-model-specific.

A Transform operator interface applies a transforma-
tion to an input SMM graph, returning a transformed one.
For example, an imported SMM graph might need to be
transformed to encode schema constraints differently for a
particular match algorithm. Implementations of the trans-
form interface are specific to the match algorithm used.

An Export operator interface translates a similarity
matrix into a format suitable for the consuming applica-
tion, e.g., BizTalk Mapper [4]. Since each application has
its own format for representing mappings, each imple-
mentation of the export interface is application-specific.

Matrix Creation and Manipulation. This group
consists of seven operator interfaces manipulating
matrices holding match results.
1. The CreateSM operator interface creates a new

similarity matrix given two input SMM graphs.
2. The CellToSM operator interface takes as input a cell

of a similarity matrix and generates a nested similarity
matrix based on some analysis. For example, when
applied on a cell holding two node labels, CellToSM
can generate a nested similarity matrix by
decomposing the cell’s labels. Rows and columns of
the nested matrix are the components of the node
labels, which can now be matched individually.

3. The inverse operator interface is AggSMToCell. Given
a cell c that was used to generate a similarity matrix
sm using CellToSM, it aggregates the similarity values
of sm and assigns the aggregation to c.

4. The MergeSMs operator interface merges a set of
input heterogeneous similarity matrices into a single
output one by aggregating similarity values across
matrices. For example, multiple matching techniques
are applied to generate different similarity matrices,
which are then merged into a single matrix.

5. Analogously, the MergeCells operator interface
merges the similarities of a set of input cells into a
single one.

6. The TraverseSM operator interface creates a cursor
that iterates over the cells of a similarity matrix. The
traversal order can be matrix-specific, e.g., rows-first,
or graph-specific, e.g., bottom-up.

7. The FilterSM operator interface takes as input a simi-
larity matrix whose values are in the range [0,1] and

SIGMOD Record, Vol. 33, No. 4, December 2004 40

outputs a similarity matrix whose values are 0 or 1.
Deleting cells whose values are below a threshold is
an example of a filter implementation.
Match. The Match operator interface takes as input a

cell with or without a given similarity value and calculates
a new one based on the cell’s items.
2.4 Scripts

For customizability, implementations of operator
interfaces can be combined in many different ways to
execute a match algorithm. A given combination, called a
strategy, consists of operators and a control flow that tells
how the output of operators is passed as the input to other
operators. In the current implementation, strategies are
coded using the procedural language C# and are compiled
and executed by the execution engine. An example
strategy is shown in Figure 3 as it would be displayed by
a graphical interface. Operator interfaces are indicated by
icons labeled by the name of the implementation. Lines
connecting icons pass SMM graphs, similarity matrices,
or cells from one operator to another. The “Level” labels
indicate if the operators execute against whole similarity
matrices or individual cells.

The strategy starts by executing two Import operators
that result in two SMM graphs representing two XML
schemas. Then two CreateSM operators create a similarity
matrix M1 consisting of all nodes of the two SMM graphs,
and an M2 consisting of only the internal ones. M1 will be
used to hold the linguistic similarity of all nodes, while
M2 will hold the structural similarity of all internal ones.

First, a TraverseSM operator iterates over the cells of
M1 rows-first. Then a CellToSM operator generates a
similarity matrix M3 for the currently traversed cell of M1
by tokenizing the labels of its items based on the camel
case naming convention. Another TraverseSM operator
then iterates over the cells of M3 and applies a Match
operator based on stems. Subsequently, an AggSMToCell
operator takes the average of the similarity values in M3
and places it in the currently traversed cell of M1.

Another TraverseSM operator iterates over M2
bottom-up and applies to each cell a Match operator that
calculates the structural similarity of two internal nodes
based on the linguistic similarity their leaves. The two
resulting matrices M1 and M2 are then passed to a
MergeSMs operator that merges them into one. The
similarity values of common cells are merged based on a
weighted formula. A FilterSM operator filters out poor
similarity values below a threshold. Finally, an Export op-
erator transforms the resulting matrix into a BizTalk Map.

Many published algorithms use similarity matrices in
a way similar to Protoplasm [1,2,3,7]. However, except
for COMA, none are designed as an open integration
platform in which new algorithms and heuristics can be
easily incorporated. COMA too is limited in that it
combines the result of match algorithms by taking a linear
combination of the similarity matrices they produce.
Protoplasm offers more flexible combinations. For exam-

ple, the strategy in Figure 3 pipelines matchers; the lin-
guistic matcher passes its output to the structural matcher.
Furthermore, Protoplasm is designed for customizability
and adaptability: data structures and operators can be
easily extended with customized implementations.

Matrix Level

Cell Level

TraverseSM
RowsFirst

Match
Stem

Export
BizTalk

Import XSD

Import XSD

TraverseSM
BottomUp

Match
Leaves

CreateSM
AllInternalNodes

CreateSM
AllNodes

MergeSMs
Weighted

FilterSM
Threshold

Nested Cell Level

CellToSM
CamelTokens

AggSMToCell
Average

TraverseSM
RowsFirst

Nested Matrix Level

Figure 3 Example Strategy

3 Experience
3.1 Scalability
The first prototype of Protoplasm was applied to a real-
world problem to match two versions of an EDI schema,
expressed in XML Schema. The old version contained
340 schema elements (element types and attributes) and
the new version contained 500. As a version number was
encoded into the element names, a direct name match was
not possible, even for elements that did not change.

We used a simplified version of the Cupid algorithm
[2] to match the schemas, which resembles the strategy in
Figure 3. As this was the first real-world test of the proto-
type, we were not surprised to find scalability problems: it
required a few hundred MB of main memory and took
over an hour to construct the first linguistic similarity
matrix (and several more matrices were needed for type,
structural and combined similarities).

Our profiling showed that the first step of the
algorithm, which transforms the schema graph into a tree,
multiplied the number of elements by a factor of 6.
Hence, each matrix had 2K×3K elements; at 20 bytes/cell,
that is 120 MB/matrix. Many match algorithms require
the schema representation to be a tree. So Protoplasm
provides an operator to transform a graph into a tree by
duplicating nodes that have multiple incoming edges. In
the example problem, only one node had more than two
incoming edges. But the operator is applied recursively to
all nodes, resulting in a much bigger graph than expected.
We optimized the graph-to-tree operator so that it exploits
semantic information. For example, it removes certain
edges that do not provide useful information for schema

41 SIGMOD Record, Vol. 33, No. 4, December 2004

matching to avoid duplicating nodes. In the example,
every element type t had an incoming edge from the root,
meaning that t is a component of the schema. These edges
could be removed if t was referenced by another type.
Using this optimization, the schema tree for this example
has about the same number of nodes as the graph.

Our initial linguistic matcher compared each element
of schema 1 with each element of schema 2, an O(n2)
algorithm. After seeing the scalability implication, we re-
implemented it using a strategy similar to hash join: the
names (or tokens or ngrams) of schema 1 are inserted into
a hash table. Then, for each element of schema 2 we look
up the matching elements of schema 1 in the hash table.
This reduces the complexity to O(n) and the time to
compute a linguistic matrix with 100x1000 cells from 75
to 3 seconds.

Another optimization strategy is to cache intermediate
results, e.g., when retrieving the leaves under a schema
element. This requires more main memory, but reduces
the execution time by a factor of 2 or 3. Using all of the
above techniques, we reduced the execution time for this
example from several hours to less than a minute.

Scalability issues are also discussed in [6]. However,
this match algorithm was tuned for a particular, much
larger matching problem and was implemented in SQL.
3.2 Revised Object Model
In our experiments we encountered several issues with
our data model and query language. The representation of
the schema graph in GDOM enabled the reuse of existing
XML technologies that developers are familiar with but
also had significant main memory overhead. Furthermore,
profiling showed that much time was spent in evaluating
XGPath expressions, especially in the structural matching
phase, where we frequently navigate between internal
nodes to their leaf nodes.

We concluded that a more flexible and efficient object
model should be offered that enables the usage of index
structures for navigation and simplifies the integration
with existing object models. The revised object model that
we developed provides a lightweight representation of the
graph using delegate functions, a feature of the .NET
framework that is similar to function pointers in C/C++.
Existing object models, such as XML Schema Object
Model (SOM) in .NET, are wrapped by implementing
delegate functions that enable navigational access to the
underlying object graph. We migrated Protoplasm to the
new lightweight object model. GDOM (and the
navigation via XGPath expressions) is now the default
graph implementation when no native object model is
available. GDOM’s graph navigation primitives (e.g.,
retrieving the “name”-edge for a given node), which were
originally implemented using XGPath expressions, can be
overridden by optimized delegate functions. Graph access
performance was thereby improved by a factor of 2 to 3.

A major advantage of the revised object model is that
the existing code base can be reused by wrapping native

object models. The delegate functions can make graph
navigation very efficient by utilizing index structures or
access methods of the native object model.
3.3 Extensibility
As mentioned in Section2.4, Protoplasm can be extended
by adding schema matching scripts or customized data
structures and operators. To validate the extensibility of
Protoplasm, we implemented another schema matching
strategy, Similarity Flooding (SF) [3]. We chose this algo-
rithm because it is significantly different from the ones we
designed for: it is based on a different data structure (the
propagation graph) and uses a fixpoint computation.

By reusing the Protoplasm infrastructure, we were
able to implement this algorithm in two days. We reused
data structures for similarity matrices and schema graphs,
operators to import and transform schemas, and a match
operator to compute the initial similarity values. But we
needed to implement a new data structure for the propaga-
tion graph, which was the most time-consuming part. The
amount of code and total time to design and implement
the algorithm were reduced by about half, compared to
implementing it from scratch. Given our previous
experience with memory and performance problems, we
chose a very compact representation for the propagation
graph. The propagation values are stored in an array. A
special indexing technique provides direct access to the
corresponding schema elements and cells in the similarity
matrix, so navigation between the propagation graph and
the similarity matrix can be done in constant time. This
data structure also saves about 60% of main memory,
compared to a standard implementation of the graph.

We ran several experiments using this implementation
of SF. As shown in [3], we verified that SF is strong in
detecting similar structures. For example, schemas that
had identical structure but different element names
(because of different languages) were matched exactly.
However, this feature of SF causes problems if a schema
is self-similar, i.e., a complex structure repeats within the
schema (e.g., address). In this case, SF matches each copy
of the repeating structure of one schema to all copies in
the other. It may be possible to address this limitation by
developing a matching strategy that filters an ambiguous
match result by running SF on each individual schema to
identify self-similar structures
3.4 Lessons Learned
One important lesson is that performance is an issue, even
though we are “just” handling metadata. The real-world
example in Section 3.1 is still relatively small; schemas
with several thousands elements are common in e-
business applications. Since schema matching is a semi-
automatic task, efficient implementations are required to
support interactive user feedback.

Customizability and flexibility proved to be important.
Schema matching problems differ along various
dimensions, such as naming conventions, modeling styles
(expressing the same thing in different ways), degrees of

SIGMOD Record, Vol. 33, No. 4, December 2004 42

similarity between schemas, and user requirements. Thus,
a single solution is unlikely to perform equally well across
all matching problems. Therefore, easy customization and
adaptation of a basic strategy is necessary.

The graphical design of strategy scripts (see Figure 3)
might still be too complex for an administrator or
database designer lacking a deep understanding of schema
matching issues. Higher-level operators are required that
work on complete graphs (as opposed to individual nodes)
and provide functions to match schema elements by their
names, types, or structure. These operators can be used as
the basic building blocks of a schema matching strategy.

The need for higher-level operators coincides with our
experience in optimizing the operators. Efficient imple-
mentation of the operators is only possible if they are exe-
cuted at the graph level. A simple iteration over all cells
of a similarity matrix (as in Figure 3) is always O(n2).

4 Future Work
Since schema matching algorithms are inherently fragile,
a customizable schema matcher needs to include multiple
easily-customizable scripts. One challenge is to define a
few such scripts that cover the space of useful matchers
and offer a small set of simple customization choices.

An important capability of a schema matcher is reuse
of previously-developed mappings. Often, a reusable
mapping is between sub-schemas of the schema matcher’s
inputs. The combinatorics of finding reusable mappings
and applying them to a given mapping problem can be
daunting. There has been some work on reuse but much
more is needed [1].

A customizable schema matcher could become a large,
complex system. In addition to the current features of
Protoplasm, it could include the following subsystems:
• Natural language processing (NLP) – glossaries and

schema documentation are analyzed to produce
thesauri that the schema matcher uses to identify
synonyms and homonyms. NLP is also useful to
determine the similarity of short phrases that describe
elements of the two schemas.

• Machine learning – a machine learner is used to
capture and reuse validated correspondences.

• Data mining – algorithms for comparing the values or
distributions of instances of different elements to
decide if they are similar.

• Semantic analysis of mappings – since schemas are
complex semantic structures, inferencing over them
may help identify redundant or inconsistent matches.

• Constraint solver – given similarity scores between
pairs of schema elements, a best mapping is picked
that satisfies given mapping constraints (e.g., each
target element can connect to at most one source
element).

Moreover, there is a need for a clever and flexible user
interface (UI) to display match results. Users and tool
designers tell us that the problem of UI clutter in schema

matching tools is at least as important as the tool’s lack of
intelligence. When matching two large schemas, it is hard
to find your way around, remember where you have been,
explore several alternative matches concurrently, and
leave a trail of annotations that captures what you learned.

One challenge in using the above technologies is cop-
ing with the fixed interfaces of large existing subsystems
that implement them. For example, some NLP systems
can produce a semantic network for individual sentences,
but leave it to the caller to transform the network into a
thesaurus. Machine-generated and hand-crafted thesauri
often lack similarity scores, which are needed by most
match algorithms. Some learning algorithms capture past
matches in an executable learning network, not as a data
structure that can be combined with the output of other
algorithms. Most matching algorithms are batch-oriented,
matching a schema at a time, whereas some tools need an
incremental matcher that the user can steer, using each
match decision to influence the choice of later ones.

Another challenge is coping with the large size of the
components to be integrated, such as NLP, machine learn-
ing, and constraint solving systems. Most were designed
for stand-alone use. Integrating them into one platform
will undoubtedly generate software engineering problems.

Given the size and complexity of such a system, it is
unlikely that a company can afford to build more than one
of them. Thus, it must be reusable in many kinds of tools,
across many different data models and natural languages.
One goal of building such a system is to learn the right
requirements by reusing it in all of these contexts.

References
1. Do, H. H., and E. Rahm: COMA - A System for

Flexible Combination of Schema Matching
Approaches. VLDB 2002: 610-621.

2. Madhavan, J., P.A. Bernstein, E. Rahm: Generic
Schema Matching with Cupid. VLDB 2001: 49–58.

3. Melnik, S., H. Garcia-Molina, E. Rahm: Similarity
Flooding - A Versatile Graph Matching Algorithm.
ICDE 2002.

4. Microsoft Corporation: BizTalk Mapper.
http://www.microsoft.com/technet/biztalk/btsdocs

5. Miller, R.J., L. Haas, M.A. Hernández: Schema
Mapping as Query Discovery. VLDB 2000: 77–88.

6. Mork, P. and P. A. Bernstein: Adapting a Generic
Match Algorithm to Align Ontologies of Human
Anatomy. ICDE 2004: 787-790.

7. Papakonstantinou Y., H. Garcia-Molina, J. Widom:
Object Exchange Across Heterogeneous Information
Sources. ICDE 1995.

8. Rahm, E., P.A. Bernstein: A Survey of Approaches to
Automatic Schema Matching. VLDB J. 10(4), 2001.

43 SIGMOD Record, Vol. 33, No. 4, December 2004

