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Abstract 

This paper describes how we used generic schema matching 
algorithms to align the Foundational Model of Anatomy (FMA) 
and the GALEN Common Reference Model (CRM), two large 
models of human anatomy. We summarize the generic schema 
matching algorithms we used to identify correspondences. We 
present sample results that highlight the similarities and differ-
ences between the FMA and the CRM. We also identify uses of 
aggregation, transitivity, and reification, for which generic 
schema matching fails to produce an accurate mapping and 
present manually constructed solutions for them. 
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Introduction 

Anatomy is the foundation of both modern medicine and bio-
logical research. The extensive nomenclature developed over 
the centuries allows physicians to share observations and diag-
noses. Human anatomy has been encoded in two of the world’ s 
largest symbolic models: the Foundational Model of Anatomy 
(FMA) and the GALEN Common Reference Model (CRM). 
The goal of our project was to compare and contrast these 
models. This paper reports on the challenges encountered in 
producing an alignment. 

The FMA [1] is being developed at the University of Washing-
ton under the guidance of Dr. Cornelius Rosse. The goal of this 
project is to capture all of human anatomy in precise detail. 
The intent is to support a wide variety of applications, includ-
ing image retrieval and rendering, teaching, and natural lan-
guage querying. The copy of the FMA we received consists of 
roughly 59,000 concepts organized in four main hierarchies: 
parts, subclasses, branches and tributaries. The model also con-
tains over 100 types of relationships; roughly 1.6 million rela-
tionships interconnect the core concepts. 

The GALEN CRM [2] was developed at the University of 
Manchester by Dr. Alan Rector, et al. GALEN represents a 
collection of technologies and resources designed to facilitate 
knowledge reuse across clinical applications. Given this 
smaller focus, the CRM consists of only about 24,000 concepts 

expressed in a description logic [3] (a framework for automati-
cally organizing an inheritance hierarchy). Similar to the FMA, 
the CRM includes an array of hierarchies: parts, subclasses and 
branches (including tributaries). Unlike the FMA, the CRM 
framework includes relationship specialization. For example, 
the part hierarchy in the CRM is represented by several spe-
cializations of HasDivision, which corresponds to generic part 
in the FMA. The CRM contains roughly 913,000 relationships 
among the core concepts. 

We present three main contributions. First, we relate model 
alignment to generic schema matching. Second, we describe 
how to adapt existing generic schema matching algorithms to 
identify correspondences between the FMA and the CRM and 
highlight some of the similarities and differences (between the 
models) identified using this approach. Third, we identify three 
common scenarios where precise mappings were not found 
using generic schema matching: aggregation, transitivity and 
reification. For each of these we provide manually constructed 
mappings that are richer than simple correspondences. These 
richer mappings allow precise expression of the relationships 
between the schemas. 

These mappings are interesting in and of themselves; they es-
tablish points of consensus. Moreover, a precise mapping is 
required for more advanced operations like identifying differ-
ences or model merging. 

The remainder of the paper is organized as follows. In the next 
section we present an overview of our framework and describe 
how we imported the FMA and the CRM into this framework. 
We next sketch the matching algorithms we used and then pre-
sent sample match results. Finally, we describe the challenging 
scenarios and the solutions we identified. 

Background 

For the purposes of this paper, a model is the description of 
some system, theory or phenomenon. It is a tool for simplifying 
reality and encoding it in a symbolic and systematic way. For 
example, a schema in a database management system is a 
model that describes the data to be stored. In knowledge engi-
neering, a model is a description of an aspect of the world, to 
be queried and manipulated directly. 

A model is expressed in a meta-model, which describes the 
space of valid models. The FMA is written in Protégé-2000 [4], 



a frame-based meta-model; the CRM is written using a descrip-
tion logic [3] meta-model. To match two schemas, they need to 
be expressed in the same meta-model. We therefore imported 
the FMA and the CRM into a common meta-model called Va-
nil la, which is based on prior work [5]. 

Vanilla represents a model as a graph. Its nodes correspond to 
elements, which include classes and instances. Its edges repre-
sent relationships between elements. It has eight kinds of rela-
tionships: Is-a (class generalization), Type-of (instantiation), 
Contains (sub-structure), Can-contain (template structure), Has 
(reference), Can-have (template reference), Related-to and 
Maps-to. Figure 1 displays the subset of Vanilla edges used in 
this paper and shows a simple relational database encoding. 
The Hospital DB is an instance of the class Databases (sans 
serif indicates graph elements). It contains two tables (Patients 
and Doctors), each of which in turn contain columns. The col-
umn Sees is related to the column SSN. 

Is-A

Type-Of
Contains

Related-To
Maps-To

Databases
Hospital DB

Patients Doctors

MR# Sees
SSN

 

Figure 1—Vanil la relationships and a sample model 

We now describe how to encode the FMA and the CRM in this 
meta-model:  The basic construct in the FMA is a (frame, slot, 
value) triple. For example, the FMA asserts (Heart, generic 
part, Cardiac valve), which indicates that the Cardiac valve is a 
generic part of the Heart. Since the meta-model has a non-
extensible collection of relationship types, this assertion cannot 
be encoded directly. Instead, it is reified as shown in figure 2: 
The relationship becomes an explicit element contained in the 
Heart element. This element is of type generic part and refer-
ences Cardiac valve. One could read this as, “ The heart con-
tains a generic part relationship whose value is the cardiac 
valve.”   CRM constructs are dealt with similarly. 

(Heart, generic part,
Cardiac valve)

Heart
Cardiac

valve

generic
part

 

Figure 2—Sample encoding of a Protégé-2000 triple in Vanil la 

A Vanilla mapping is a first-class model, which can consist of 
all Vanilla elements and relationships. In addition, every ele-
ment in a mapping between models A and B can participate in 
one or more Maps-to relationships with elements from A or B. 
Expressing mappings as first-class objects allows more precise 
correspondence description. For example, one can indicate that 
the Full Name element in one model contains the First Name 
and Last Name elements from another model. When we de-
scribe manually constructed mappings that address the chal-

lenges identified (below), we show how the additional detail 
provided by first-class mappings can be leveraged when relat-
ing models that differ in their level of detail. 

Methods 

Our approach for finding similarities and differences between 
the FMA and the CRM can be summarized as follows: 1) Im-
port both models into a common meta-model. 2) Produce a 
mapping using generic schema matching techniques. 3) Iden-
tify differences by comparing the original models to the map-
ping. 

We described in the previous section how step one was accom-
plished. Due to space limitations, we will  only describe step 
two here. Details of the “diff”  operator used in step three can 
be found in prior work [6]. 

Given two input models, a schema matching algorithm returns 
pairs of elements that are similar. The similarity of two ele-
ments can be based on various criteria including: name, data 
type, neighborhood, data instances, etc. Many algorithms have 
been proposed, a survey [7] of which appears elsewhere. 

Given the size of the FMA and the CRM, we needed an effi-
cient algorithm. We modified a variant of Cupid [8], which 
exploits name and structure similarities, by adding a hierarchi-
cal matcher from LSD [9]. Our algorithm has 3 phases: lexical 
matching, structure matching and hierarchical matching. The 
final output is a set of 1:1 correspondences between elements. 
This approach is similar to the one presented by Zhang and 
Bodenreider [10], which also establishes lexical and structural 
matches. Zhang and Bodenreider use a rather different non-
generic algorithm, which also relies on augmenting their match 
using domain-specific inferences. 

Our first phase converts each concept name to a collection of 
terms. Using the SPECIALIST Lexicon [11] published by the 
National Library of Medicine, a string is converted to a collec-
tion of normalized terms drawn from a thesaurus. These tools 
account for differences in punctuation, spelling, and conjuga-
tion, as well as handling synonyms. Cupid takes these collec-
tions of terms and computes a similarity score based on term 
overlap and usage information. 

The second phase uses a variant of similarity flooding [12], 
where the similarity of a given pair of elements is influenced 
by the similarity of its neighbors. The intuition is that if two 
concepts (or relationships) are used similarly, then they proba-
bly are similar. In practice, this phase aligned relationships 
quite well (e.g., detecting that HasComponent is related to ge-
neric part). Briefly, i t assigns to each pair of reified elements a 
similarity score equal to the average of its neighbors. This 
score is back propagated to the neighbors, allowing their simi-
larity scores to slowly increase. Given sufficient evidence, the 
similarity of two elements approaches one (a perfect match). 

Finally, the third phase uses the inheritance hierarchies to align 
super-classes. The similarity between two (non-leaf) classes is 
iteratively set to the average similarity exhibited by children, 
grandchildren and great-grandchildren. Intuitively, two super-
classes are the same if they have matching descendants. 



Sample Results 

In this section we present some statistics on our matches. To 
highlight similarities and differences between the models, we 
also present two good matches and one bad match. The quality 
of a match is measured by the number of (frame, slot, value) 
assertions agreed on by both the FMA and the CRM. 

As a baseline, a simple string comparison identifies merely 306 
matches (out of a possible 24,000 based on the size of the 
smaller model). Because the CRM uses terms without spaces 
(CaMeL case), by adding relevant spaces to CRM terms and 
ignoring case, 1834 matches can be found using string com-
parison. 

Using the lexical tools described above increases the number of 
matches to 3503. Structure matching adds 64 matches. At fi rst, 
this seems disappointing, but prior to structure matching, al-
most no elements representing relationships were matched. For 
example, tributary (from the FMA) did not match HasBranch 
(from the CRM) and generic part did not match HasDivision. 
One notable exception is that contains matched contains. With 
these 64 additional matches, we matched 875 reified relation-
ships (anonymous elements like in figure 2). Finally, hierarchi-
cal matching, not used by Zhang and Bodenreider, increased 
the total number of element matches to 3780. This is compara-
ble to the 2353 matches found by Zhang and Bodenreider [10]. 

Sample results are in figures 3 and 4. Figure 3 shows terms and 
relationships that are in both models and hence the match is the 
identity. This holds for both the elements and the relationships 
between them. For example, both models assert that one of the 
branches of the Abdominal aorta is the ovarian artery. 

Median nerve innervates:
{flexor digitorum superficialis, flexor carpi
radialis, palmaris longus, pronator teres,
flexor digitorum profundus}

Abdominal aorta branches:
{ovarian artery, inferior phrenic artery, inferior
mesenteric artery, superior mesenteric artery,
renal artery, common iliac artery, lumbar
artery, median sacral artery}

 

Figure 3—Sample good matches; all elements and relation-
ships are present in both the FMA and the CRM 

Figure 4 shows sample assertions from the FMA and from the 
CRM concerning the Lung. Both models include parts of the 
Lung, but they disagree on every part. Some of the discrepancy 
stems from an inaccurate mapping: lobe of lung should match 
lobe. Others are due to different modeling decisions: The mod-
els do not agree on the relationship between the lung and pa-
renchyma. The CRM distinguishes between parts (a chassis is 
part of a car) and substances (a car is made of steel). Similar 
distinctions are being added to the FMA [13], but the version 
we used did not include these subtleties. In any event, the mod-
els do not agree on whether parenchyma is a part or a sub-
stance. Neither do they agree on the Arterial supply. The FMA 
contains both bronchial arterial trunk and bronchial artery; we 
matched the latter to bronchial artery in the CRM. Finally, the 

FMA asserts that the lung is Contained in the thoracic cavity; 
the CRM claims the lung Is contained in the pleural membrane. 

FMA: Lung
General part:
{visceral pleura, lung
parenchyma, lower
lobe of lung, lobe of
lung, apex of lung
(viewed anatomically),
…}
Arterial supply:
bronchial arterial
trunk
Venous drainage:
bronchial venous tree
Bounded by:
surface of lung
Contained in:
thoracic cavity

CRM: Lung
Has division:
{apex, base of
structure, lobe, part of
pleura, pulmonary
artery, hilum,
pulmonary vein, …}
Is made of:
parenchyma
Is served by:
{bronchial artery,
pulmonary artery,
pulmonary vein}
Bounds space:
mediastinum
Is contained in:
pleural membrane

 

Figure 4—Sample bad match; the models do not agree on the 
values for any of the relationships 

Based on our observations, the best matches tend to agree on 
supply relationships (arteries, nerves and veins). This may be 
caused by general agreement of the (directly observable) rela-
tionships between anatomical structures and arteries, nerves 
and veins. Generic schema matching algorithms succeed at 
identifying these matches for two reasons: 1) Anatomists agree, 
for the most part, on the names of the structures involved, and 
2) the models express this information at the same level of de-
tail (i.e., a single relationship). There is less agreement on par-
titive relationships, which the modelers can express at differing 
levels of detail (see the next section). In addition, the modelers 
may partition according to different criteria. 

Challenges 

We now present several common cases in which generic 
schema matching failed to produce a desirable result. A com-
mon feature of these cases is that the two models express dif-
ferent granularity of detail. As a result, the relationships be-
tween the models are not satisfactori ly captured by simple cor-
respondences between elements generated by generic schema 
matching algorithms. This is an advantage of our approach 
over the Zhang and Bodenreider work [10]; they do not 
consider first class mappings and hence do not resolve these 
types of conflicts. We illustrate these scenarios with specific 
examples, but the techniques presented are more generally ap-
plicable. 

Aggregation: A common difference between models is the 
granularity with which classes and relationship types are ex-
pressed. The CRM includes a large hierarchy of relationships. 
For example, the many children of HasDivision (e.g., 
HasLayer), correspond to a single relationship (generic part) in 
the FMA. 



The FMA can also be more precise than the CRM, as shown in 
figure 5. In this example, four relationships in the FMA corre-
spond to a single relationship in the CRM. The FMA does not 
use a relationship hierarchy, so there is no parent relationship 
that aggregates the four supply relationships. A naïve mapping 
(not shown) would relate the single relationship in the CRM to 
each of the four FMA relationships. 

Figure 5 shows a better mapping. Rather than just correspon-
dences, the mapping explicitly states that the supplied by rela-
tionship in the CRM corresponds to the super-class of the FMA 
relationships. Note that this relationship is expressed only in 
the mapping—neither the FMA nor the CRM are modified. 

Mapping

supplied
by

arterial
supply

venous
drainage

nerve
supply

lymphatic
drainage

=

= = = =

 

Figure 5—Hand-constructed mapping that relates supplied by 
(from the CRM) to four similar relationships (from the FMA) 

Transitive Relationships: Many of the relationships in these 
models are transitive, such as parts, branches, and tributaries. 
The ramification of transitive relationships is that the two mod-
els may agree that some element is part of another, but they 
may express this knowledge via differing degrees of indirec-
tion. 

heart
fibrous
trigone

has
division

heart
fibrous

skeleton
fibrous
trigone

generic
part

= = =

=

 

Figure 6—Using a single mapping element to align transitive 
relationships; this mapping erroneously relates the fibrous 

skeleton to a relationship 

Consider the example in figure 6, which displays a naïve map-
ping. In both models, the fibrous trigone is part of the heart. 
However, in the FMA, the fibrous trigone is only indirectly part 
of the heart; more specifically, the fibrous trigone is part of the 
fibrous skeleton (of the heart), which is part of the heart. 

While more precise than merely equating the heart and fibrous 
trigone, the mapping in figure 6 has the unfortunate effect of 
stating that the fibrous skeleton corresponds to a relationship 
between the heart and the fibrous trigone. Deleting the edge 
between the fibrous skeleton and the mapping improves the 
mapping, but it is sti ll not clear how the CRM relationship cor-
responds to the two relationships in the FMA. 

The mapping in figure 7 demonstrates more precisely the cor-
respondences between the two models: fibrous skeleton does 
not have a correspondence in the CRM. In addition, the model 
indicates that the relationship in the CRM can be broken into 
two sub-relationships.  

heart
fibrous
trigone

has
division

heart
fibrous

skeleton
fibrous
trigone

generic
part

(R)

(R1) (R2)

 

Figure 7—A more precise mapping for transitive relationships; 
relationship (R) contains two sub-relationships (R1 and R2). 

Reified Relationships: The final example, shown in figure 8, 
arises from the use of reified relationships in the FMA to en-
code additional information about a given relationship. For 
example, wall of heart is part of heart, but moreover wall of 
heart is an unshared part (of the heart). Because Protégé-2000 
does not allow attributes to be added to relationships, the rela-
tionships must be reified as first-class instances. 

The CRM does not provide this level of detail. As shown in 
figure 8, when these relationships are imported into Vanilla, the 
number of intermediate elements between heart and wall of 



heart differ. The correct mapping is not conceptually difficult; 
each model contains a single relationship relating heart and 
wall of heart. This mapping is not automatically identified 
because structural matching algorithms require that the 
neighboring elements (shown in bold) participate in the map-
ping, which is not true with reified relationships. Zhang and 
Bodenreider [10] avoid this difficulty by manually removing 
reification. 

heart
wall of
heart

has
division

heart wall of
heart

part of
relationshipattr.

part
related

part

unshared

 

Figure 8—Sample mapping for a reified relationship 

Conclusion 

We have demonstrated that generic schema matching algo-
rithms can match two large models of anatomy, the FMA and 
the CRM. We have shown the strengths of these algorithms, 
and their limitations, especially when the models express 
knowledge at differing levels of detail (as one would expect 
when the sizes of the models differ substantially). We have 
provided hand-constructed mappings for three common situa-
tions in which generic schema matching algorithms do not pro-
vide precise mappings because the models being matched dif-
fer in their levels of detail: aggregation, transitivity and reifica-
tion. 

Looking forward, we can begin to design algorithms more ca-
pable of identifying the precise relationships between two 
models. This will  be helped, in part, by having anatomists fur-
ther evaluate the quality of the simple correspondences we 
have identified so far. 
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