
A Vision for Management of Complex Models

Philip A. Bernstein
Microsoft Research

Redmond, WA 98052-6399

philbe@microsoft.com

Alon Y. Halevy
University of Washington

Seattle, WA, 98195

alon@cs.washington.edu

Rachel A. Pottinger
University of Washington

Seattle, WA, 98195

rap@cs.washington.edu

Abstract

Many problems encountered when building applications
of database systems involve the manipulation of mod-
els. By “model,” we mean a complex structure that repre-
sents a design artifact, such as a relational schema, object-
oriented interface, UML model, XML DTD, web-site
schema, semantic network, complex document, or soft-
ware configuration. Many uses of models involve manag-
ing changes in models and transformations of data from
one model into another. These uses require an explicit rep-
resentation of “mappings” between models. We propose
to make database systems easier to use for these applica-
tions by making “model” and “model mapping” first-class
objects with special operations that simplify their use. We
call this capability model management.

In addition to making the case for model manage-
ment, our main contribution is a sketch of a proposed data
model. The data model consists of formal, object-oriented
structures for representing models and model mappings,
and of high-level algebraic operations on those structures,
such as matching, differencing, merging, selection, inver-
sion and instantiation. We focus on structure and seman-
tics, not implementation.

1 Introduction

Many of the problems encountered when building appli-
cations of database systems (DBMSs) involve the manip-
ulation of models. By “model,” we mean a complex dis-
crete structure that represents a design artifact, such as an
XML DTD, web-site schema, interface definition, rela-
tional schema, database transformation script, workflow
definition, semantic network, software configuration or
complex document. Many uses of models involve man-
aging the change in models and the transformation of data
from one model into another. These uses require an ex-
plicit representation of mappings between models. We be-
lieve there is an opportunity to make DBMSs easier to use
for these applications by making “model” and “mapping”
first-class objects with high-level operations that simplify
their use. We call this capability model management.

This paper makes two main contributions. First, it ar-
gues that general-purpose model management functions
are needed to reduce the amount of programming required
to manipulate models. Second, it proposes a data model
that captures model management functions. The data
model consists of formal structures for representing mod-
els and mappings between models, and of algebraic oper-
ations on those structures. We present the overall shape of
the data model in just enough detail to justify our thesis
that general-purpose model management is a worthwhile
and achievable goal. We expect the details of the data
model will take years to work out.

Despite the functionality advances of relational and
OO DBMSs, today’s model management applications still
include a lot of complex code for navigating graph-like
structures. Producing, understanding, tuning, and main-
taining navigational code is a serious drag on programmer
productivity, making model management applications ex-
pensive to build.

To address these problems, we propose raising the
level of abstraction beyond current DBMSs, by introduc-
ing high-level operations on models and model mappings,
such as matching, merging, selection, and composition.
These operations are not especially novel. There is re-
search literature on each of them, in the DB field and
elsewhere, much of which is relevant to the design and
implementation of model management functions. We be-
lieve they can and should be generalized and integrated,
to support a generic model management interface.

To illustrate the pervasiveness and scope of model
management, we offer some examples of models and
model mappings that arise in various applications:

� mapping an XML schema of one application to that
of another in order to guide the exchange of XML in-
stances between the applications;

� mapping a web site’s content to its page layout in order
to drive the generation of web pages;

� mapping data sources into data warehouse tables in
order to generate programs that transform production
data and load it into a data warehouse;

� mapping the DB schema of one software release into
that of the next release, to guide the migration of DBs;

� mapping source makefiles into target makefiles in or-
der to drive the transformation of make scripts and
thereby help port complex applications from one pro-
gramming environment to another; and

� mapping the components of a complex application to
the components of a system where it will be deployed
in order to drive the generation of installation, up-
grade, and de-installation programs.

By building generic functions to create models and
mappings and manipulate them as single objects, we can
provide a better environment for the above tasks. At
least initially, we expect that a model management sys-
tem would primarily manipulate models whose home is
on other platforms. Such a target platform could be an-
other DBMS, a web site, an XML environment, a pro-
gramming environment, etc. The glue between the sys-
tems is provided by simple adapters that (1) import or ex-
port a model in the model management system from or to
a schema in the target platform, or (2) interpret a mapping
in the model management system to transform instances
of one target model to those of another. One of the many
challenges in this area is to find appropriate architectures
for coupling these systems.

The leverage of building model management function-
ality is that it is highly generic and therefore widely ap-
plicable. Still, to be competitive with more customized
approaches, it must be specializable so it can exploit the
semantics of a particular data type (e.g., SQL). Making it
both generic and easily specializable is another challenge.

Model management applications are usually consid-
ered examples of “metadata management,” where most
of the effort in building the application is in manipulat-
ing
���������
	����	��
���

of a thing of interest, rather than the
thing itself. We intentionally avoid using the term meta-
data because it is so overloaded. One person’s metadata
is another person’s data. Are keywords data or metadata?
Model management takes a different cut at the problem. It
focuses attention on a particular kind of metadata, struc-
ture and mathematical semantics of descriptive informa-
tion. We see much leverage to be gained looking at this
kind of metadata in isolation.

In describing the data model, we focus on structure
and semantics. Although we have little to say here about
its implementation, we emphasize that we see model man-
agement being implemented on top of advanced DB sys-
tems and logical inferencing engines. It is not a replace-
ment for these technologies.

We begin with a scenario in Section 2, which both mo-
tivates the need for a coherent system and describes some
of the models and operators that such a system should pro-
vide. In Sections 3, 4, and 5 respectively, we discuss the

formal structure of models, mappings, and operations. Fi-
nally, in Section 6 we discuss how previous work relates
to a model management system and how it can be used to
tackle some of the many open questions.

An extended version of this paper appears in [BLP00].

2 A Motivating Scenario

We begin by describing a scenario in which a model man-
agement system would play a central role and consider-
ably reduce the coding burden of the application. We re-
fer here to several model management operations whose
semantics will be elaborated later.

Consider an online merchant selling books. The data
about its titles, customers, and orders are stored in a rela-
tional DB, whose schema is represented as a model, rdb1.
The relational data is mapped into an XML DTD, dtd1,
to serve the data onto their web site and to share data in
a marketplace of online merchants. The DTD conforms
to the standard recommended by the marketplace partici-
pants. Denote the mapping from rdb1 into dtd1 by ��� ��� .

In a model management system, rdb1, dtd1, and
��� � � would be represented as first class objects. One
scenario is that the company starts a partnership in a
slightly different domain (e.g., CDs) with another online
merchant, which exports its data in dtd2. In this case, the
DTDs of the two companies differ; while they both talk
about customers and orders, one has DTD elements con-
cerning books while the other concerns CDs. Suppose our
task is to create a relational schema rdb2 for the data from
the CD merchant. We will do this by using model man-
agement operators to create the model for rdb2. In this
case, we could proceed as follows (see Figure 1):

1. For the parts of the DTDs that match exactly, use the
inverse of ��� ��� to create rdb2. We do this in three
steps, using the operations on models and mappings:

(a) Use the generic model matching function Match to
create ��� ��� = Match(dtd1,dtd2), which is a map-
ping from dtd1 to dtd2 that identifies the maximal
subsets of the two DTDs that exactly match.

(b) Create ��� ��� = ��� ����� � � ��� , the composition of
��� ��� and ��� ��� , from rdb1 to dtd2. Since ��� ���
includes only exact matches, ��� ��� maps only to the
subset of dtd2 that exactly matches dtd1.

(c) Set !"��� ��# , rdb2 $ = DeepCopy(� � �&%
��
), which

creates a new copy of ��� � %
��

and rdb1, called
��� � # and rdb2 respectively. It is “deep” in the
sense that it copies not only objects in ��� � %

��
but

also the objects that ��� � %
��

connects to in rdb1.

2. For the parts of dtd2 that don’t match dtd1, use a de-
fault mapping from DTDs to relational schemas. Us-
ing our operations, this can be done as follows:

dtd1 dtd2

rdb3

M1
2(a)

m
ap

 1

1(a)

1(
c)

2(
b)

m
ap

 4

map2

m
ap

 5

Legend:

mapping other transformation

rdb1 rdb2
1(

b)

m
ap

 3

2(c) map6

2(d)

1(a). ��� � � = Match(dtd1, dtd2)
1(b). ��� � � = ��� � � � ��� � �
1(c). !"��� � # , rdb2 $ = DeepCopy(� � � %

��
)

2(a).
� ���

dtd2 � Range(Match(dtd1,dtd2))
2(b). ��� ��� = Default(

� �
, rdb3)

2(c). ��� ��� = Match(rdb2, rdb3)
2(d). Merge(rdb2, rdb3, ��� ���)

Figure 1: An example usage of model management operations.

(a) Use the set-difference operator to create a model
� �

representing the part of dtd2 that doesn’t match with
dtd1:

� � �
dtd2 � Range(Match(dtd1,dtd2)).

(b) Instantiate the default DTD-to-RDB transformation
by calling ��� � � = Default(

� �
, rdb3), which cre-

ates a mapping ��� � � and a relational schema rdb3
with new names. The domain of ��� � � is

� �
and

its range is rdb3.

(c) Create ��� � � = Match(rdb2, rdb3) to align the
overlapping tables and keys of the two schemas, in
preparation for merging them.

(d) Call Merge(rdb2, rdb3, ��� ���) to merge rdb3 into
rdb2 based on � � ��� .

Other model management operations can be useful in
complications of the above situation:

� If there are differences even in the common parts of
the DTDs, we would like the match function to pro-
pose a set of possible matches between the two DTDs
and rank them. The engineer can then choose the ap-
propriate one and, possibly, modify it manually. The
system should also be able to take input from the engi-
neer that constrains the possible matches between the
two DTDs.

� After creating rdb2, we have two separate relational
DBs for the two companies. Suppose that later on,
one company acquires the other, and therefore wants
to merge their DBs. In this case, we would like a
Merge(rdb1,rdb2) operation to propose a relational
schema that merges the original ones. This is more
complex than 2(c,d) above, because the DB schemas

are probably not disjoint and may have different in-
ternal structure. Furthermore, we would like the sys-
tem to automatically generate a mapping from the old
schema to the merged one, to facilitate the migration
of applications to the new merged company.

� There may be several possible mappings from XML
DTDs to relational schemas. In this case, instead of
using Default(dtd,rdb), we may try several mappings
and pose what-if queries on their results. In particular,
we would want to estimate the cost of processing cer-
tain queries on the resulting schemas, using a generic
function Estimate(queries, schema).

Companies are facing an increasing need to share data
with others in various contexts, especially with the growth
of business-to-business online applications. Hence, these
operations are becoming more important all the time.

The above scenario might sound like pie-in-the-sky
that is hopeless to achieve. For example, it sounds ex-
tremely hard to develop a generic algorithm that finds the
best match of two distinct models or that inverts an ar-
bitrary mapping. But optimal and complete algorithms
are not essential ingredients for success. Success would
be realized by a platform for manipulating models and
mappings using high level operators that users can fur-
ther customize manually. Since there are many published,
mostly-heuristic algorithms for all the above operations
(cf. Section 6), this goal seems well within reach.

3 Models

This section describes a first attempt at a data model for
model management. We begin by discussing models. In
the next section we discuss mappings between models.

At an abstract level, we think of models as labeled di-
rected graphs. An object-oriented data model is therefore
the natural platform on which to define model manage-
ment functions. Almost any object model will do. In this
paper, we use the following simple one: Each object has a
set of scalar-valued properties whose values describe the
state of the object. Each object also has relationship prop-
erties, each of which contains a set of binary relationships.
Each relationship is a pair of object references directed
from its origin object to its destination object, but it can
be traversed in either direction. As in ODMG [CCB � 00],
relationships are not first-class objects.

We assume each object is an instance of a class. Each
class definition describes the set of properties and rela-
tionship properties that are defined for instances of that
class. Since relationships are binary, each relationship
property definition has an inverse relationship property
definition on the class to which it connects and is labelled
as either the origin or destination side.

We assume that class definitions are objects. This
makes the data model self-describing. Thus, a model can
be a mixture of class definitions and ordinary objects.

We use database to refer to a set of objects of interest.
It may or may not be persistent.

Model contents: A model is a composite object con-
taining objects and relationships. Which objects and re-
lationships? We could make this explicit by representing
a model by a particular object that has a relationship to
every object in the model. But this is inconvenient, since
every time a submodel is added to a model, a relationship
would have to be added from the model object to every
object in the submodel. To avoid this, we use ordinary re-
lationships in a model to define the contents of the model.

We could say that a model is simply the set of objects
reachable from its root. Thus, when adding a relationship
from an object in a model to some submodel, all of the
objects in the submodel immediately become part of the
model. Unfortunately, this doesn’t quite work, because
some relationships are between pairs of objects in differ-
ent models. Our solution is to distinguish between rela-
tionships that imply containment within the model from
those that do not. This is similar to the representation of
complex objects in some OO DBMSs. A model, then, is
the transitive closure of containment relationships ema-
nating from the model’s root. Formally, we assume that
each relationship property definition in the schema in-
cludes a

� �
�� � 	 � � ���� flag, which is set to True for con-
tainment relationships, and we define a model as follows:

Definition 1 A � ��� ��� is a set of objects � that is iden-
tified by a

�����
 ����� �
��
,
�

in � , such that � ��� �
	 is the
set of objects that are reachable by following containment
relationships from

�
. �

In our experience, it is worth restricting the con-
tainment flag to be settable only on the origin side of
a relationship property, and to require that containment
relationships in a model constitute a directed acyclic
graph [BBC � 99]. This makes containment correspond to
the intuitive notion of set containment. It simplifies the
maintenance of a materialized closure, which enables the
content of a model to be identified efficiently [DS00]. We
expect it also simplifies algorithms for propagating delete,
copy and other operations on models (cf. Section 5.1).

Challenge 1 Develop a mechanism for representing
models and for storing these representations. One key is-
sue is how much of a model’s semantics is expressed in
its representation. For example, an integrity constraint
for a relational schema can be represented as a string-
valued property, or as a logical formula whose structure
and interpretation is known to the model management
system. Another issue is how much of the semantics of

the model to describe. Storing and indexing models also
raises challenges. Different storage schemes can be de-
vised for building a model management system over an
OO, object-relational or other DBMS. �

4 Mappings Between Models

A key goal of model management is to provide support
for managing change in models and for mapping data be-
tween different models. Hence, we believe it is crucial
that model mappings be manipulated as first-class citi-
zens. Before describing our representation of model map-
pings, we outline the key elements underlying our ap-
proach to modeling mappings.

� We need to manipulate model mappings much like we
manipulate models: copy a mapping, delete a map-
ping, select from a mapping, etc. To avoid defining
separate elementary operations on mappings, we re-
quire that a mapping be a model. This also allows us
to have mappings between mappings.

� A mapping consists of connections between instances
of two models, often of different types (e.g., a map-
ping between a relational schema and an XML DTD).
While we could allow a mapping to connect more than
two models, this adds complexity to the data model
and is unnecessary for the applications we know of.

� There may be more than one mapping between a given
pair of models. For example, two different mappings
between a relational schema and an XML DTD can
represent two different ways to encode instances of the
relational schema as instances of the DTD.

� A mapping may relate a set of objects in one model
to a set of objects in another via a language for build-
ing complex expressions. For example, a mapping be-
tween relational schemas

� �
and

� �
may specify that

view � � over
� �

corresponds to view � � over
� �

,
where the view definitions are part of the mapping.
Moreover, a model may have an associated language
for building expressions over elements in the model,
such as a query language or arithmetic expressions.

� Mappings must be able to nest. This enables the reuse
of mappings: a mapping on a model

�
to be used as

a component of a mapping on models that contain
�

.

Given these points, we define model mappings as follows:

Definition 2 A model mapping � � � from a model
� �

to
a model

� �
is a model where:

1. ��� � has a distinguished root element that has two
single-valued relationship properties, domainRoot
and rangeRoot, which point to the root objects of

� �
and

� �
, respectively. These properties identify the

models being related by the mapping.

2. Each object in ��� � (called a mapping object) has a
property Expr, which is an expression over the objects
of
� �

and
� �

.

3. Each mapping object in ��� � has two relationship
properties, domain and range, which include the ob-
jects of

� �
and

� �
(resp.) referred to in Expr. �

Although a mapping must be a model, the definition of
mapping says nothing about the mapping’s containment
relationships. This degree of freedom is appropriate be-
cause different applications will want to structure map-
pings in different ways. For example, a mapping between
two very similar XML DTDs could mimic the structure of
the DTDs being related. By contrast, a mapping between
two highly dissimilar DTDs might be flat, where all ob-
jects in the mapping are children of the root, since the
mapping is not preserving much of the DTDs’ structure.

Emp

Addr

Name

E#

Dept#

map1

=

= cat

=

Phone

Last

First

Name

Dept#

E#

Emp

Figure 2: A mapping between a relational schema and DTD

Example 1 Figure 2 shows a mapping between a rela-
tional schema and DTD. The root of map1 connects the
root of the relational schema and XML DTD, as required
by Definition 2. The mapping objects’ Expr properties
are abbreviated by the operation that relates the domain
and range. �

An immediate advantage of the explicit representation
of models and mappings is that it allows us to pose queries
such as “Find all attributes in the XML DTD that map to
members of keys in the relational model.” Since we are
formulating our model as a graph, we can answer essen-
tially any queries that follow regular expressions. This is
similar to OQL and many XML query languages.

The property Expr is a placeholder for specifying se-
mantic details. We do not require a specific representa-
tion of the mapping’s semantics. It could be a string, or it
could be the root object of a complex structure that repre-
sents the expression. This raises the following challenge:

Challenge 2 Find appropriate representations of model
mappings that trade off expressiveness of semantics with

the goal of keeping operations generic across a wide set
of model types. �

Directionality of mappings: A mapping is directional
if it specifies how to transform data from its domain to
its range. Some operations require mappings to be direc-
tional, such as some kinds of composition. Others do not,
such as differencing. We therefore defined mappings so
that they can represent directionality but do not require
it. To help manage directionality when it is required, we
envision an orientation operator that takes as input a map-
ping and produces a directional mapping from its domain
to its range whenever possible (and returns the best ap-
proximation otherwise). The issue of directionality raises
another model management challenge, which can be in-
stantiated for different model and mapping types:

Challenge 3 Develop an algorithm that given a mapping
� between two models

� �
and

� �
produces the best di-

rectional mapping � �

from
� �

to
� �

. �

5 Operations on Models

Recall that our main goal in creating a data model for
model management is to reduce the amount of program-
ming required to manipulate persistent models. We do this
by defining a set of high-level algebraic operations on the
two main structures of interest, models and mappings. We
have two requirements for these operations. First, each
operation should return a model, so that operations can
be composed. Second, each operation should be generic,
so it works for any type of model or model management
application. The overall challenge is:

Challenge 4 Design an algebra of useful, composable
operations on models. Consider combinations of opera-
tions as well as efficient implementations. �

5.1 Elementary Operations

Standard operations are needed to manipulate models,
such as create, update, delete, select, project, setDiffer-
ence, applyFunction and copy. Their definitions are fairly
standard, but see [BLP00, BR00] for some additional
wrinkles introduced in the context of model management.

A particularly interesting operation is model enumer-
ation. Although our goal is to capture as much model
management functionality as possible in set-at-a-time op-
erations, there will undoubtedly be times when the ob-
jects of a model need to be navigated one-by-one. Since
a model is a set of objects, one could navigate it using
the data manipulation language of the underlying DBMS.
However, we can offer a simpler interface by defining an
Enumerate operation that performs the traversal, thereby

bridging the programming gap between models and ob-
jects within models. Enumerate takes a model,

�
, as

parameter plus directives regarding the order in which ob-
jects should be traversed. It returns a cursor object, which
can be used by get-next operations. There are many useful
directives that Enumerate could offer, such as depth-first
vs. breadth-first and pre-order vs. post-order traversal.
Enumerate should use the containment relationships to
guide the traversal, to avoid straying outside the model.
It is conceivable to use non-containment relationships in-
stead, but this introduces a potentially expensive model
membership test as each object is returned by a get-next.

5.2 Matching and Differencing

Since many applications of model management involve
tracking changes in models, a key operation to consider is
one that accepts as input two models, and returns the map-
ping that describes the best match between them. Unlike
the operations described in the previous section, the out-
put of a match operation is often just an educated guess
made by the system, based on examining the schema and
integrity constraints of the models, or by inspecting data
instances of the two models. Such a guess gives an engi-
neer a starting point for designing a best match.

There are different flavors of the problem of finding
matches between models, depending on whether they fo-
cus on the commonalities or on the differences.

1. Find the best mapping between two models. In Sec-
tion 2, we used such an operator to find the parts of
two DTDs that match.

2. Find the difference between two models. This is ba-
sically the same as matching, except that the answer
needs to highlight the differences.

3. The engineer may wish to find a best match that is con-
sistent with a priori knowledge about the mapping. In
some cases, the knowledge may concern which objects
in one model should not be mapped to the other model.
For example, a designer may know that “phone num-
ber” in one schema means home phone while in the
other it means business phone.

4. We may already have a partial mapping � between
models

� �
and

� �
and would like the system to find

the best complete mapping that extends � .

To summarize, the following is a key model manage-
ment challenge, predicated on the specific type of model.

Challenge 5 Develop algorithms for finding the best
matches between two models. Specifically, given two
models

� �
and

� �
, and a partial mapping � that spec-

ifies a priori knowledge about the mapping from
� �

to� �
, find an extension � �

of � that is the best complete
mapping from

� �
to
� �

. �

Matching: A Match operation should be generic, so it
can apply to any type of model. One approach is to obtain
a generic Match by encapsulating object mapping criteria
in a similarity relation,

��
, over pairs of objects. A simple

semantics for
��

is type and value equality.
We can define a Match operation that takes as input

two models and a
��

relation and produces a mapping that
is consistent with

��
. Each object in the mapping returned

by Match should include an expression that describes how
the domain and range objects are related. Ideally, we
would like a generic Match algorithm that treats the math-
ematical system as a black box that it calls to generate a
formula (e.g., a view definition) whenever it identifies a
combination of domain and range objects that match. Or,
we may need a repertoire of Match algorithms, each cus-
tomized to a particular formal system.

The result of Match could be flat where all objects
in each mapping are children of the root. More likely, a
user would want a mapping to mimic the structure of the
models being matched. By mimicking the model structure
in the mapping, an application can more easily navigate
the mapping systematically.

Challenge 6 What are good structures for the result of
matching models that have different structure? �

Differencing: The differencing operation is essentially
a Full OuterMatch, since the latter identifies objects that
appear in one model but not the other, i.e., were inserted
or deleted. The expression in each object of the map re-
turned by Full OuterMatch is still some form of equiva-
lence that explains how the domain and range objects are
related. For example, the expression may say that domain
and range objects represent the same conceptual object,
but some of their property values or relationships differ.
Such an expression has the same meaning as an ordinary
Match, where sameness rather than difference is being
emphasized. However, it may be desirable to phrase the
expression in a way that emphasizes difference rather than
sameness. If a mapping object has an empty domain or
range, then presumably its associated expression is null.

Challenge 7 Should Diff a separate operation or a spe-
cialization of OuterMatch? Is there a useful way to ex-
press a transformation sequence as a model? Should script
generation be encapsulated as a generic operation? �

5.3 Merge

Merging is the activity of moving the content of a target
model into a source model. If the source and target models
are disjoint, this amounts to taking the union of the source
and target models and assigning it to the source model. In
this case, if the roots of the source and target are identical

or if they are merely placeholders under which to hang the
model, then merging can be achieved by connecting the
root of the target model with the children contained by the
root of the source model. That is, the effect of Merge(

� �
,� �

) is to make a copy of all of the outgoing containment
relationships from the root of

� �
and connect them to the

root of
� �

. For example, this semantics would satisfy the
needs of steps 2(b) and 2(c) in Section 2.

When the source and target are not disjoint, Merge
faces several issues:

1. Avoiding the creation of duplicate copies of source ob-
jects that are already present in the target, and choos-
ing property values for such objects when the source
and target state differ.

2. Inserting source objects and relationships that are not
present in the target.

3. Possibly deleting target objects and relationships that
are not in the source.

Addressing these issues in a generic Merge operation is
hard, because many variations are possible, depending on
assumptions about the structures being merged. One way
to address them is to have Merge take a third parameter
which is a delta of the target and source, and use it to drive
the merge activity, following the interpretation presented
for the definition of potential delta.

Challenge 8 Propose a semantics for Merge that ad-
dresses the above issues and is sufficiently generic to sub-
sume most of the known semantic variations. �

5.4 Mapping Composition

Composition of mappings is relatively easy to define for
mappings that are single-valued functions, since ordinary
function composition semantics works well. However, we
want the result to be a model, so we need containment re-
lationships that connect the objects in the resulting map-
ping. One approach is to use the containment relation-
ships of one of the two mappings involved in the com-
position. For example, consider single-valued functions
��� � � : � � � � �

and ��� � � : � � � � �
. The result of

composing ��� � � and ��� � � , denoted ��� � � � ��� � � , is
equivalent to the following:

1. Create a shallow copy ��� ��� of ��� ��� (i.e., copy the
map and its relationships, but not the objects it con-
nects to).

2. For each object
��� � � � � , if � object � � ��� � � with

��� ��� ��� 	 � =
� � � � ��� � , then set

� � � � ��� � = ��� � � ��� �
(i.e., replace

� � � � ��� � by ��� � � ��� �). Otherwise set� � � � ��� � = 	 .

Notice that ��� ��� includes a mapping object for every ob-
ject in ��� ��� . However, it only includes the range of an

object
� �

of � � ��� if an object in ��� ��� composes with���
. An alternative, equally useful semantics is to guide

the above procedure by ��� ��� instead of ��� ��� . Then the
resulting mapping will include every object in � � � � but
not ��� � � . The latter is what is needed for step 1(b) of
Section 2, where we do not want the result of the compo-
sition to contain any object

�
for which

� � � � ��� � = 	 (i.e.,
any object in dtd2 that does not match dtd1).

This definition works even if each object
�

in � � �&�
maps a set of objects in

� �
to an object in

� �
(e.g.,

maps a set of web pages to a relation that they reference).
Allowing

� � � � ��� � to be set-valued is more problematic.
There are (at least) two ways to interpret

� � � � ��� � :
1. Treat � � ��� as a single-valued function whose output

is a set. The above definition of composition works in
this case.

2. Treat ��� � � as a multi-valued function whose output is
a set of individual objects. So in step (2) of the above
definition, we can compose

�
with a set of objects

in � � ��� the union of whose domains are covered by� � � � ��� � .
Both semantics appear to be useful, so variations of
the composition operation are needed for each of them
(see [BR00] for details). Finally, many interesting ques-
tions arise when mappings relate complex expressions
over the two models, and when we consider composition
of non-directional mappings.

6 Related Work

Model management is not an isolated area of research.
The DB literature already deals with many aspects of the
problem. Model management offers opportunities to ex-
tend these works in new directions. This section describes
how some of that work fits into the overall vision.

Platforms for model management systems: Many of
today’s advanced DB architectures and features are rel-
evant to developing an appropriate platform for model
management. A model management system should be
implemented on a platform that includes OO and object-
relational functionality. This will enable it to exploit the
usual OO features (inheritance, encapsulation, polymor-
phism), recursive queries, an extensible set of algebraic
operations, an extensible query optimizer, etc. Some
model management functions are likely to run faster in
client cache than on a server, which is more conducive to
today’s OO DBs than object-relational ones. Models are
usually versioned, making techniques from temporal DBs
of interest. Other architectures that combine OO and de-
ductive capabilities in sophisticated ways can also provide
significant benefits to model management such as, Te-

los [MBJK90], ConceptBase [JJ89], F-Logic [KLW95],
and Description Logics [Bor95].

Inferencing in model management: Several key oper-
ations in model management involve various forms of in-
ference, such as inverting a mapping, completing a map-
ping, and determining equivalence of models. For exam-
ple, a mapping can be thought of as a view of one model in
terms of another. Therefore, inverting a mapping resem-
bles the problem of inverting views, which raises the rele-
vance of work on answering queries using views [Hal01]

Efficient operations on models: A model is the tran-
sitive closure of a graph. In many scenarios, it will be
important to compute this closure and/or maintain it as a
materialized view [ADJ90, AJ87, DP97, DR94, DS95,
Jag90, IRW93]. Probably, some structure in models
can be exploited to improve upon published techniques.
Transitive closure is also closely related to recursive query
processing [BMSU86, BR86, DR94]. It will be important
to learn how best to map model management functions on
top of recursion, which is now a part of SQL3.

Differencing models: In many cases, differencing mod-
els is a lot like differencing graph structures. As shown in
[CRGMW96, CGM97], its computational complexity is
sensitive to assumptions about the kind of structure that
the graph can represent and the available mapping oper-
ations. This suggests it will be hard to develop generic
algorithms for differencing that are parameterized by the
kinds of structures of interest. Luckily, there is a substan-
tial research literature on differencing that can be lever-
aged to understand the variations that need to be covered
by a generic solution, or even to understand if a generic
solution is possible [Mye86, SZ90, WSC � 97, ZWS95].

Modeling change in models: One of most longstand-
ing topics of DB research is data translation [BKKK87,
LCC94, SHT � 77]. Recent techniques, such as those of
[CJR98, MZ98], are excellent test cases for a generic
model management system.

Schema integration: There are many approaches to
schema integration which are candidate algorithms for
Match [BCV99, JMN � 99, MHH00, MWK00, PSU98,
MMP95, DDL00]. Information capacity of models
[MIR93] may also be key to comparing among models.

7 Final Remarks

In this paper, we presented an outline of a data model for
model management, which has two main abstractions

� model, which captures the structure of engineered in-
formation artifacts, such as database schemas, inter-
face definitions, XML DTDs, web site designs, se-
mantic networks, complex documents, and software
configurations, and

� mapping, which captures relationships between mod-
els such as transformations and matchings.

The data model includes high-level set-oriented opera-
tions that manipulate models and mappings as first class
objects, such as copy, select, delete, apply-function, enu-
merate, compose, match, and merge. These operations
should greatly reduce the amount of code required for ap-
plications that manipulate models and mappings. More-
over, they should enable people to write model manipula-
tion applications that today seem too daunting.

A modern database system supporting object-oriented
or object-relational functions should be a very suitable
platform on which to implement a model management
data model. However, producing such an implementation
is not a cake walk. As pointed out in this paper, there are
many technical challenges in developing a generic, cus-
tomizable and efficient implementation. Long term, we
expect that a solution to these challenges will result in a
substantial layer of software that we can properly think of
as a new kind of database system.

Applications that manipulate models are complicated
and hard to build. By implementing generic model man-
agement functionality along the lines presented in this pa-
per, the database field stands a good chance of improving
programmer productivity for these applications by an or-
der of magnitude. It is an exciting prospect.

8 Acknowledgements

We are grateful for many useful suggestions from Thomas
Bergstraesser, Zack Ives, Sergey Melnick, John Mylopou-
los, Arnie Rosenthal, and especially Erhard Rahm.

References

[ADJ90] Rakesh Agrawal, Shaul Dar, and H. V. Jagadish. Di-
rect transitive closure algorithms: Design and performance
evaluation. TODS, 15(3):427–458, 1990.

[AJ87] Rakesh Agrawal and H. V. Jagadish. Direct algorithms
for computing the transitive closure of database relations. In
Peter M. Stocker, William Kent, and Peter Hammersley, ed-
itors, Proc. of VLDB, pages 255–266. Morgan Kaufmann,
1987.

[BBC
�

99] P. A. Bernstein, T. Bergstraesser, J. Carlson,
P. Sanders S. Pal, and D. Shutt. Microsoft repository ver-
sion 2 and the open information model. Information Systems,
24(2):71–98, 1999.

[BCV99] Sonia Bergamaschi, Silvana Castano, and Maurizio
Vincini. Semantic integration of semistructured and structured
data sources. SIGMOD Record, 28(1):54–59, 1999.

[BKKK87] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and
Henry F. Korth. Semantics and implementation of schema

evolution in object-oriented databases. In Proc. of SIGMOD,
pages 311–322, 1987.

[BLP00] Philip A. Bernstein, Alon Y. Levy, and Rachel A. Pot-
tinger. A vision for management of complex models. Techni-
cal Report MSR-TR-2000-53, Microsoft Research, Available
from http://research.microsoft.com/pubs/., 2000.

[BMSU86] François Bancilhon, David Maier, Yehoshua Sagiv,
and Jeffrey D. Ullman. Magic sets and other strange ways to
implement logic programs. In Proc. of PODS, pages 1–16,
1986.

[Bor95] Alex Borgida. Description logics in data manage-
ment. IEEE Transactions on Knowledge and Data Engineer-
ing, 7(5):671–682, 1995.

[BR86] Franois Bancilhon and Raghu Ramakrishnan. An ama-
teur’s introduction to recursive query processing strategies. In
Proc. of SIGMOD, pages 16–52, 1986.

[BR00] Philip A. Bernstein and Erhard Rahm. Data warehouse
scenarios for model management. In Proceedings of the Entity
Relationship Conference, pages 1–15. Springer Verlag, 2000.

[CCB
�

00] R.G.G. Cattell, Rick Catell, Douglas K. Barry,
Mark Berler, Jeff Eastman, David Jordan, Craig Russell, Olaf
Schadow, Torsten Stanienda, and Fernando Velez, editors. The
Object Data Standard: ODMG 3.0. Morgan Kaufmann Pub-
lishers, 2000.

[CGM97] Sudarshan S. Chawathe and Hector Garcia-Molina.
Meaningful change detection in structured data. In Proc. of
SIGMOD, 1997.

[CJR98] Kajal T. Claypool, Jing Jin, and Elke A. Runden-
steiner. Serf: Schema evalution through an extensible, re-
usable and flexible framework. In Proc. of CIKM, pages 314–
321, 1998.

[CRGMW96] Sudarshan S. Chawathe, Anand Rajaraman, Hec-
tor Garcia-Molina, and Jennifer Widom. Change detection in
hierarchically structured information. In Proc. of SIGMOD,
1996.

[DDL00] Anhai Doan, Pedro Domings, and Alon Y. Levy.
Learning source descriptions for data integration. In In Proc.
of WebDB, 2000.

[DP97] Guozhu Dong and Chaoyi Pang. Maintaining transi-
tive closure in first order after node-set and edge-set deletions.
Information Proc. Letters, 62(4):193–199, 1997.

[DR94] Shaul Dar and Raghu Ramakrishnan. A performance
study of transitive closure algorithms. In Proc. of SIGMOD,
pages 454–465, 1994.

[DS95] Guozhu Dong and Jianwen Su. Incremental and decre-
mental evaluation of transitive closure by first-order queries.
Information and Computation, 120(1):101–106, 1995.

[DS00] G. Dong and J. Su. Incremental maintenance of recur-
sive views using relational calculus / SQL. SIGMOD Record,
pages 44–51, 2000.

[Hal01] Alon Y. Halevy. Answering queries using views: A
survey. To appear in the VLDB Journal, 2001.

[IRW93] Yannis E. Ioannidis, Raghu Ramakrishnan, and Linda
Winger. Transitive closure algorithms based on graph traver-
sal. TODS, 18(3):512–576, 1993.

[Jag90] H. V. Jagadish. A compression technique to materialize
transitive closure. TODS, 15(4):558–598, 1990.

[JJ89] Matthias Jarke and Manfred A Jeusfeld. Rule represen-
tation and management in ConceptBase. SIGMOD Record,
18(3):46–51, 1989.

[JMN
�

99] Jan Jannink, Prasenjit Mitra, Erich Neuhold, Srini-
vasan Pichai, Rudi Studer, and Gio Wiederhold. An alge-
bra for semantic interoperation of semistructured data. In
IEEE Knowledge and Data Engineering Exchange Workshop
(KDEX), 1999.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical founda-
tions of object-oriented and frame-based languages. J. ACM,
42(4):741–843, 1995.

[LCC94] Chien-Tsai Liu, Shi-Kuo Chang, and Panos K.
Chrysanthis. Database schema evolution using EVER dia-
grams. In Proceedings of the Workshop on Advanced Visual
Interfaces, pages 123–132, New York, New York, USA, 1994.

[MBJK90] John Mylopoulos, Alexander Borgida, Matthias
Jarke, and Manolis Koubarakis. Telos: Representing knowl-
edge about information systems. ACM TOIS, 8(4):325–362,
1990.

[MHH00] Renee J. Miller, Laura Haas, and Mauricio Hernan-
dez. Schema mapping as query discovery. In Proc. of VLDB,
2000.

[MIR93] Renne J. Miller, Yannis E. Ioannidis, and Raghu Ra-
makrishnan. The use of information capacity in schema in-
tegration and translation. In Proc. of VLDB, pages 120–133,
1993.

[MMP95] John Mylopoulos and Renate Motschnig-Pitrik. Par-
titioning information bases with contexts. In Proceedings of
3rd CoopIS, pages 44–54, 1995.

[MWK00] Prasenjit Mitra, Gio Wiederhold, and Martin L. Ker-
sten. A graph-oriented model for articulation of ontology in-
terdependencies. In Proc. of EDBT, pages 86–100, 2000.

[Mye86] E. Myers. An o(nd) difference algorithm and its vari-
ations. Algorithmica, 1(2):251–266, 1986.

[MZ98] Tova Milo and Sagit Zohar. Using schema matching
to simplify heterogeneous data translation. In Proc. of VLDB,
New York City, USA, 1998.

[PSU98] L. Palopoli, D. Saccà, and D. Ursino. Semi-automatic,
semantic discovery of properties from database schemes.
In Proceedingsof IDEAS’98, pages 244–253. IEEE Press,
Cardiff, United Kingdom, 1998.

[SHT
�

77] N.C. Shu, B.C. Housel, R.W. Taylor, S.P. Ghosh,
and V.Y. Lum. Express: A data extraction, processing and re-
structuring system. ACM Transactions on Database Systems,
2(2):134–174, 1977.

[SZ90] Dennis Shasha and Kaizhong Zhang. Fast algorithms
for the unit cost editing distance between trees. J. Algorithms,
11(4):581–621, 1990.

[WSC
�

97] Jason Tsong-Li Wang, Dennis Shasha, George Jyh-
Shian Chang, Liam Relihan, Kaizhong Zhang, and Girish Pa-
tel. Structural matching and discovery in document databases.
In Proc. of SIGMOD, pages 560–563, 1997.

[ZWS95] Kaizhong Zhang, Jason Tsong-Li Wang, and Dennis
Shasha. On the editing distance between undirected acyclic
graphs and related problems. In Proceedings of CPM, pages
395–407, 1995.

