What is a File Synchronizer?

S. Balasubramaniam
Vidam Communications
sundar@vidam.com

Abstract

Mobile computing devices intended for disconnected opera-
tion, such as laptops and personal organizers, must employ
optimistic replication strategies for user files. Unlike tradi-
tional distributed systems. such devices do not attempt to
present a “single filesystem” semantics: users are aware that
their files are replicated, and that updates to one replica will
not be seen in another until some point of synchronization is
reached (often under the user’s explicit control). A variety
of tools, collectively called file synchronizers, support this
mode of operation.

Unfortunately, present-day synchronizers seldom give the
user enough information to predict how they will behave un-
der all circumstances. Simple slogans like “Non-conflicting
updates are propagated to other replicas” ignore numerous
subtleties—e.g., Precisely what constitutes a conflict be-
tween updates in different replicas? What does the syn-
chronizer do if updates conflict? What happens when files
are renamed? What if the directory structure is reorganized
in one replica?

Our goal is to offer a simple, concrete, and precise frame-
work for describing the behavior of file synchronizers. To
this end, we divide the synchronization task into two concep-
tually distinct phases: update detection and reconciliation.
We discuss each phase in detail and develop a straightfor-
ward specification of each. We sketch our own prototype
implementation of these specifications and discuss how they
apply to some existing synchronization tools.

1 Introduction

The growth of mobile computing has brought to fore novel is-
sues in data management, in particular data replication un-
der disconnected operation. Support for replication can be
provided either transparently (with filesystem or database
support for client-side caching, transaction logs, etc.) or by
user-visible tools for explicit replica management. In this pa-
per we investigate one class of user-visible tools—commonly
called file synchronizers—which allow updates in different
replicas to be reconciled at the user’s request.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MOBICOM 98 Dallas Texas USA

Copyright ACM 1998 1-58113-035-x/98/10...85.00

98

Benjamin C. Pierce
University of Pennsylvania
bcpierce@cis.upenn.edu

The overall goal of a file synchronizer is easy to
state: it must detect conflicting updates and propagate non-
conflicting updates. However, a good synchronizer is quite
tricky to implement. Subtle misunderstandings of the se-
mantics of fileystem operations can cause data to be lost or
overwritten. Moreover, the concept of “user update” itself is
open to varying interpretations, leading to significant differ-
ences in the results of synchronization. Unfortunately, the
documentation provided for synchronizers typically makes
it difficult to get a clear understanding of what they will do
under all circumstances: either there is no description at all
or else the description is phrased in terms of low-level mech-
anisms that do not match the user’s intuitive view of the
filesystem. In view of the serious damage that can be done
by a synchronizer with unintended or unexpected behavior.,
we would like to establish a concise and rigorous framework
in which synchronization can be described and discussed,
using terms that both users and implementors can under-
stand.

We concentrate on file synchronization in this paper and
only briefly touch upon the finer-grained notion of data syn-
chronization offered by newer tools [Puma, DDD*94, etc.],
but most of the fundamental issues are the same for file and
data synchronization. These issues are also closely related to
replication and recovery after partitions in mainstream dis-
tributed systems [DGMSS85, Kis96, GPJ93, DPS*04, etc.].
Ultimately, we may hope to extend our specification to en-
compass a wider range of replication mechanisms, from data
synchronizers to distributed filesystems and databases.

In our model, a file synchronizer is invoked explicitly
by an action of the user (issuing a synchronization com-
mand, dropping a PDA into a docking cradle, etc.). For
purposes of discussion, we identify two cleanly separated
phases of the file synchronizer’s task: update detection—
i.e., recognizing where updates have been made to the sep-
arate replicas since the last point of synchronization—and
reconciliation—combining updates to yield the new, syn-
chronized state of each replica.

The update detector for each replica S computes a pred-
icate dirtys that summarizes the updates that have been
made to S. (It is allowed to err on the side of safety, indi-
cating possible updates where none have occurred, but all
actual updates must be reported.) The reconciler uses these
predicates to decide which replica contains the most up-to-
date copy of each file or directory. The contract between the

TrCE e v e

two components is expressed by the requirement

for all paths p,

~dirtys(p)
=
currentContents s(p) = originalContents 3(p),

which the update detector must guarantee and on which the
reconciler relies. The whole synchronization process may
then be pictured as follows:

Replication
—»
+ | User User AN
. Updates Updates N
Vs ’ N
7/

.0 N
Update ‘/ T\ Update

Detector Detector

dirtyy | dirtyg

Reconciler

GG

The filesystems in both replicas start out with the same con-
tents O. Updates by the user in one or both replicas lead to
divergent states A and B at the time when the synchronizer
is invoked. The update detectors for the two replicas check
the current states of the filesystems (perhaps using some
information from O that was stored earlier) and compute
update predicates dirtys and dirtys. The reconciler uses
these predicates and the current states A and B to compute
new states A’ and B’, which should coincide unless there
were conflicting updates. The specification of the update
detector is a relation that must hold between O, A4, and
dirty,s and between O, B, and dirtyp; similarly, the behav-
ior of the reconciler is specified as a relation between A, B,
dirtya, dirtys, A’, and B'.

The remainder of the paper is organized as follows. We
start with some preliminary definitions in Section 2. Then,
in Sections 3 and 4, we consider update detection and rec-
onciliation in turn. For update detection, we describe sev-
eral possible implementation strategies with different perfor-
mance characteristics. For reconciliation, we first develop a
very simple, declarative specification: a small set of natural
rules that describe the behavior of a typical synchronizer.
We then argue that these rules completely characterize the
behavior of any synchronizer satisfying them, and finally
show how they can be implemented by a straightforward re-
cursive algorithm. Section 5 sketches our own synchronizer
implementation, including the design choices we made in our
update detector. Section 6 discusses some existing synchro-
nizers and evaluates how accurately they are described by
our specification. Section 7 describes some possible exten-
sions.

Most of our development is independent of the features
of particular operating systems and the semantics of their
filesystem operations; the one exception is in the implemen-
tation of update detectors (Section 3.2), which are neces-

929

sarily system-specific; our discussion there is biased toward
Unix. For the sake of brevity, proofs are omitted.

2 Basic Definitions

To be rigorous about what a synchronizer does to the filesys-
tems it manipulates, the first thing we need is a precise way
of talking about the filesystems themselves.

We use the metavariables and y to range over a set N
of filenames. P is the set of paths—finite sequences of names
separated by dots. (The dots between path components can
be read as slashes by Unix users, backslashes by Windows
users, and colons by Mac users.) The metavariables p, g,
and r range over paths. The empty path is written e. The
concatenation of paths p and q is written p.q. We write |p|
for the length of path p—i.e., |¢] = 0 and |g.z| = |g| + 1.
We write g < p if q is a prefix of p, i.e., if p = g.r for some
path r. We write g < p if ¢ is a proper prefixof p,ie.,, g <p
and g # p.

For the purposes of this paper, there is no need to be
specific about the contents of individual files. We simply
assume that we are given some set F whose elements are
the possible contents of files—for example, F could be the
set of all strings of bytes.

For modeling filesystems, there are many possibilities.
Most obviously, we could use the familiar recursive datatype:
F§ = Fuwy WNEFSs)

That is, a “filesystem node” is either a file or a directory,
where a file is some f € F and a directory is a finite partial
function mapping names to nodes of the same form. For
example, the filesystem

[DIR]

whose root is a directory containing one subdirectory named
d, which contains two files a (with contents f) and b (with
contents g), would be represented by the function

F={dw— D,
n +3 L for all other names n},

where L marks positions where F is undefined and D is the
function

D={aw f,b—g,
n +— L for all other names n}.

For purposes of specification, however, it seems more
convenient to use a “flat” representation, where a filesys-
tem is a function mapping whole paths to their contents.
Formally, we say that a filesystem is an element of the set

FS = {SePB(Fwrs)
Vp,q € P. S(p-g) = (S(p))(q) }-
of finite partial functions from paths to either files or sub-

filesystems. The constraint on the second line guaran-
tees that we only consider functions corresponding to tree

AL RIS AT L R TR T &

structures—i.e., ones where looking up the contents of a
composite path p.q yields the same result as first looking
up p and then looking up g in the resulting sub-filesystem
(where the application expression (S(p))(g) is defined to
yield L if S(p) is either L or a file).

Under this representation, the example filesystem above
corresponds to the function

F={e—» F,dw D,daw f, dbw g,
p + L for all other paths p},

where D is the function

D={e~ D,am f,br g,
p — 1 for all other paths p}.

The metavariables O, S, T, A, B, C, and D range over
filesystems. .

When S is a filesystem, we write |.S] for the length of the
longest path p such that S(p) # L. We write childrena(p)
for the set of names denoting immediate children of path p
in filesystem A—that is,

childrena(p) = {q | ¢ = p.z for some = A A(g) # L}.

We write childrena,p(p) for childrena(p) U childreng(p).

We write isdira(p) to mean that p refers to a directory
(i.e., not a file and not nothing) in the filesystem A. We
write dsdirs,s(p) iff both isdira(p) and isdirs(p).

To lighten the notation in what follows, we make some
simplifying assumptions. First, we assume that, during syn-
chronization, the filesystems are not being modified except
by the synchronizer itself. This means that they can be
treated as static functions (from paths to contents), as far
as the synchronizer is concerned. Second, we assume that, at
the end of the previous synchronization, the two filesystems
were identical. Third, we handle only two replicas. Finally,
we ignore links (both hard and symbolic), file permissions,
etc. Section 7 discusses how our development can be refined
to relax these restrictions.

3 Update Detection

With these basic definitions in hand, we now turn to the
synchronization task itself. This section focuses on update
detection, leaving reconciliation for Section 4.

3.1 Specification

We first recapitulate the specification of the update detector
sketched in the introduction:

3.1.1 Definition: Suppose O and S are filesystems. Then
a predicate dirtys is said to (safely) estimate the updates
from O to S if ~dirtys(p) implies O(p) = S(p), for all paths
p.

Among other things, this definition immediately tells us
that, if a given path p is not dirty in either replica, then the
two replicas have the same contents at p.

3.1.2 Fact: If A, B, and O are filesystems and dirtys and
dirtyp estimate the updates from O to A and O to B, then
—dirtya(p) and —dirtyp(p) together imply A(p) = B(p).

One other fact will prove useful in what follows.

3.1.3 Fact: For any filesystem S, dirtys is up-closed i.e., if
P < q and dirtys(g), then dirtys(p). We shall use this fact
to streamline the specification of reconciliation below.

100

3.2 Implementation Strategies

Update detectors satisfying the above specification can be
implemented in many different ways; this section outlines
a few and discusses their pragmatic advantages and disad-
vantages. The discussion is specific to Unix filesystems, but
most of the strategies we describe would work with other
operating systems too.

3.2.1 ‘Trivial Update Detector

The simplest. possible implementation is given by the con-
stantly true predicate, which simply marks every file as dirty,
with the result that the reconciler must then regard every
file (except the ones that happen to be identical in the two
filesystems) as a conflict. In some situations, this may ac-
tually be an acceptable update detection strategy. On one
hand, the fact that the reconciler must actually compare
the current contents of all the files in the two filesystems
may not be a major issue if the filesystems are small enough
and the link between them is fast enough. On the other
hand, the fact that all updates lead to conflicts may not be
a problem in practice if there are only a few of them. The
whole file synchronizer, in this case, degenerates to a kind
of recursive remote diff.

3.2.2 Exact Update Detector

On the other end of the spectrum is an update detector that
computes the dirty predicate exactly, for example by keeping
a copy of the whole filesystem when it was last synchronized
and comparing this state with the current one (i.e., replacing
the remote diff in the previous case with two local diffs).
Detecting updates exactly is expensive, both in terms of
disk space and—more importantly—in the time that it takes
to compute the difference of the current contents with the
saved copies of the filesystem. On the other hand, this strat-
egy may perform well in situations where it is run off-line
(in the middle of the night), or where the link between the
two computers has very low bandwidth, so that minimizing
communication due to false conflicts is critical.

3.2.3 Simple Modtime Update Detector

A much cheaper, but less accurate, update detection strat-
egy involves using the “last modified time” provided by oper-
ating systems like Unix. With this strategy, just one value is
saved between synchronizations in each replica: the time of
the previous synchronization (according to the local clock).
To detect updates, each file’s last-modified time is compared
with this value; if it is older, then the file is not dirty.

Unfortunately, the most naive version of this simple
strategy turns out to be wrong. The problem is that, in
Unix, renaming a file does not update its modtime, but
rather updates the modtime of the directory containing the
file: names are a property of directories, not files. For ex-
ample, suppose we have two files, a and b, and that we move
a to b (overwriting b) in one replica. If we examine just the
modtime of the path b, we will conclude that it is not dirty,
and, in the other replica, a will be deleted without b being
changed.

Similarly, it is not enough to look at a file’s modtime
and its directory’s, since the directory itself conld have been
moved, leaving its modtime alone but changing its parent
directory’s modtime. To avoid the problem completely, we

=

must judge a file as dirty if any of its ancestors (back to the
root of the filesystem) has a modtime more recent than the
last synchronization. Unfortunately, this makes the simple
modtime detector nearly useless in practice, since any up-
date (file creation, etc.) near the root of the tree leads to
large subtrees being marked dirty.

3.2.4 Modtime-Inode Update Detector

A better strategy for update detection under Unix relies on
both modtimes and inode numbers. We remember not just
the last synchronization time, but also the inode number
of every file in each replica. The update detector judges
a path as dirty if either (1) its inode number is not the
same as the stored one or (2) its modtime is later than the
last synchronization time. There is no need to look at the
modtimes of any containing directories.

For example, if we move a on top of b, as above, then
the new contents of that replica at the path b will be a file
with a different inode number than what was there before.
Both a and b will be marked as dirty, leading (correctly) to
a delete and an update in the other replica.

We have also experimented with a third variant, where
inode numbers are stored only for directories, not for each
individual file. This uses much less storage than remember-
ing inode numbers for all files, but is not as accurate. Our
own experience indicates that storing all the inode numbers
is a better tradeoff, on the whole.

3.2.5 On-Line Update Detector

A different kind of update detector—one that is difficult
to implement at user level under Unix but possible under
some other operating systems such as Windows—requires
the ability to observe the complete trace of actions that the
user makes to the filesystem. This detector will judge a file
to be modified whenever the user has done anything to it
(even if the net effect of the user’s actions was to return
the file to its original state), so it does not, in general, give
the same results as the ezact update detector. But it will
normally get close, and may be cheaper to implement than
the exact detector.

On-line upate detection presupposes the ability to track
all user actions that affect the filesystem; this places it closer
to the domain of traditional distributed filesystems (cf., for
example, Coda [Kis96, Kum94], Ficus [RHR*94, PIG*97],
Bayou [TTP*+95, PST*97], and LittleWorks [HH95]).

4 Reconciliation

We now turn our attention to the other major component
of the synchronizer, the reconciler. We begin by develop-
ing a set of simple requirements that any implementation
should satisfy (Section 4.1). Then we give a recursive algo-
rithm (Section 4.2) and argue (2) that it satisfies the given
requirements, and (b) that the requirements determine its
behavior completely, i.e., that any other synchronization al-
gorithm that also satisfies the requirements must be behav-
iorally indistinguishable from this one (Section 4.3).

4.1 Specification

Suppose that A and B are the current states of two filesys-
tems replicating a common directory structure, and that we
have calculated predicates dirtya and dirtys, estimating the

101

updates in A and B since the last time they were synchro-
nized. Running the reconciler with these inputs will yield
new filesystem states C and D. Informally, the behavioral
requirements on the synchronizer can be expressed by a pair
of slogans: (1) propagate all non-conflicting updates, and (2)
if updates conflict, do nothing.

(Of course, an actual synchronization tool will typically
try to do better than “do nothing” in the face of conflicting
updates: it may, for example, apply additional heuristics
based on the types of files involved, ask the user for advice,
or allow manual editing on the spot. Such cleanup actions
can be incorporated in our model by viewing them as if
they l;ad occurred just before the synchronizer began its real
work.

‘We are already committed to a particular formalization
of the notion of update (cf. Section 3): a path is updated
in A if its value in A is different from its original value
at the time of last synchronization. We can formalize the
notion of conflicting updates in an equally straightforward
way: updates in A and B are conflicting if the contents of A
and B resulting from the updates are different. If A and B
are both updated but their new contents happen to agree,
these updates will be regarded as non-conflicting. (Another
alternative would be to say that overlapping updates always
conflict. But this will lead to more false positives in conflict
detection.)

Our specification of the reconciler can be stated as a set
of conditions that should hold between the starting states,
A and B, and the reconciled states, C and D, for every path
p. Informally:

1. If p is not dirty in A, then we know that the entire
subtree rooted at p has not been changed in A, and
any updates in the corresponding subtree in B should
be propagated to both sides; that is, C(p) (the subtree
rooted at p in C) and D(p) should be identical to B(p);

. Conversely, if p is not dirty in B, then we should have
C(p) = D(p) = A(p).

If p refers to a directory in both A and B, then it should
also refer to a directory in C and D. (Note that this
requirement makes sense whether or not p is dirty in A
or B.)

. If p is dirty in both A and B and refers to something
other than a directory (i.e., it is either a file or 1)
in at least one of A and B, then we have potentially
conflicting updates. In this case, we should leave things
as they are: C(p) = A(p) and D(p) = B(p). (Note
that leaving things as they are is the right behavior
even in the case where the updates were not actually
conflicting—i.e., where it happens that A(p) = B(p).)

A few examples should clarify the consequences of these re-
quirements. Suppose the original state O of the filesystems
was

R

I

and that we have obtained the current states A and B by
modifying the contents of d.a in A and d.b in B. Suppose,
furthermore (for the sake of simplicity), that we are using
an exact update detector, so that dirty, is true for the paths
d.a, d, and ¢ and false otherwise, while dirtyg is frue for d.b,
d, and e. Then, according to the requirements, the resulting
states of the two filesystems should be C and D as shown.

A = [DIR] B = [DIR

The update in d.a in A has propagated to B and the update
in d.b to A, making the final states identical.

Suppose, instead, that the new filesystems A and B are
obtained from O by adding a file in A and deleting one in
B:

A = [DIE] B = [DE]
d d

Y

DIR

This is an instance of the classic insert/delete ambigu-
ity [FM82, GPJ93, PST*97] faced by any synchronization
mechanism: if the reconciler could see only the current states
A and B, there would be no way for it to know that ¢ had
been added in A4, as opposed to having existed on both sides
originally and having been deleted from B; symmetrically,

it could not tell whether a was deleted in B or new in A.
The dirty predicates provided by the update detector resolve
the ambiguity: ¢ is dirty only in A, while @ is dirty only in
B. (Note that a less accurate update detector might also
mark c dirty in B or a dirty in A. The effect would then
be a conflict reported by the reconciler and no changes to
the filesystems—i.e., the specification requires that synchro-
nization “fail safely.”)

Similarly, suppose the file d.a is renamed, in A, to d.c,
and that d.b is deleted in B. In A4, the paths marked dirty
are d.a, d.c, d, and e. In B, the dirty paths are d.b, d, and
€. So, reconciliation will result in states ¢ and D as shown.

A = [Dm] B = [DE|
d d
1
DIR
a
C = D = ID[RI
d d
y A 4
DIR DIR
c c

On the other hand, suppose that d.a is modified in A and
deleted in B, and that d.b is updated only in B. The dirty
paths in A are d.a, d, and ¢; in B they are d.a, d.b, d, and
€. The final clause above thus applies to d.a, leaving it un-
modified in C and D, while the update to d.b is propagated
to A as usual.

4 = BE B = DE
d d

T T T AR T S T T T T T ey T T - ——— —

One small refinement is needed to complete the speci-
fication of reconciliation. In what we've said so far, we've
considered arbitrary paths p. This is actually slightly too
permissive, leading to cases where two of the requirements
above make conflicting predictions about the results of syn-
chronization. Suppose, for example, that, 4 and B are ob-
tained by delete the whole directory d on one side and cre-
ating a new file d.c within d on the other:

[DIR]

A B

The contents of D(d.c) should clearly be h after synchroniza-
tion But what should be the contents of C(d.c)? On the one
hand, we have dirtys(d) and dirtyp(d) and —isdira,5(d), so
according to the final rule we should have C(d) = A(d) = 1,
which implies C(d.c) = L. But, on the other hand, we have
~dirtya(d.c), so according to the first rule, we should have
C(d.c) = B(d.c) = h.

This is a case of a genuine conflicting update, and we
believe the best value for C(d.c) here is L (the authors of at
least one commercial synchronizer would disagree—cf. Sec-
tion 6.1). We can resolve the ambiguity by stopping at the
first hint of conflict—i.e., by considering only paths p where
all the ancestors of p in both A and B refer to directories
(and hence do not conflict):

4.1.1 Definition: Let A and B be filesystems. A path pis
said to be relevant in (A4, B) iff Vg < p. isdirs,s(q).

With this refinement, we are ready to state the formal
specification of the reconciler.

4.1.2 Definition [Requirements]: The pair of new
filesystems (C, D) is said to be a synchronization of a pair
of original filesystems (A4, B) with respect to predicates
dirtys and dirtyp if, for each relevant path p in (4, B), the
following conditions are satisfied:

~dirtya(p)

= C(p) = D(p) = B(p)
~dirtys(p)

= C(p) = D(p) = Alp)
zsder,B (p)

= isdirc,p(p)

dirtya(p) A dirtys(p) A —isdira,p(p)
= C(p) = A(p) A D(p) = B(p)

4.2 Algorithm

Having specified the reconciler precisely, we can explore
some properties of the specification. In particular, we would
like to know that it is complete, in the sense that it answers
all possible questions about how a reconciler should behave,
and that it is implementable by a concrete algorithm that
terminates on all inputs. We address the latter point first.
For ease of comparison with the abstract requirements
above, we present the algorithm in “purely functional”
style—as a function taking a pair of filesystems as an ar-
gument and returning a fresh pair of filesystems as a result.

103

(Of course, a concrete realization of this algorithm would
return no results, performing its task by side-effecting the
two filesystems in-place. It should be obvious how to derive
such an implementation from the description we give here.)

In the definition, we use the following notation for over-
writing part of one filesystem with the contents of the other.
Let S and T be functions on paths and p be a path. We

write T' & S for the function formed by replacing the sub-
tree rooted at p in T with S, defined formally as follows:

TE&S Ag. if p < g then S(g) else T(q).

4.2.1 Definition [Reconciliation Algorithm]: Given
predicates dirtya and dirtys, the algorithm recon is defined
as follows:

recon(A, B ,P) =
1) if ~dirtya(p) A ~dirtys(p)
then (A4, B)
2) else if isdira,z(p)
then let {p1,p2,...,pn} = childrens,s(p)
(in lexicographic order)
in let (Ao, Bo) = (4,B)
let (Ai+1, Bi+1) = recon(Ai, B:',Pi+1)
for0<i<n
in (An, Bn)
3) else if ~dirtya(p)
then (A & B, B)
4) else if ~dirtys(p)
then (4, B & A)
5) else
(4, B).

That is, recon takes a pair of filesystems A and B and a
path p, and returns a pair of filesystems (C, D) in which the
subtrees rooted at p have been synchronized.

An easy induction on max(|A|, | B])—|p| shows that recon
terminates for all filesystems A and B and paths p. Also, ob-
serve that updates to the filesystems A and B are performed
only through the recursive calls and the grafting function
defined above; this ensures that recon(A, B, p) leaves unaf-
fected all parts of A and B that are outside the subtree
rooted at p.

4.3 Properties

It remains, now, to verify some properties of the require-
ments specification and the algorithm. In particular, we
can show that (1) the requirements in Definition 4.1.2 fully
characterize the behavior of the reconciler; and that (2) the
reconciliation algorithm is sound with respect to the speci-
fication, i.e., it satisfies the requirements in Definition 4.1.2.
It is an immediate consequence of the latter fact that the
requirements themselves are consistent, in the sense that,
for each A, B, dirty,, and dirtyg, there are some C and D
such that (C, D) is a synchronization of (4, B) with respect
to dirtys and dirtys.

To facilitate the correctness arguments, we first intro-
duce a refinement of the original requirements that allows
us to focus our attention on a specific region of the two
filesystems.

4.3.1 Definition: The pair of new filesystems (C, D) is
said to be a synchronization after p of a pair of original

filesystems (A, B) if p is a relevant path in (4, B) and the
following conditions are satisfied for each relevant path p.q
in (4, B):

—dirtya(p.q)
= C(p.9) = D(p.g) = B(p.9)
= C(p.q) = D(p.q) = A(p-q)
isdira, B(p.q)
= isdire,p(p.q)
dirtya(p.q) A dirtys(p.q) A —isdira,s(p.q)
= C(p.q) = A(p.q) A D(p.q) = B(p.g)

Note that Definition 4.1.2 is just the special case where p =
€.

4.3.2 Definition: Paths p and q are incomparable if neither
is a prefix of the other—i.e,,ifpLq A g <& p.

4.3.3 Definition: We write syncp,(C, D, 4, B) if
1. (C, D) is a synchronization of (4, B) after p,

2. for all paths ¢, if p and g are incomparable then C(g) =
A(g) and D(g) = B(g), and

3. g £p A isdira,g(g) implies isdirc,p(q)

The requirements we have placed on the reconciler are
complete in the sense that they uniquely capture its behav-
ior: given two filesystems which were synchronized at some
point in the past, there is at most one pair of new filesystems
satisfying the requirements.

4.3.4 Proposition [Uniqueness]: Let A, B, and O be
filesystems and suppose that dirtys and dirfyp estimate the
updates from O to A and B respectively. Let p be a rel-
evant path in (A,B). If (C1,D;) and (Ca, D2) are both
synchronizations of (A, B) after p, then C)(p) = Cz(p) and
D (p) = D:(p).

Furthermore, the requirements are satisfied by the algo-
rithm.

4.3.5 Proposition [Soundness]: Let A4, B, and O be
filesystems and suppose that dirtysa and dirfyg estimate
the updates from O to A and B respectively. Then
recon(A, B,p) = (C,D) implies sync,(C,D, A, B) for any
relevant path p in (4, B).

Together, propositions 4.3.5 and 4.3.4 show that al-
gorithm recon is actually eguivalent to the requirements
given in Definition 4.1.2. On the one band, if (C,D) =
recon(A, B, €), then by soundness we know that (C, D) is a
synchronization of A and B. On the other hand, suppose
(C, D) is a synchronization of A and B. Since the algorithm
is total, it must yield recon(A4, B,€) = (C’, D) for some C'
and D". But then by uniqueness, we have C = C' and
D=D"

5 Our Implementation

Our main goal has been to understand the synchronization
task clearly, not to produce a full-featured synchronizer our-
selves. However, we have found it helpful (as well as useful,
for our own day to day mobile computing) to experiment

104

with a prototype implementation that straightforwardly em-
bodies the specification we have described.

Our file synchronizer is writter in Java, using Java’s
Remote Method Invocation for networking. The design is
intended to perform well over both high- and medium-
bandwidth links (e.g., ethernet or PPP). To avoid long
startup delays, it uses a modtime-inode strategy (cf. Sec-
tion 3.2.4) for update detection, requiring only minimal sum-
mary information to be stored between synchronizations. It
operates entirely at user level, without transaction logs or
monitor daemons. It currently handles only two replicas at
a time and is targeted toward Unix filesystems (though all
but the update detector could be used with any operating
system, and new update detection modules should be fairly
easy to write).

The user interface (see Figure 1) displays all the files in
which updates have occurred, using a tree-browser widget;
selecting a file from this tree displays its status in a detail
dialog at the right and offers a menu of reconciliation op-
tions. In the common case where a file has been updated
in only one replica, an appropriate action is selected by de-
fault and the tree listing shows an arrow indicating which
direction the update will be propagated. If both replicas are
updated, the tree view displays a question mark, indicating
that the user must make some explicit choice. When the
user is satisfied, a single button press fires all the selected
actions.

Internally, the implementation closely follows the recon-
ciliation algorithm in Section 4.2 (see Figure 2). At the end
of every synchronization, a summary of each replica is stored
on the disk. The saved information includes the time when
each file in the replica was last synchronized and its inode
number at that time. At the beginning of the next syn-
chronization, each update detector reads its summary and
traverses the file system to detect updates. A file is marked
dirty if its ctime' or inode number has changed since the
last synchronization. The reconciler then traverses the two
replicas in parallel, examining the files for which updates
have been detected on either side and posting appropriate
records to a tree of pending actions maintained by the user
interface.

6 Examples

To explore the utility of our specification, we now discuss
some existing synchronizers in terms of the specification
framework that we have developed. We do not attempt to
provide a complete survey, just a few representative exam-
ples.

6.1 Briefcase

Microsoft’s Briefcase synchronizer [Bri98, Sch96] is part of
Windows 95/NT. Its fundamental goals seem to match those
embodied in our specification (“propagate updates unless
they conflict, in which case do nothing by default”)—indeed,
even its user interface is fairly similar to our prototype.
However, some simple experiments revealed several cases
where Briefcase’s behavior does not match what is predicted
by our specification (or any similar specification that we can
think of).

In Unix, a file’s ctime gets changed if the contents or the at-
tributes (such as permission bits) of the file are changed.

o3

Control Tracing Actions

T- - 2 examples
-+ 9 echoServer
? EchoServer.java

ignore l

ignore conflict

Broceed with selected action for this file only

-1 2. ; - —
= remote | Jinner/Stack java
T - Clientjava .. o
— ~{ ? inner - Mg . 1B 4152,
= - &ccess Is s L
L - Testjava R o :
? Testjava i
. FSTestjava | {No recormmended action}
Stackjava l -1 copy from local to shovelnose.cs.indiana.edu
native | .
1 2 net ! <—1| copy from shovalnose.cs.indlana.edu to local
t
4

timeClient
- do¢
-. README

L doc

o]

Diff

Show differences

Jdoc unsafe / safe
recon for ./doc.. done

e T ——

Reconciling ./README...
/README: safe [safe
recon for ./README... done

recon for done

|

Click 'Go’ in root node to proceed with selected changes

I

Figure 1: User interface of our synchronizer

The strangest example that we encountered runs as fol-
lows. (Since it involves two successive synchronizations, it
should be compared with the refined requirements discussed
in Section 7.1.) Suppose we have a synchronized filesys-
tem containing a directory (folder) a, a subdirectory a.b,
and a file a.b.f. Now, in one replica, we delete a and all
its contents; in the other we modify the contents of a.b.f
and add a new subdirectory a.c; then we synchronize. At
this point, Briefcase reports that no updates are needed.
(Strictly speaking, this behavior is correct, since it leaves
both replicas unchanged, but a conflict should probably have
been reported.) Now, in the second replica, we create a new
file a.b.g, and synchronize again. This time, the synchro-
nizer does propagate some changes: it recreates a in the first
replica, adds subdirectories a.b and a.c, and copies a.b.g—
but not a.b.f. Success is reported, but the two filesystems
are not identical at the end.

6.2 PowerMerge

According to the manufacturer’s advertising [Pow98], the
PowerMerge synchronizer from Leader Technologies is “used
by virtnally every large Macintosh organization and is the
highest rated file synchronization program on the market
today.” We tested the “light” version of the program, which
is freely downloadable for evaluation.

Although the description of the program’s behavior in
the user manual again seems to agree with the intentions
embodied in our specification, we were unable to make the
program behave as documented. For example, deleting a file
on one side and then resynchronizing would lead to the file
being re-created, not deleted. Also, when both copies of a

105

file have been modified, the most recent copy is propagated,
discarding the update in the other copy.

6.3 Rumor

UCLA’s Rumor project [Rei97, RPG196] has built a user-
level file synchronizer for Unix filesystems—probably the
closest cousin to our own implementation. Although its
capabilities go beyond what our specification can describe,
Rumor (nearly) satisfies our specification in the two-replica
case. (Rumor’s model of synchronization originates from the
Ficus replicated filesystem; much of our discussion regard-
ing Rumor also applies to the synchronization mechanisms
of Ficus [RPG*96, RHR*94, GPJ93].)

In Rumor, reconciliation is performed by a local process
in each replica, which works to ensure that the most recent
updates to each file in other replicas are eventually reflected
in the local state of this replica. For each file in the replica,
Rumor maintains a version vector reflecting the known up-
dates in all replicas. During reconciliation, this version vec-
tor is compared with that of another replica (chosen by the
user or determined by availability) to determine which has
the latest updates. If the remote copy dominates, then the
local copy is modified to reflect the updates; if the local copy
dominates, then nothing more is done. (In essence, reconcili-
ation in Rumor uses a “pull model”: it is a one-way process.)
If there is a conflict, Rumor invokes a resolver based on the
type of the file; for instance, updates to Unix directories are
handled by a “merge resolver” [RHR*94]. Updates eventu-
ally get propagated to all replicas by repeated “gossiping”
between pairs of replicas.

The update detection strategy in Rumor is a variant of

LOCAL N REMOTE
USER [T /——_ - T T T T T T T T T T T T T :
INTERFACE| ~ ~ RECONCILER [% :
~ A N 1
~
o A\ 4 E Y v
~ T
Update M SYNC. W Update |, | sync.
Detector SERVER o Detector SERVER
b R A
K
A Y
|Summary) [FILE SYSTEM) (Summaryl Q FILE SYSTEM)

\—/

Figure 2: Internals of our synchronizer

the modtime-inode strategy described in Section 3.2.4. Ru-
mor’s reconciliation process is more general than that de-
scribed by our specification. However, it does appear to
satisfy our specification if we consider the following special
case. (1) There are exactly two Rumor replicas. (2) Both
replicas are reconciled at the same time, each treating the
other as the source for reconciliation. (3) Overlapping up-
dates are handled by a simple equality check for files (by de-
fault, Rumor considers updates to the same file in different
replicas as a conflict, even if they result in equal contents)
and a recursive merge resolver for directories.

6.4 Distributed Filesystems

Not surprisingly, our model of synchronization has some
strong similarities to the replication models underlying
mainstream distributed filesystems such as Coda [Kis96,
Kum94], Ficus [RHR*94, PJG*97], and Bayou [DPS*94,
TTP*95). Related concepts also have a long history in dis-
tributed databases (e.g., [Dav84]).

These systems differ from user-level file synchronizers—
and from each other—along numerous dimensions... con-
tinuous reconciliation vs. discrete points of synchronization,
distinguishing or not between client and server machines,
eager vs. lazy reconciliation, use of transaction logs vs. im-
mediate update propagation, etc. Since explicit points of
synchronization are not part of the user’s conceptual model
of these systems, our specification framework is not directly
applicable. On the other hand, their underlying concepts of
optimistic replication and reconciliation are fundamentally
very similar to ours. The intention of synchronization—
whenever and however it happens—is (eventually) to prop-
agate nonconflicting updates and to detect and repair con-
flicting updates. Our specification can therefore be viewed
as a first step toward a more general framework in which
such systems can be described and compared.

One exception is the system described by Mazer and
Tardo [MT94]. Their approach is quite similar to ours in
that it includes explicit, user-invoked points of synchroniza-
tion. Apart from the asymmetry in their setting between
clients and servers, our framework could be used to model
their system.

106

6.5 Data Synchronizers

Much of the engineering effort in commercial synchroniza-
tion tools goes into facilities for data synchronization—
merging updates to the same file in different replicas us-
ing specific knowledge of the structure of the file based
on its type (address book, calendar, etc.). Related ap-
proaches have long been pursued in distributed database
systems [Dav84]) and has resulted in products like Oracle’s
Symmetric Replication [DDD*94].

Surprisingly, at least some of these tools can be described
very directly in our framework. For example, Puma Tech-
nology’s popular Intellisync [Puma, Pumb] can synchronize
many kinds of databases between handheld PDAs, laptop
computers, and workstations. It requires that one or more
key fields be chosen for each type of database to be syn-
chronized. (For example, in an address book the key fields
might be the first and last name; in a calendar database
they could be the date, time, and description of an appoint-
ment.) These key fields correspond to the name of a file
in our model. Changing the key fields is like moving the
file; changing information in other fields is like changing the
contents of the file.

To describe Intellisync in our framework, we just need to
generalize the notion of filesystem paths to include names
for individual records within files by allowing combinations
of key-field values as filename components (e.g., p =
usr.bep.phonebook.{lastname=Smith, firstname=John}).
The behavior described in the Intellisync manual then
follows our specification quite closely. In fact, if we consider
the operation of Intellisync just on a single database, then
we may drop the clauses of our specification that deal with
directories and describe its behavior even more succinctly:

~dirtya(p)
= C(p) = D(») = B(p)
~dirtys(p)
=" 6) = Do) = Alp)
dirtya(p) A dirtys(p)

= C(p) = A(p) A D(p) = B(p)

6.6 Version Control Systems

Another class of systems with some striking similarities to
file synchronizers is version control or source control systems
like CVS. Such systems include numerous features (version

histories, alternative branches, etc.) that fall outside the
scope of our specification, but their core behavior includes
commands like “check in all changes in this group of files,
except in cases where the changes conflict with changes that
have already been checked in by another project member.”
Our requirements might be a useful starting point for full
specifications of such systems.

7 Extensions

We close by sketching some extensions of our framework.

7.1 Partially Successful Synchronization

If it recognizes conflicting updates, the synchronizer may
halt without having made the filesystems identical. Then,
the next time the synchronizer runs, there will not be one
original filesystem, but two. In general, particular regions
of the filesystem may have been successfully synchronized
at different times. We can easily refine our specification
to handle this case. (Our implementation also handles this
refinement.)

Instead of assuming that the replicas had some common
state O at the end of the previous synchronization, we intro-
duce into the specification a new filesystem I', which records
the contents of each path p at the last time when p was suc-
cessfully synchronized.

The specification of the update detector remains the
same as before, except that the dirty predicate is defined
with respect to I'. That is, dirtys(p) must be true whenever
p refers in .S to something different from what it referred to
at the end of the last successful synchronization of p.

The reconciler is now extended with an additional out-
put parameter: besides calculating the new states C and D
of the two replicas, it returns a new filesystem I'', which will
be used as the I' input to the next round of synchroniza-
tion. For each path p, A(p) records the contents of p at the
last point where p was successfully synchronized. Formally,
we say that the triple (C,D,I") is said to be a synchro-
nization of a pair of original filesystems (A4, B) with respect
to predicates dirtys4 and dirtyp and original state I if, for
each relevant path p in (4, B), the following conditions are
satisfied:

~dirtya(p)

=> C(p)=D(p) = B(p) =T"(p)
—dirtys(p)

=> C(p)=D(»)=A(p)=T"(p)
isdir4,B(p)

== isdirc,p(p) A isdirp:(p)

dirtya(p) A dirtys(p) A —isdira,s(p)
= C(p) = A(p) A D(p) = B(p)
Aif A(p) = B(p) then IV(p) = A(p)
else I'(p) = T'(p)

7.2 Multiple Replicas

In general, one may wish to synchronize several replicas on
different hosts, not just two. We can generalize our require-
ments specification to handle multiple replicas in a fairly
straightforward way.

Let Id = {1,2,...,n} be a set of tags identifying the n
replicas to be synchronized. Let the set of original replicas
to be synchronized be denoted by Fs = {S: | ¢ € Id}. For
any path p, let D, s be the set of identifiers of replicas that

107

are dirty at p—i.e., Dp,s = {i | dirty@s,(p)}. A set of new
replicas Fr = {R; | i € Id} is said to be a synchronization of
Fs with respect to dirtiness predicates dirty@sg; if, for each
relevant path p in Fs, the following conditions are satisfied:

Dp,S = ﬂ
= Vield. Ri(p) = Si(p)

Dps#0 A Vi,j€Dy,s. Si(p) = S;(p)
= IJjeDyp,s. Vicld. R:(p) = S;(p)

isdirs(p)
=> isdirr(p)

3i,j€Dp,s. Si(p) # Si(p) A —isdirs(p)
=3 Vi€ld. R:i(p) = Si(p)

It is interesting to note that Coda’s reconciliation strat-
egy depends on a similar requirement. Coda has a certifi-
cation mechanism which ensures that reconciliation is safe
to proceed. Kumar [Kum94, pages 58-61] proves that, if
certification succeeds at all servers, then for each data item
d, either (i) d is not modified in any partition, (ii) the fi-
nal value of d in each partition is equal to the pre-partition
value, or (iii) d was modified in exactly one partition.

In a multi-replica system, the process of reconciliation
may in general only involve a subset of the replicas at one
time. To describe the intended behavior in this case, we
would need to combine the above specification with the re-
finement described in Section 7.1.

7.3 Additional Filesystem Properties

A related generalization offers a natural means of extend-
ing our simple model of the filesystem to include properties
like read/write/execute permissions, timestamps, type in-
formation, symbolic links, etc. For example, a symbolic link
can be regarded as a special kind of file whose contents is
the target of the link. Similarly, to handle permission bits
for files, we take the contents of the file to include both its
proper contents and the permission bits.

Hard links are somewhat more difficult to handle, espe-
cially if it is possible to create a hard link from inside a
synchronized filesystem to some unsynchronized file. How-
ever, if this case is excluded, it seems reasonable to handle
hard links by annotating each filesystem with a relation de-
scribing which files are hard-linked together and taking this
additional information into account in the update detector
and reconciler.

Acknowledgments

Marat Fairuzov provided a motivating spark for this work
by pointing out some of the subtleties of update detection.
Luc Maranget and Peter Reiher gave us the benefit of their
own deep experience with writing synchronizers. Jay Kistler
and Brian Noble helped explore connections with distributed
filesystems and gave us many leads and pointers into the
literature in that area. Susan Davidson pointed out use-
ful connections with problems in distributed databases, and
Ram Venkatapathy advised us on the mysteries of Windows.
Brian Smith contributed his usual boundless enthusiasm and
helped us begin to see what it would mean to really under-
stand synchronization (in the philosophical sense). Conver-
sations with Peter Buneman, Giorgio Ghelli, Carl Gunter,
Bob Harper, Michael Levin, Scott Nettles, and Nik Swoboda
helped us improve our presentation of the material. Haruo
Hosoya, Michael Levin, Jonathan Sobel, and the MobiCom

TR O TR

referees gave us useful comments on earlier drafts of this pa-
per. This work was supported by Indiana University and by
NSF grant CCR-9701826.

References

[Brigs]

[Davg4]

[DDD+94)

[DGAIS8S]

[DPS+o4]

[FMs2]

[GPJ93]

[HH95)

[Kis96]

[Kum94]

[MTo94]

[PIG+97]

[Pow98]

[PST+97]

[Puma]

Microsoft Windows 95: Vision for mobile comput-
ing, 1998. http://www.microsoft.com/windows95/
info/w95mobile.htm.

S. B. Davidson. Optimism and consistency in parti-
tioned distributed databases. ACM Transactions on
Database Systems, 9(3), Sep. 1984.

D. Daniels, L. B. Doo, A. Downing, C. Elsbernd,
G. Hallmark, S. Jain, Bob Jenkins, P. Lim, G. Smith,
B. Souder, and J. Stamos. Oracle’s symmetric repli-
cation technology and implications for application de-
sign. In Proceedings of SIGMOD Conference, 1994.

S. B. Davidson, H. Garcia-Molina, and D. Skeen.
Consistency in partitioned networks. ACM Comput-
ing Surveys, 17(3), September 1985.

Alan Demers, Karin Petersen, Mike Spreitzer, Dou-
glas Terry, Marvin Theimer, and Brent Welch. The
Bayou architecture: Support for data sharing among
mobile users. In Proceedings of the Workshop on
Mobile Computing Systems and Applications, Santa
Cruz, California, December 1994.

Michael J. Fischer and Alan Michael. Sacrificing seri-
alizability to attain high availability of data in an un-
reliable network. In Proceedings of the ACM Sympo-
sium on Principles of Database Systems, March 1982.

R. G. Guy, G. J. Popek, and T. W. Page Jr. Consis-
tency algorithms for optimisic replication. In Proceed-
ings of the First International Conference on Net-
work Protocols, October 1993.

L. B. Huston and P. Honeyman. Disconnected Oper-
ation for AFS. In Proceedings of the USENIX Sympo-
sium on Mobile and Location Independent Comput-
ing, Spring 1995.

James Jay Kistler. Disconnected Operation in a Dis-
tributed File System. PhD thesis, Carnegie Mellon
University, 1996.

Puneet Kumar. Mitigating the effects of Optimistic
Replication in a Distributed File System. PhD thesis,
Carnegie Mellon University, December 1994.

Murray S. Mazer and Joseph J. Tardo. A client-
side-only approach to disconnected file access. In
Workshop on Mobile Computing Systems and Appli-
cations, December 1994,

T. W. Page, Jr., R. G.. Guy, J. S. Heidemann, D. H.
Ratner, P. L. Reiher, A. Goel, G. H. Kuenning, and
G. Popek. Perspectives on optimistically replicated
peer-to-peer filing. Software ~ Practice and Ezperi-
ence, 11(1), December 1997.

PowerMerge software (Leader Technologies), 1998.
hitp://www.leadertech.com/merge.htm.

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
Marvin M. Theimer, and Alan J. Demers. Flexible
update propagation for weakly consistent replication.
In Proceedings of the 16th ACM Symposium on Op-
erating SystemsPrinciples (SOSP-16), Saint Malo,
France, October 1997.

Designing effective synchronization solutions: A
White Paper on Synchronization from Puma Tech-
nology. http://www.pumatech.com/syncwp.html.

108

[Pumb)]

[Rei97]

[RHRT94]

[RPG+96]

[Schoe]

[TTP+95)

A white paper on DSX!" Technology - Data
Synchronization Extensions from Puma Technology.
http://www.pumatech.com/dsxwp.html.

Peter Reiher. Rumor 1.0 User’s Manual., 1997.
http://fmg-www.cs.ucla.edu/rumor.

P. Reiher, J. S. Heidemann, D. Ratner, G. Skinner,
and G. J. Popek. Resolving file conflicts in the Ficus
file system. In USENIX Conference Proceedings, June
1994.

P. Reiher, J. Popek, M. Gunter, J. Salomone, and
D. Ratner. Peer-to-peer reconciliation based replica-
tion for mobile computers. In European Conference
on Object Oriented Programming 96 Second Work-
shop on Mobility and Replication, June 1996.

Stu Schwartz. The Briefcase—in brief. Windows 95
Professional, May 1996. http://www.cobb.com/w9p/
9605/w9p9651.htm.

Douglas B. Terry, Marvin M. Theimer, Karin Pe-
tersen, Alan J. Demers, Mike J. Spreitzer, and Carl H.
Hauser. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In Pro-
ceedings of the 15th ACM Symposium on Operat-
ing Systems Principles (SOSP-15), Copper Mountain
Resort, Colorado, December 1995.

