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Abstract

Nloblle computing devices intended for disconnected opera-
tion, such as laptops and personal organizers, must employ
optimistic replication strategi~ for user files. Unlike tradi-
tional distributed systems. such devices do not attempt to
present a “single filesystem” semanti~ users are aware that
their fles are replicated, and that updates to one rephca till
not be seen in another until some point of synchronization is
reached (often under the user’s exphcit control). A variety
of tools, collectively called file synchronizers, support this
mode of operation.

Unfortunately, present-day synchronizers seldom give the
user enough information to predict how they will behave un-
der all circumstances. Simple slogans fike “Non-confecting
updates are propagated to other replicas” ignore numerous
subtletim—e.g., Precisely what constitutes a confict be
@een updates in different replicas? What does the syn-
chronizer do if updatw confict? What happens when fles
are renamed? What if the directory structure is reorganized
in one replica?

Our god is to offer a simple, concrete, and precise frame
work for describing the behavior of file synchronizers. To
this end, n?edivide the synchronization task into two concep-
tually distinct phasm update detection and Reconciliation.
We dEcuss each phase in detail and develop a straightfor-
n’ard specification of each. We sketch our on prototype
implementation of these specifications and discuss how they
apply to some existing synchronization tools.

1 Introduction

The grotih of mobile computing has brought to fore novel is-
sues in data management, in particular data reification un-
der disconnected operation. Support for rephcation can be
provided either transparently (tith flesystem or database
support for cfient-side caching, transaction logs, etc.) or by
user-visible tools for exThcit rephca management. In this pa-
per we investigate one class of user-visible tools—commonly
called file syrtchTonizeTs-w”hich allow, updates in different
repficas to be reconciled at the user’s request.
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The overall god of a tie syndronizer is easy to
state: it must detect conflicting updates and pTopagate non-
con~icting updates. However, a good synchronizer is quite
tricky to implement. Subtle misunderstandings of the se
manti~ of fleystem operations can cause data to be lost or
overwritten. k~oreover, the concept of “user update” itself is
open to varying interpretiations, Ieadtng to significant differ-
ences in the results of synchronization. Unfortunately, the
documentation provided for syntionizers typically makes
it difficult to get a clear understanding of what they \villdo
under dl circumstances: either there is no description at all
or else the description is phrased in terms of low-leveI mech-
anisms that do not match the user’s intuitive view of the
flesystem. In view of the serious damage that can be done
by a synchronizer with unintended or un~xpected behavior.
we w~ouldlike to estabhsh a concise and rigorous fratne~vork
in which synchronization can be described and discussed,
using terms that both users and implementors can under-
stand.

We concentrate on file synchronization in this paper and
only briefly touch upon the finer-grained notion of data syn-
chronization offered by newer took [Puma, DDD+94, etc.],
but most of the fundamental issues are the same for file and
data synchronization. These issues are dso closely related to
reification and recovery after partitions in mainstream dis-
tributed systems [DGMSS5, Kis96, GPJ93, DPS+94, etc.].
Ultimately, we may hope to exnend our specification to en-
compass a tider range of reification mechanisms, horn data
syntionizers to distributed filesystems and databases.

In our model, a tie syn&onizer is invoked explicitly
by an action of the user (issuing a synchronization com-
mand, dropping a PDA into a doding madle, etc.). For
purposes of discussion, n’e ident@ t~vo cleanly separated
phases of the fle synchronizer’s task: update detection—
i.e., recognizing where updates have been made to the sep-
arate replicas since the last point of synchronization-and
reconciliate ion—combining updates to yield the new, syn-
chronized state of eah repfica.

The update detector for each rephca S computes a pred-
icate ditiys that summarizes the updates that have been
made to S. (It is dlow’ed to err on the side of safety, indi-
cating possible updates where none have occurred, but dl
actual updates must be reported.) The reconciler uses these
predlcat~ to decide n’hich reptica contains the most up-t~
date copy of each file or duectory. The contract betwreenthe
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two components is e\Trwsed by the requirement

for dl paths p,
~dirtys ~)
*
current Contents s@) = otiginalcontentss b),

which the update detector must guarantee and on which the
reconciler reties. The whole synchronization process may
then be pictured as follows
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The flesystems in both repticas start out with the same con-
tents O. Updates by the user in one or both repficas lead to
divergent states A and B at the time when the synchronizer
is invoked. The update detectors for the two rephcaa check
the current states of the flesystems (perhaps using some
information from O that was stored earfier) and compute
update predicates dirty~ and dirtyB. The reconciler usw
thwe predicat= and the current states A and B to compute
new states A’ and B’, which should coincide ud=s there
were confecting updates. The specification of the update
detector is a relation that must hold between O, A, and
dirty~ md between O, B, ad dirtyB; similarly, the behav-
ior of the reconciler is specified as a relation between A, B,
dirty~ , dirtyB , A’, and B’.

The remainder of the paper is organized as follows. We
start with some preltilnary defitions in Section 2. Then,
in Sections 3 and 4, we consider update detection and rec-
onciliation in turn. For update detection, we describe sev-
eral possible implementation strategia with ~erent perfor-
mance characteristi~. For reconcihation, we first develop a
very simple, declarative specification a small set of natural
rules that describe the behavior of a typicti synchronizer.
We then argue that these rules completely characterize the
behavior of any synchronizer satis~lng them, and fidly
show how they can be implemented by a straightforward r~
cursive algorithm. Section 5 sketch= our own synchronizer
implementation, including the dwign choices we made in our
update detector. Section 6 discusses some etisting synchro-
nizers and evaluat= how accurately they are described by
our specification. Section 7 describ~ some possible extens-
ions.

Niost of our development is independent of the featura
of particular operating systems and the semantim of their
filesystem operations; the one exception is in the implemen-
tation of update detectors (Section 3.2), which are neces-

99

sarily system-specifiq our discussion there is bl~ed toward
Unti. For the sake of brevity, proofs are omitted.

2 Basic Defititiom

To be rigorous about what a synchronizer do= to the tiesys-
terns it manipulates, the first thing we need is a,precise way

of tdklng about the flesystems themselves.
We use the metavariables z and y to range over a set ~

of filenames. P is the set of pathfinite sequent= of names
separated by dots. (The dots between path components can
be read = slashes by Unk users, backslashes by Windows
users, and colons by Mac users.) The metavariables P, q,
and r range over paths. The empty path is written c. The
concatenation of paths p and q is written p.q. We write 1P!
for the length of path ~i.e., Ie] = O and Iq.zl = Iql + 1.
We write q S p if q is a prefi of p, i.e., if p = q.r for some
path r. We write q < p if q is a proper prefi of p, i.e., q S P

andq #p.
For the purposw of th~ paper, there is no need to be

specific about the contents of individud fles. We simply
assume that we are given some set ~ whose elements are
the possible contents of flea-for mample, % could be the
set of dl strings of bytes.

For modehng flesystems, there are many poasibihties.
Most obviously, we could use the famihar recursive datatype:

That is, a “flesystem node” is either a He or a duectory,
where a fle is some ~ G Z and a directory is a tilte partial
function mapping names to nodes of the same form. For
mample, the flwystem

m

Id

A
DR

a b

~

whose root is a directory contairdng one subdirectory named
d, which contains two flea u (with contents f) and b (with
contents g), would be represented by the function

F={dti D,
n * L for dl other names n},

where 1 marks positions where F is undehed and D is the
function

D={a*j, b*g,
n * L for dl other names n}.

For purposes of specification, however, it see- more
convenient to use a “flat” representation, where a flesys-
tem is a function mapping whole paths to their contents.
Formally, we say that a filesystem is an element of the set

of finite partial functions from paths to either fles or sub-
filesystems. The constraint on the second fine guaan-
teea that we only consider functions corresponding to tree
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structures-i. e., ones where Iooklng up the contents of a
composite path p.q yields the same rmult as fist Iooklng
up p and then looking up q in the resulting sub-flesystem
(where the application ~~pression (S@))(g) is defined to
yield L if Sk) is either 1 or a tie).

Under this representation, the example flesystem above
corresponds to the function

F={e~F, d~D, d.atif, d.bti g,
p s 1 for dl other paths p},

where D is the function

D={~~D,a~~,b~g,
p * L for dl other paths p}.

The metavariablw O, S, T, A, B, C, and D range over
filesystems.

When S is a filesy;tem, we write ISI for the length of the
longest path p such that S@) #1. We write chizdren* ~)
for the set of names denoting immediate &lldren of path p
in filesystem A—that is,

children~ @) = {q I g = p.z for some z A A(q) # 1}.

We write children~,~ ~) for children~ ~) U children~ ~).
We write isdir~ @) to mean that p refers to a directory

(i.e., not a file and not nothing) in the Nesystem A. We
write isdir~,B @) iff both isdir~ @) and isdirB ~).

To lighten the notation in what follows, we make some
simplifying assumptions. First, we assume that, during syn-
chronization, the fdesystems are not being modified except
by the synchronizer itself. This means that they can be
treated as static functions (from paths to contents), w far
as the synchronizer is concerned. Second, we assume that, at
the end of the previous syn~onization, the two flesystems
were identicd. Third, we hande ody two replicas. Finally,
we ignore links (both h~d and syrnbohc)l fie permissions,
etc. Section 7 d)scussm how our development can be refined
to relax thae restrictions.

3 Update Detection

With these basic detiltions in hand, we now turn to the
synchronization task itself. This section focuses on update
detection, leaving reconciliation for Section 4.

3.1 Specification

We first recapitulate the specification of the update detector
sketched in the introduction:

3.1.1 Definition: Suppose O and S are flesystems. Then
a predicate dirtys is said to (safely) estimate the update
horn O to S if =dirtys@) impfies Ok) = S@), for dl paths
P.

Among other things, this defiltion immediately tells us
that, if a given path p is not dirty in either replica, then the
two replicas have the same contents at p.

3.1.2 Fact: If A, B, and O are filesystems and di~yA and
dirtyB estimate the updats from O to A and O to B, then
=dirty~ @) and =dirtyB ~) together imply A@) = B@).

One other fact will prove useful in what follows.

3.1.3 Fact: For any filesystem S, dirtys is up-closed i.e., if
P < q and dirtgs (q), then ditiys ~). We shall use this fact
to streamline the specification of reconciliation below.

3.2 Implementation Strategies

Update detectors satis~lng the above specification can be
implemented in many different ways; this section outlines
a few and discusses their pragmatic advantagw and disad-
vantag~. The discussion is specific to Unix fdesystems, but
most of the strategiw we describe would work with other
operating systems too.

3.2.1 Trivial Update Detector

The simplwt possible implementation is given by the con-
stantly tne predicate, which simply marks every fle as dirty,
with the rault that the reconciler must then regard every
tie (except the ones that happen to be identicd in the two
flesystems) m a confict. In some situations, this may ac-
tually be an acceptable update detection strategy. On one
hand, the fact that the reconciler must actually compwe
the current contents of dl the fles in the two flesysterns
may not be a major issue if the filesystems are small enough
and the fink between them is fast enough. On the other
hand, the fact that dl updat~ lead to conficts may not be
a problem in practice if there are only a few of them. The
whole file synchronizer, in th~ case, degenerates to a kind
of recursive remote cliff.

3.2.2 Exact Update Detector

On the other end of the spectrum is an update detector that
computa the dirty predicate exactly, for example by keeping
a copy of the whole flesystem when it was lwt synchronized
and comparing this state with the current one (i.e., replacing
the remote cliff in the previous case with two Iocd difi).

Detecting updatw exactly is expensive, both in terms of
disk space and-more importantly-in the time that it takes
to compute the Merence of the current contents with the
saved copiw of the fdesystem. On the other hand, this strat-
egy may perform well in situations where it is run off-line
(in the middle of the night), or where the link between the
two computers h= very low bandwidth, so that minimizing
communication due to false conficts is critical.

3.2.3 Simple Modtime Update Detector

A much cheaper, but less accurate, update detection strat-
egy involves using the “last modified time” provided by oper-
ating systems ~ie Unix. With this strategy, just one due is
saved between synchronizations in each replica the time of
the previous synchronization (according to the local clock).
To detect updates, eati fle’s last-modified time is compared
with this tiue; if it is older, then the file is not dirty.

Unfortunately, the most naive version of this simple
strategy turns out to be wrong. The problem is that, in
Unix, renaming a me does not update its modtime, but
rather updatw the modtime of the directory containing the
file: names are a property of duectoriw, not N=. For aY-
arnple, suppose we have two ties, a and b, and that we move
a to b (overwriting b) in one replica. If we examine just the
modtime of the path b, we will conclude that it is not dirty,
and, in the other rep~ca, a will be deleted without b being
changed.

Similarly, it is not enough to look at a file’s modtime
and its directory’s, since the directory itself could have been
moved, leaving its modtime done but changing its parent
directory’s modtime. To avoid the problem completely, we
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must judge a fle as dirty if any of its ancestors (back to the
root of the Hesystem) has a modtime more recent than the
last synchronization. Unfortunately, this makes the simple
modtime detector nearly useless in practice, since any up-
date (fle creation, etc.) near the root of the tree leads to
large subtrew being marked dirty.

3.2.4 Modtim=Inode Update Detector

A better strate~ for update detection under Unix refia on
both modtimes and inode numbers. We remember not just
the last synchronization time, but also the inode number
of every fle in each replica. The update detector judges
a path as dirty if either (1) its inode number is not the
same as the stored one or (2) its modtime is later than the
last synbonization time. There is no need to look at the
modtim~ of any containing director=.

For example, if we move a on top of b, as above, then
the new contents of that replica at the path b will be a fle
with a dfierent inode number than what w= there before.
Both a and b till be marked w dirty, leading (correctly) to
a delete and an update in the other repfica.

We have also experimented with a thwd variant, where
inode numbers are stored only for directories, not for each
indlvidud file. ThE uses much less storage than remember-
ing inode numbers for dl fles, but is not m accurate. Our
own experience indicat~ that storing dl the inode numbers
is a better tradeoff, on the whole.

3.2.5 On-Line Update Detector

A different kind of update detector+ne that is difficult
to implement at user level under Unix but possible under
some other operating systems such m Wmdows—requir=
the ability to observe the complete trace of actions that the
user mak~s to the filwystem. This detector will judge a fle
to be modified whenever the user has done anything to it
(even if the net effect of the user’s actions was to return
the fle to its original state), so it does not, in general, give
the same results m the react update detector. But it will
normally get close, and may be cheaper to implement than
the exact detector.

On-line upate detection presuppos= the abihty to track
dl user actions that fiect the fl=ystem; th~ placw it closer
to the domain of tradition distributed tiwystems (cf., for
example, Coda [Kls96, Kum94], Ficus m+94, PJG+97],
Bayou [TTP+95, PST+97], and LittleWorks [~95]).

4 Reconciliation

We now turn our attention to the other major component
of the synchronizer, the reconciler. We begin by develop-
ing a set of simple requirements that any implementation
should satisfy (Section 4.1). Then we give a recursive dg~
rithm (Section 4.2) and argue (a) that it satisfies the given
requirements, and (b) that the requirements determine its
behavior completely, i.e., that any other synchronization d-
algorithmthat dso satisfies the requirements must be behav-
iorally indistinguishable from this one (Section 4.3).

4.1 Specification

Suppose that A and B are the current stat= of two flwys-
tems replicating a common dwectory structure, and that we
have calculated predicatm dirtyA -d dirtyB, estimating the
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updates in A and B since the last time they were synchr~
nized. Running the reconciler with thwe inputs will yield
new flesystem states C and D. hformdly, the behavioral
requirements on the synchronizer can be expressed by a pair
of slogans: (1) propagate all non-inflicting updates, and (2)
if updates wn~ict, do nothing.

(Of course, an actual synchronization tool will typically
try to do better than “do nothing” in the face of coticting
updatw: it may, for example, apply additiond heuristics
based on the types of flea involved, ask the user for advice,
or allow manual editing on the spot. Such cleanup actions
can be incorporated in our model by viewing them as if
they had occurred just before the synchronizer began its red
work.)

We are &eady committed to a particular formtilzation
of the notion of update (cf. Section 3): a path is updated
in A if its due in A is different from its original due
at the time of last synchronization. We can formfllze the
notion of wnfiicting updates in an equally straightforward
way updat~ in A and B are con%cting if the contents of A
and B rwulting from the updates are dfierent. If A and B
are both updated but their new contents happen to agree,
these updates will be regarded m non-confecting. (Another
alternative would be to say that overlapping updatw always
confict. But th~ will lead to more false positives in confict
detection.)

Our specification of the reconciler can be stated as a set
of conditions that should hold between the starting states,
A and B, and the reconciled states, C and D, for every path
p. Inforrndly:

1.

2.

3.

4.

If p is not dirty in A, then we know that the entire
subtree rooted at p has not been changed in A, and
any updates in the corresponding subtree in B should
be propagated to both sid~ that is, C@) (the subtree
rooted at p in C) and D@) should be identicd to B@);

Conversely, if p is not dirty in B, then we should have
C@) = D@)= A@).

Ifp refers to a directory in both A and B, then it should
dso refer to a directory in C and D. (Note that this
requirement mak~ sense whether or not p is dirty in A
or B.)

If p is dirty in both A and B and refers to something
other th~ a directory (i.e., it is either a file or 1)
in at least one of A and B, then we have potentially
confecting updates. In this case, we should leave things
as they are C@) = Ah) and D@) = B@). (Note
that leaving things as they are is the right behavior
even in the c~e where the updat~ were not actually
confecting-i. e., where it happens that A@) = B@).)

A few exampl~ should clarify the consequence of these re-
quirements. Suppose the original state O of the fl~ystems
was

o=~

[
d

A

D~

u b

f ~
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and that we have obtained the current stats A and B by
modi~lng the contents of d.a in A and d.b in B. Suppose,
furthermore (for the sake of simplicity), that we are using
an exact update detector, so that ditiyd is tme for the paths
da, d, and e and false otherwise, while ditiyB is tme for d.b,
d, and ~. Then, according to the requirements, the resulting
states of the two flwystems should be C and D as shown.

B=m
I

1d

A

DIR

u b

f ~’

c=~ D=~

d d

The update in d.a in A h= propagated to B and the update
in d.b to A, making the find stat= identicd.

Suppose, instead, that the new flesystems A and B are
obttined from O by adding a fle in A and deleting one in
B:

A=m

A. ‘=(

This is an instance of the cl~sic inseti/delete ambigu-
ity [Fh,1S2, GP.J93, PST+97] faced by any synchronization
mechanism: if the reconciler could see only the current states
A and B, there would be no way for it to know that c had
been added in A, as opposed to having etisted on both sides
originally and having been deleted from B; symmetricrdly,
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it could not tell whether a was deleted in B or new in A.
The ditiy predlcatm provided by the update detector rwolve
the ambiguity: c is duty only in A, while a is duty only in
B. (Note that a less accurate update detector might dso
mark c dirty in B or a dirty in A. The effect would then
be a confict reported by the reconciler and no changw to
the filwystems-i.e., the specification requires that synchr~
nization “fail safely.”)

Similarly, suppose the fle d.a is renamed, in A, to d.c,
and that d.b is deleted in B. In A, the paths marked ditiy
are da, d.c, d, and c. In B, the dirty paths are d.b, d, and
c. So, reconciliation will result in states C and D as shown.

A=~

Id

‘=~

1
d

On the other hand, suppose that d.a is modified in A and
deleted in B, and that d.b is updated only in B. The dirty
paths in A are da, d, and c; in B they are da, d.b, d, and
6. The find clause above thus applies to da, leaving it un-
modified in C and D, wMe the update to d.b is propagated
to A as USUd.

A=~

d

c=~

A ‘={
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One small refinement is needed to complete the speci-
fication of reconciliation. h what we’ve said so far, we’ve
considered arbitrary paths p. This is actually slightly too
permissive, Ieadlng to cases where two of the requirements
above make conflicting predictions about the results of syn-
chronization. Suppose, for example, that, A and B are ob-
tained by delete the whole directory d on one side and cr~
sting a new fde d.c within d on the other:

The contents of D(d.c) should clearly be h after synchroniza-
tion But what should be the contents of C(d.c)? On the one
hand, we have dirty~ (d) and dirtyB(d) and =iSdirA,B(d), so
according to the find rule we should have C(d) = A(d) = 1,
which imphes C(d.c) = 1. But, on the other hand, we have
= dirtyA (d. c), so according to the fist rule, we shotid have
C(d.C) = B(d.c) = h.

ThE is a case of a genuine confecting update, and we
believe the b-t tiue for C(d.c) here is 1 (the authors of at
least one commercial synchronizer would disagre~f. Sec-
tion 6.1). We can r=olve the ambiguity by stopping at the
first hint of cotict-i.e., by considering ordy paths p where
dl the ancestors of p in both A and B refer to directories
(and hence do not confict):

4.1.1 Definition: Let A and B be flwystems. A path p is
said to be relevant in (A, B) W Vq < p. isdirA,B(q).

t~ith this refinement, we are ready to state the formal
specification of the reconciler.

4.1.2 Definition [Requirements]: The pair of new
filesysterns (C, D) is said to be a synchronization of a pair
of original flesysterns (A, B) with respect to predicates
dirty~ and ditiyB if, for each relevant path p in (A, B), the
following conditions are satisfied

4.2 Algorithm

Having specified the reconciler precisely, we can eqlore
some properties of the specification. b particular, we would
Eke to know that it is complete, in the sense that it answers
dl possible questions about how a reconciler should behave,
and that it is implementable by a concrete algorithm that
terminat~ on all inputs. We addr~s the latter point fist.

For ease of comparison with the abstract requirements
above, we present the algorithm in “purely functional”
styl+as a function taking a pair of filesystems as an ar-
gument and returning a fresh pair of flmystems as a result.

(Of course, a concrete rediation of this algorithm would
return no results, performing its task by sid~effecting the
two flesystems in-place. It should be obvious how to derive
such an implementation horn the dwcription we give here.)

k the definition, we use the following notation for over-
writing part of one Hasystem with the cent ents of the other.
Let S and T be functions on paths and p be a path. We
write T & S for the function formed by replacing the sub
tree rooted at p in T with S, dehed formdy w fo~ows:

T ~ S = Aq. if p < q then S(q) eke T(q).

4.2.1 Definition ~econcihation Algorithm]: Given
predicates dirtyA and dirtyB, the algorithm recon is defined
as follow

recan(A, B,p) =
1) if YdirtyA@) A YditiyB @)

then (A, B)
2) eke if iSdirA,B@)

then let @l, p2, . . . ,pn} = chitd~enA,B@)
(in lticographic order)

in let (Ao, Bo) = (A, B)
let (Ai+I, Bi+l) = recan(Ai, Bijpi+l)

for O~i<n
in (An, Bn)

3) else if lditiyA@)

then (A ~ B, B)
4) eke if -ditiyB @)

then (A, B g A)
5) eke

(A, B).

That is, recon takes a pair of filesystems A and B and a
path p, and returns a pair of filesystems (C, D) in which the
subtrees rooted at p have been synchronized.

An easy induction on m=(lAl, IBI) – lpl shows that remn
terminates for dl Hmystems A and B and paths p. Ako, ob
serve that updates to the flesystems A and B are performed
only through the recursive calls and the grafting function
defined above; th~ ensurw that recan(A, B, p) Ieavas unaf-
fected W parts of A and B that are outside the subtree
rooted at p.

4.3 Properties

It remains, now, to veri~ some propertiw of the require
ments specification and the algorithm. In particular, we
can show that (1) the requirements in Definition 4.1.2 tily
characterize the behavior of the reconcile and that (2) the
reconciliation algorithm is sound with respect to the speci-
fication, i.e., it satisfies the requirements in Defiition 4.1.2.
It is an immediate consequence of the latter fact that the
requirements themselvw are consistent, in the sense that,
for each A, B, dirtyA, and dirtyB, there are some C and D
such that (C, D) is a synchronization of (A, B) with rwpect
tO ditiyA Wd ditiyB.

To facilitate the correctness arguments, we first intro
duce a refinement of the original requirements that allows
us to focus our attention on a specific region of the two
filesystems.

4.3.1 Definition: The pair of new flmystems (C, D) is
said to be a synchronization afier p of a pair of original
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filesystems (A, B) if p is a relevant path in (A, B) and the
following conditions are satisfied for each relevant path p.q
in (A, B):

ldirtyA @q)
- c~.q) = D@.q) = B@.g)

~dirtyB @q)
* C@.q) = D@.q) = A@.q)

isdir~,B @q)
~ iSdirC,D @q)

dirty~ @q) A dirty~ @q) A viSdirA,B@.q)
= C@.q) = A@.q) A D@.q) = B@.q)

Note that Definition 4.1.2 is just the special cwe where p =
E.

4.3.2 Definition: Paths p and q are incomparable if neither
is a prefix of the other—i.e., if p $ q A q ~ p.

4.3.3 Definition: We write syn~(C, D, A, B) if

1. (C, D) is a synchronization of (A, B) after p,

2. for all paths q, if p and q are incomparable then C(q) =
A(q) and D(q) = B(q), and

3. q ~ p A iSdird,B (q) imph~ isdirC,D(q)

The requirements we have placed on the reconciler are
complete in the sense that they uniquely capture its behav-
io~ given two fil~yst ems which were synchronized at some
point in the past, there is at most one pair of new tiesystems
satis~lng the requirements.

4.3.4 Proposition [Uniqueness]: Let A, B, and O be
filesystems and suppose that dirtyd and dirtyB estimate the
updates horn O to A and B rapectively. Let p be a rel-
evant path in (A, B). If (Cl, Dl) and (C2, D2) are both
synchronizations of (A, B) after p, then Cl ~) = C2~) and
Dl@) = D2@).

Furthermore, the requirements are satisfied by the alg~
rithm.

4.3.5 Proposition [Soundness]: Let A, B, and O be
filesystems and suppose that dirtyA and dirtyB atimate
the updates horn O to A and B respectively. Then
recon(A, B, p) = (C, D) imphes syn~(C, D, A, B) for any
relevant path p in (A, B).

Together, propositions 4.3.5 and 4.3.4 show that d-
algorithmrecon is actually equivalent to the requirements
given in Definition 4.1.2. On the one hand, if (C, D) =
recon(A, B, c), then by soundness we know that (C, D) is a
synchronization of A and B. On the other hand, suppose
(C, D) is a synchronization of A and B. Since the algorithm
is total, it must yield recon(A, B, e) = (C’, D’) for some C’
and D’. But then by uniqueness, we have C = C’ and
D = D’.

5 Our Implementation

Our main god has been to understand the synchronization
task clearly, not to produce a full-featured synchronizer our-
selvw. However, we have found it helpful (as well as usefil,
for our own day to day mobile computing) to experiment

with a prototype implementation that straightforwardly em-
bodies the specification we have described.

Our fle synchronizer is mitten in Java, using Java’s
Remote Method Invocation for networking. The dmigrt is
intended to perform well over both high- and medium-
bandwidth links (e.g., ethernet or PPP). To avoid long
startup delays, it uses a modtime-inode strategy (cf. Sec-
tion 3.2.4) for update detection, requiring ordy minimal sum-
mary information to be stored between synchronizations. It
operat m entirely at user level, without transaction logs or
monitor daemons. It currently handes only two repticas at
a time and is targeted towmd UnL~ flesystems (though dl
but the update detector could be used with any operating
system, and new update detection modulm shotid be fairly
e~y to write).

The user interface (see Figure 1) displays dl the flm in
which updates have occurred, using a tre~browser tidget;
selecting a fle from this tree displays its status in a detail
didog at the right and offers a menu of reconciliation op-
tions. In the common case where a tie has been updated
in only one replica, an appropriatee action is selected by de
fault and the tree hsting shows an arrow indicating which
dwection the update til be propagated. If both repficas are
updated, the tree view displays a question mmk, indicating
that the user must make some exTlicit choice. When the
user is satisfied, a single button press &es dl the selected
actions.

Internally, the implementation closely follows the recon-
ciliation algorithm in Section 4.2 (see Figure 2). At the end
of every synchronization, a summary of each replica is stored
on the disk. The saved information includes the time when
each fle in the rephca was last synchronized and its inode
number at that time. At the beginning of the n~x% syn-
chronization, each update detector reads its summary and
traverses the fle system to detect updat=. A file is marked
dirty if its ctimel or inode number has changed since the
Iwt synchronization. The reconciler then traversw the two
replicas in parallel, examining the fles for which updates
have been detected on either side and posting appropriate
records to a tree of pending actions maintained by the user
interface.

6 Examples

To explore the utifity of our specification, we now discuss
some existing synchronizers in terms of the specification
framework that we have developed. We do not attempt to
provide a complete survey, just a few reprwentative examp-
les.

6.1 Briefcase

Microsoft’s Btiejcase synchronizer [Bri98, Sch96] is part of
Windows 95/NT. Its fundamental gods seem to match those
embodied in our specification (“propagate updatm unless
they confict, in which case do nothing by default” )—indeed,
even its user interface is fairly similar to our prototype.
However, some simple experiments revealed several cases
where Briefcase’s behavior does not match what is predicted
by our specification (or any similar specification that we can
think of).

1In Unix, a file’s ctime gets changed if the contents or the at-
tributes (such as permission bits) of the file are changed.
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The strangwt example that we encountered runs as fol-
lows. (Since it involvw- two successive synchronizations, it
should be compared with the refined requirements discussed
in Section 7.1.) Suppose we have a synchronized flesys-
tem containing a duectory (folder) a, a subd~ectory a.b,
and a fle a.b.f. Now, in one repfica, we delete a and dl
its contents; in the other we modi~ the contents of a.b.f
and add a new subduectory a.q then we syntionize. At
this point, Briefcase reports that no updates are needed.
(Strictly speakiig, this behavior is correct, since it Ieavw
both repticas unchanged, but a confict should probably have
been reported.) Now, in the second repfica, we create a new
fle a.b.g, and synchronize again. This time, the synchr~
nizer do= propagate some ~angw: it recreatw a in the fist
replica, adds subdirectories a.b and a.c, and copies a.b.g—
but not a.b. f. Success is reported, but the two filesystems
are not identicd at the end.

6.2 PowerMerge

According to the manufacturer’s advertising [Pow98], the
Powerlferge synchronizer from Leader Technologies is “used
by virtually every large Macintosh organization and is the
highwt rated file synchronization program on the market
today.” \Vetwted the “bght” version of the program, which
is freely downloadable for etiuation.

Although the dwcription of the program’s behavior in
the user manual again seems to agree with the intentions
embodied in our specification, we were unable to make the
program behave as documented. For example, deleting a tie
on one side and then rwynchronizing would lead to the file
being recreated, not deleted. Also, when both copies of a

tie have been modified, the most recent copy is propagated,
discwding the update in the other copy.

6.3 Rumor

UCLA’s Rumor project ~ei97, RPG+96] has built a user-
Ievel fle synchronizer for Unix tiesystems-probably the
closest cousin to our own implementation. Although its
capabihties go beyond what our specification can describe,
Rumor (nearly) satisfies our specification in the tw~repfica
case. (Rumor’s model of syntionization originatw from the
Ficus replicated flwystem; mu& of our discussion regard-
ing Rumor dso applies to the synchronization mechanisms
of Ficus [RPG+96, MR+94, GPJ93].)

In Rumor, reconciliation is performed by a local proc~
in each repfica, which works to ensure that the most recent
updates to each fle in other repficas are eventually reflected
in the Iocd state of thw replica. For each file in the rep~ca,
Rumor maintains a version vector reflecting the known up-
dat= in dl replicas. During reconcihation, this version vec-
tor is compared with that of another rephca (chosen by the
user or determined by availablfity) to determine whid has
the latest updata. If the remote copy dominates, then the
Iocd copy is modified to reflect the updates; if the Iocd copy
dominates, then nothing more is done. (In wsence, reconcili-
ation in Rumor uses a “pull mode~’: it is a on~way process.)
If there is a confict, Rumor invokw a resolver based on the
type of the filq for instance, updates to Unix duectories are
handled by a “merge resolver” -+94]. Updatw eventu-
ally get propagated to all replicm by repeated “gossiping”
between pairs of replicas.

The update detection strategy in Rumor is a variant of
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the modtime-inode strategy described in Section 3.2.4. Ru-
mor’s reconciliation process is more general than that de
scribed by our specification. However, it does appear to
satisfy our specification if we consider the fo~owing special
case. (1) There are exactly two Rumor replicas. (2) Both
replicas are reconciled at the same time, each treating the
other as the source for reconciliation. (3) Overlapping UP
dates are handled by a simple equdlty check for files (by de
fault, Rumor considers updat~ to the same fle in ditferent
repticas u a confict, even if they result in equal contents)
and a recursive merge resolver for directories.

6.4 Distributed Filesystems

Not surprisingly, our model of synchronization has some
strong similarities to the rephcation modeh underlying
mainstream distributed flwystems such as Coda ~i96,
Kum94], Ficus ~+94, PJG+97], and Bayou ~PS+94,
TTP+95]. Related concepts dso have a long history in dis-
tributed databases (e.g., [Dav84]).

Thwe systems Mer horn user-level fle synchronizers—
and from each other—along numerous dimensions... con-
tinuous reconciliation vs. discrete points of synchronization,
distinguishing or not between client and server mtilnes,
eager vs. lazy reconciliation, use of transaction logs vs. im-
mediate update propagation, etc. Since exphcit points of
synchronization are not part of the user’s conceptual model
of these systems, our specification framework is not duectly
applicable. On the other hand, their underlying concepts of
optimistic replication and reconciliation are fundamentally
very similar to ours. The intention of synchronization—
whenever and however it happens-is (eventually) to prop-
agate nonconflicting updatw and to detect and repair con-
fecting updates. Our specification can therefore be viewed
as a fist step toward a more general framework in which
such systems can be described and compared.

One exception is the system dacribed by Mazer and
Tardo [hIT94]. Their approach is quite similar to ours in
that it includes explicit, user-invoked points of synchroniza-
tion. Apart horn the asymmetry in their setting between
clients and servers, our framework cotid be used to model
their system.

6.5 Data Synchronizers

Much of the engineering effort in commercial synchroniza-
tion tools goes into facihties for data synchronization—
merging updatm to the same fle in dflerent replicas us-
ing specific knowledge of the structure of the He based
on its type (address book, calendar, etc.). Related ap-
proaches have long been pursued in distributed database
systems ~av84]) and has resulted in products like Oracle’s
Symmetric Reification ~DD+94].

Surprisingly, at le~t some of these tools can be described
vw ~ectly ~ ou fi~ework. For example, Puma Tech-
nology’s popular Intellisync [Puma, Pumb] can synchronize
many kinds of databases between handheld PDAs, laptop
computers, tid workstations. It requires that one or more
key fields be chosen for each type of database to be syn-
chronized. (For example, in an address book the key fields
might be the first and last name; in a calendar database
they could be the date, time, and description of an appoint-
ment.) These key fields correspond to the name of a me
in our model. Changing the key fields is hke moving the
flq changing information in other fields is ~ie changing the
contents of the fle.

To describe Intellisync in our framework, we just need to
generalize the notion of flesystem paths to include names
for individud records within fdes by allowing combinations
of key-field dues as flenarne components (e.g., p =
usr.bcp.phonebook. {lastname=Smith, firstname=John}).
The behavior described in the Intelfisync manual then
follows our specification quite closely. h fact, if we consider
the operation of Intelhsync just on a single database, then
we may drop the clausa of our specification that ded with
directories and describe its behavior even more succinctly:

Y dirtyA@)
- c~) = D@) = B@)

~dirtyB @)
= G@) = D@) = A@)

dirtyA ~) A dirtyB ~)
= C@) = A@) A D@) = B@)

6.6 Version Control Systems

Another class of systems with some striking similarities to
fle synchronizers is version control or source contTol systems
hke CVS. Such systems include numerous features (version

106

~—— -- ------ ,. .._, . _ —.



histories, alternative branches, etc.) that fdl outside the
scope of our specification, but their core behavior includw
commands like “check in dl chang~ in th~ group of Nes,
except in cases where the changes cofict with changes that
have aheady been checked in by another project member?’
Our requirements might be a useful starting point for full
specifications of such systems.

7 Extensions

We close by skettilng some extensions of our framework.

7.1 Partially Successful Synchronization

If it recognizw confecting updatw, the synchronizer may
hdt without having made the flesysterns identicd. Then,
the next time the synchronizer runs, there will not be one
ori@nti flesystem, but two. In general, particular regions
of the fil=ystem may have been successfully synchronized
at different timw. We can easily refie our specification
to handle this case. (Our implementation rdso handes this
refinement.)

Instead of assuming that the repfic~ had some common
stat e O at the end of the previous synchronization, we intro
duce into the specification a new flesystem r, which records
the contents of each path p at the last time when p was suc-
cessfully synchronized.

The specification of the update detector remains the
same as before, except that the dirty predicate is dehed
with respect to r. That is, ditiy~ @) must be fme whenever
p refers in S to something ~erent from what it referred to
at the end of the last successful synchronization of p.

The reconciler is now extended with an additiond out-
put parameter: bwidw calculating the new states C and D
of the two replicas, it returns a new Nwystem r’, which will
be used as the r input to the n~~t round of synchroniza-
tion. For each path p, A@) records the contents of p at the
last point where p was successfully synchronized. Formally,
we say that the triple (C, D, r’) is said to be a synchro-
nization of a pair of original filesystems (A, B) with respect
to predicates ditiy~ and ditiyB and original state r if, for
each rele~at path p in (A, B), the following conditions are
satisfied:

7dirtyA @)
+ c@)= D@)= B@)= r’~)

=ditiyB ~)
a C@)= D@)= A@)= r’@)

i$dir~,B @)
* iSdirC,D ~) A isdirr, ~)

ditiy~ @) A ditiyB ~) A =isdir~,B@)
+ C@) = A@) A D@) = B@)

A if A@) = B@) then r’b) = A@)
eke r’~) = r~)

7.2 Multiple Repficas

b general, one may wish to synchronize sever~ rephcas on
different hosts, not just two. We can generalize our require
ments specification to handle multiple rephcas in a fairly
straightforward way.

Let1d={l,2,..., n} be a set of tags identi~lng the n
repficas to be synchronized. Let the set of original repficas
to be synchronized be denoted by %S = {Si I i E Id}. For
any path p, let. DP,s be the set of identifiers of replicas that
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are dirty at pie., DP,s = {i ] dirt@Si @)}. A set of new
repficas fiR = {~ Ii E Id} is said to be a synchronization of
7S with respect to dirtiness predicates dirt@Si if, for each
relevant path p in 3S, the following conditions are sattied

DP,s = 0
- Vi~ld. a@) = S~@)

DP,s # 0 A Vi,jEDP,s. sib)= Sjb)
~ 3jEDP,s. ViEId. &@) = Sj@)

isdirS@)
~ isdirR@)

Si, j~Dp,s. S~@) # Sj@) A =*dirs@)
* ViG1d. m~) = Si @)

It is interwting to note that Coda’s reconciliation strat-
egy depends on a similar requirement. Coda h= a certif-
ication mechanism which ensures that reconcihation is safe
to proceed. Kumar ~um94, pages 58-61] proves that, if
certification succeeds at dl servers, then for each data item
d, either ~) d is not modified in any partition, (ii) the fi-
nd due of d in each partition is equal to the pr~paztition
due, or (iii) d was modified in exactly one partition.

k a mtiti-repfica system, the process of reconcfiation
may in general only involve a subset of the replicas at one
time. To describe the intended behavior in th~ case, we
would need to combine the above specification with the r-
finement described in Section 7.1.

7.3 Additiond Filesystem Properties

A related generalization offers a natural means of extend-
ing our simple model of the flesystem to include propertia
~ie read/write/execute permtilons, timwtamps, type in-
formation, syrnbofic ~i, etc. For example, a symbolic hnk
can be regarded as a special kmd of fle whose contents is
the tazget of the fink. Similarly, to hande permission bits
for ties, we take the contents of the fle to include both its
proper contents and the permission bits.

Hard finks are somewhat more difficult to hande, espe
cidly if it is po~ible to create a hard link from inside a
synchronized flesystem to some unsynchronized tie. How-
ever, if this case is excluded, it seems reasonable to handle
hard finks by annotating ea& flesystem with a relation de
scribing which ties are hard-~nked together and taking this
additional information into account in the update detector
and reconciler.
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