
258 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994

View Integration: A Step Forward
in Solving Structural Conflicts

Stefano. Spaccapietra, Senior Member, IEEEE, and Christine Parent

Abstract-Thanks to the development of the federated systems
approach on the one hand and the emphasis on user involvement
in database design on the other, the interest in schema integration
techniques is significantly increasing. Theories, methods and
sometime tools have been proposed. Conflict resolution is the
key issue. Different perceptions by schema designers may lead to
different representations. A way must be found to support these
different representations within a single system.

Most current integration methodologies rely on modification of
initial schemas,to solve the conflicts. This approach needs a strong
interaction with the database administrator, who has authority
to modify the initial schemas.

This paper presents an approach to view integration specifi-
cally intended to support the coexistence of different representa-
tions of the same real-world objects. The main characteristics of
this approach are the following:

l automatic resolution of structural conflicts,
l conflict resolution performed without modification of initial

views,
l use of a formal declarative approach for user (or database

administrator) definition of interviews correspondences,
l applicability to a variety of data models, and
l automatic generation of structural and operational mappings

between the views and the integrated schema.
Allowing users’ views to be kept unchanged should result in

improved user satisfaction. Each user will be able to define his
own view of the database, without having to conform to some
other user’s view.

Moreover, such a feature is essential in database integration
if existing programs are to be preserved.

Index Terms-Database design, database management systems,
data structures, schema integration, data models, view integra-
tion, entity-relationship modelling.

I. INTR~DUC~~N

C
ONSIDERING the actual trend emphasizing user in-
volvement in application development, cooperative work,

and user-oriented data models, view integration is likely to
become a key issue for future database design methodologies.

Since 1978, view integration has been identified as the
design step aimed at producing a global conceptual schema
of a database from a set of formally defined users’ views
[11. At first, integration was a completely manual process. A
superman called the database administrator (DBA), who was

Manuscript received August 1990. This work was supported by INRIA
under the auspices of the French national research project Programme de
Recherches Coordonnees Bases de donnees de 3eme generation (PRC BD3),
as well as by the Fonds National de la Recherche Scientifique Suisse.

S. Spaccapietra is with the Computer Science Department, Ecole Polytech- nique Federale, 1015 Lausanne, Switzerland.
C. Parent is with the Computer Science Department, Universite de Bour- gogne, 21004 Dijon Cedex, France.
IEEE Log Number 92 11303.

able to seize the whole complexity of data in the enterprise,
would produce the correct global image of the data structure.
Views, at that time, were mainly considered to be an aid to the
DBA to let him know about user requirements, or as a filter
to ensure privacy of data.

Nowadays, it is clear that database design is too complicated
a task to be performed in a centralized way. Thus, a more
reasonable approach is to first let the different components in
the enterprise build their own view of the database (which
should be a manageable task), and second to integrate these
views in a global schema using an automated tool directed by
the DBA. Current view integration methodologies intend to
rule this second process.

There also is an increasing interest in federated architec-
tures, where existing databases are integrated into a single
distributed database. Assuming the schemas of the existing
databases to be views over the future distributed database, an
integration methodology should lead to the automatic design of
the global schema. This is usually called database integration,
to emphasize that the integration process has to cope with
the integration of existing data (and programs), not just with
metadata in the views.

There has been a large amount of work in the integration
area: a detailed survey by Batini et al. [2] discusses 12
methodologies for view or database integration (or both),
and new contributions continuously appear in the literature
PI-WI*

As view integration is a process in which knowledge of
the semantics of data is needed, it is no surprise that most of
the current methodologies rely on a semantic data modelling
approach. In particular, the entity-relationship (ER) approach,
in its various extended forms, represents the majority choice.
This is consistent with the actual state of affairs, in which the
ER model acts as an almost de facto standard in the area of
conceptual design methods and tools.

When using a semantic data model, it is possible that
different designers (users, in our case) model the same piece
of reality in different ways. This might happen either because
the data model supports equivalent constructs, or because
designers have different perceptions of that reality. Multiplicity
of possible representations of a given real world is called
semantic relativism.

In the ER approach, for instance, the designer is left with
the responsibility to decide whether a real-world object should
be represented as an entity, a relationship, or an attribute.

Supporting semantic relativism is the key to achieving the
goal of enabling each user to construct his own view, accord-

104 1~347/94$04.00 0 1994 IEEE

SPACCAPIETRA AND PARENT: VIEW INTEGRATION 259

ing solely to his perception of the world and independently
from other users [7]. To fully support semantic relativism, a
view integration methodology should cope with all possible
conflicting representations that may be found among various
views of a database.

Conflicting representations have always been a challenge
for integration methodologies. Naming conflicts (due to
homonyms and synonyms) have been dealt with from the
beginning (see, for instance, [l l] and [121). The difficulty
here lies in conflict identification (how to find out that there
is a conflict), rather than in conflict resolution (usually, one
view is modified to remove the naming conflict).

Once the existence of similar object classes in two views
has been identified (and the possible name conflict resolved),
a comparison of their semantics may lead to another conflict if
the classes are not equivalent. For instance, a Student class in
one view may be found similar to a CS-Student class (grouping
students majoring in computer science) in another view. In this
case, view integration should make explicit the fact that one
class, CS-Student, is a subclass of the other one.

Mannino and Effelsberg [131. first focused on this type of
conflict, which subsequently became the main topic in most
later works on view integration. The generalization concept has
been extensively used as a solution to such conflicts (except
in works based on the relational model).

Finally, a structural conflict arises whenever parts of the
same reality are represented in different views using different
structural constructs. Typically, the same set of real-world
objects may be represented as an entity type in one view and
as an attribute of an entity type in another view. Although
structural conflicts were the topic of what was possibly the
first paper on view integration [14], little effort has been put
into the search of automated strategies to solve this type of
conflict. Existing methodologies rely on the DBA (purposely in
[151) for conforming of schemas, a process in which views are
modified by forcing related concepts to be represented by the
same structural construct. For instance, whenever an attribute
A, in view VI, corresponds to an entity type E, in view V2,
the DBA must transform the attribute A into an entity type,
say EA. After view modification, the correspondence will be
between EA and E: The structural conflict has been removed
and integration of EA with E can proceed.

Consequently, current ER methodologies are restricted to
integration of entities with entities, relationships with relation-
ships, and attributes with attributes. This is similar to what a
relational approach may achieve using various interrelational
dependencies [16]-[181. One limited exception may be found
in [8], where the authors integrate an entity type with a
relationship type, under the very restrictive hypothesis that
the key of the entity type is the aggregate of the keys of the
entity types participating in the relationship.

This paper proposes an integration methodology, designed
to be able to do the following:

l automatically integrate views with (or without) structural
differences among corresponding objects,

l perform such an integration without requiring initial

l provide a formal definition of interviews correspondences
and of integration rules,

l offer an algorithm to perform integration in all conceiv-
able cases, and

l be model independent.
Allowing users’ views to be kept unchanged should result in

improved user satisfaction. Moreover, such a feature is essen-
tial in database integration, as it allows existing programs to
continue running after the local databases have been integrated
into a single, distributed database. Our methodology should
successfully apply to database integration.

Finally, we aim at establishing fundamentals of an inte-
gration methodology, so that the same approach can be used
whatever data model is used for view definition. To that
purpose, our rules basically support integration of objects and
of links, two concepts that can be regarded as underlying
every conceptual data model. In this paper, we use an ER-
like model to illustrate our arguments. Corresponding rules for
object-oriented models are described in [191. The methodology
we propose starts with a manual input from the DBA. This
input carries the formal description of interrelationships among
the views, in terms of correspondences between types as
well as between populations. The methodology automatically
produces the schema integrating the views, and the mappings
between the final schema and each of the initial views.

The next section briefly overviews the ER-like data model
we use in this paper to support analysis of view integration. A
few integration examples are then introduced, in Section III,
using this model.

The description of our integration methodology follows
from the next section on. The initial step in any integration
methodology is the acquisition of knowledge about correspon-
dences that exist among the views. Section IV proposes a
formal model to describe that knowledge. Section V defines
integration rules, used to build the integrated schema according
to known correspondences. An integration algorithm, enforc-
ing these rules, is described in Section VI and illustrated in
three examples in Section VII. Finally, the conclusion points
out ongoing or future work we plan on this topic.

II. THE ERC+ MODEL

Hereinafter, we illustrate our ideas using an extended ER
model we have defined to support complex object description
and manipulation. This model is called ERC+: ER for complex
objects (the + denotes the enrichment of the basic ERC model
[20], [21] to include generalizations [22]).

The provision for complex object modelling and manage-
ment is one of the major goals of data models today. By
complex object we mean an object represented by a collection
of informations, its components, such that each of these
components, in its turn, may be represented by a collection
of informations, and so on. Supporting complex objects does
not contradict the basic distinction the ER approach makes
between entities and attributes: That distinction is based on
semantic considerations (which are the primary objects of
interest), not on syntactic properties (i.e., being atomic or not). views to be modified,

260 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994

ERC+ specifically allows for this iterating description of an
object, up to an arbitrary number of levels. The resulting struc-
ture is an attribute tree, whose root is the object. Moreover,
any node in the tree may carry a unique attribute value, or a
multiset (bag) of attribute values.

Let us briefly outline ERC+ features.

1)

2)
3)

4)

5)

The structure of an entity type consists of a set of one
or more attributes.
Relationship types may have attributes as well.
Relationship types may connect any number of partic-
ipating entity types; they are said to be cyclic if the
same entity type participates more than once in the
relationship type.
A ‘role name is associated with each participation of an
entity type into a relationship type. It is characterized
by its minimum and maximum cardinalities, specifying
whether it is a O-l, O-n, l-l, or l-n link from the entity
type to the relationship type.
Attributes may be

1 I

I

Department - - - -

I
Dname

Fig. 1. An example of an ERC+ diagram.

a) either mandatory or optional. An instance of an
optional attribute may be empty (no value); for
a mandatory attribute a value must be defined in
each instance of the attribute.

Employee

E# Ename forehames c’k’

b) either monovalued or multivalued. An instance
of a multivalued attribute may include several
(possibly duplicate) values, while an instance of a
monovalued attribute is made up of a single value.

C> either atomic or complex. If atomic, the attribute
is nondecomposable; its values are atomic. If
complex, the attribute is made up of a set of other
attributes, which are said to be the components
of that attribute. Component attributes may be
atomic or complex. This nesting can proceed to
any number of levels (refer to Fig. 2).

“~~Ojy&

name beg-date en\d.date sala&history

Fig. 2. An ERC+ diagram for a complex entity.

date

/\
month year

6)

7)

-0

Entity types and relationship types may have zero,
one, or more sets of attributes serving as identifiers. If
no identifier is known, the respective population may
include duplicates (different occurrences with the same
value). In particular, two or more relationships may
connect the same entities and have same values for their
attributes.
Two generalizations are supported, the “is-a” and the
“may-be-a” generalizations. The former corresponds to
the well-known generalization concept; the latter has
similar semantics but does not require an inclusion
dependency between the subtype and the type. No au-
tomatic inheritance is implicitly built in the querying
mechanism, but an explicit operator provides for the
desired inheritance effects [22].

For instance, the entity type Employee in Fig. 1 is linked
to itself by a cyclic, binary relationship type, Boss, whose
semantics is “the employee in the Sup role is the boss of the
employee in the Inf role” (or, equivalently, “the employee in
the Inf role is subordinate to the employee in the Sup role”).
Optionality of Sup and Inf roles states that an employee may
have no subordinates, and an employee may have no boss. The
Inf role is monovalued (an employee has at most one boss),
while the Sup role is multivalued (a boss may have more than
one subordinate). All salesmen and secretaries are employees.
Managers may be employees or not.

In Fig. 2, an employee is mandatorily described by an
employee number, a name, a forename and a position. Op-
tionally, the employee record may hold more forenames, more
(past) positions, and one or more pairs of (diploma, year)
information. Each position is described by a set of component
attributes, and so on.

The ERC+ model is complemented with the definition of
formal manipulation languages: an associated algebra and an

rig. 1 shows a simple diagram of a hypothetical ERC+ equivalent calculus [23] for querying an ERC+ database. In
schema (identifiers and some role names are not shown). An the integration methodology, these languages form the basis
example of a more complex object type is given in Fig. 2. for building the operational mappings between the views and

In these figures, a single continuous line represents a 1: 1 link the conceptual schema. These mappings will transform user
(mandatory monovalued); a single dotted line represents a 0: 1 requests on the views into the equivalent requests on the
link (optional monovalued); a double dotted line represents conceptual schema.
a 0:n link (optional multi valued); and a double, dotted plus More complete and formal presentations of ERC+ and its
continuous line represents a 1:n link (mandatory multival ued). algebra may be found in [21] and [24]. For a discussion of

SPACCAPIETRA AND PARENT: VIEW INTEGRATION 261

Book

Fig. 3.

title ISBN authors name birthdate books

/\
title ISBN

v3

Fig. 4.

name birthdate title ISBN

the ERC+ approach compared to object-oriented modelling,
the reader is referred to [25].

III. INTEGRATION EXAMPLES

A. Example 1: Library Information System

Let us consider some library information system, for which
the two views below, Vl and V2, have been defined by
different users. These views correspond to the classical manual
files maintained in libraries. Vl presents the world of interest
as composed of books, where each book is described by its
title, its ISBN number and its authors’ name and birth date
(one or several authors). V2 presents the world of interest as
composed of authors, where each author is described by its
name, its birth date, and its books’ title and ISBN number
(one or several books). (See Fig. 3.)

Clearly, these are two alternative representations of the
same universe. They convey compatible semantics but show
conflicting perceptions of data structure. The integration of the
two views first needs an explicit statement, from the DBA,
that Book+authors in VI, and Author+books in V2, represent
the same real-world objects and links in between. Afterwards,
what one would expect from a clever integration methodology
is to be able to produce the integrated schema, V3, obvious
to a human DBA (see Fig. 4.)

Current integration methodologies fail to build V3. They
only integrate similar objects types, based on object identifiers.
Here, there is no way the population of books (identifier:
ISBN) can be directly compared with the population of authors
(identifier: name). As a book and an author are not compatible
objects, existing methodologies cannot do anything but carry
over the two entity types into the integrated schema, which will
thus be highly redundant (bearing twice the information on
books, authors, and the link between a book and its authors).
Alternatively, they will call on the DBA for him to modify
both views and make them look like V3 (modification of only
one view would lead to an incorrect result, as seen below).
Thus, the modified views will no longer show any conflict,
and the integrator will be able to build the integrated schema.
In other terms, integration has been done by the DBA and the
initial views have not been supported.

name birthdate title ISBN authors

’ bhhdate name

Fig. 5.

Fig. 6.

I I
name birthdate

I
date

n&e lo&ion coGtract

Current methodologies would also fail if the views to be
integrated would be Vl-V3 (or V2-V3). Directed to integrate
Vl with V3, they would find out that the two Book entity types
represent the same object class, and therefore merge these two
into a single entity type. The resulting schema would be as
shown in Fig. 5.

This schema clearly shows an unacceptable redundancy
(with regard to authors information, which exists twice, as
well as the author-book link). The redundancy is because
the integration of the two Book entity types ignores the
equivalence between the authors attribute in Vl and the Writes
relationship in V3.

B. Example 2: Marriages

The library example showed a conflict based on the rep-
resentation of the same concept (book, author) as an entity
type in one view and as an attribute in the other view. A
marriage example is now used to show a conflict involving
representation as an entity type versus representation as a
relationship type.

Let us consider again two possible views over the same
universe of discourse (see Fig. 6).

View V5 has been defined by a user mainly interested
in persons, but who wants also to know about marriages in
between. Consequently, V5 describes an entity type Person
and relates a person (man role) to another person (woman
role) through the RMarriage relationship.

View V6, instead, comes from the lawyer’s office. It deals
with marriages as notarized acts, considered as entities (EMar-
riage). It also considers persons as entities (Person), to which
marriages are mandatorily related twice for each marriage
occurrence (via the relationship type M).

If the two views see the same set of persons, it is obvious
that RMarriage and EMarriage describe the same set of real-
world objects. A smart integrator would then determine that
V5 must be conformed to V6, and produce an integrated
schema equal to V6. Again, existing methodologies would in-
tegrate the two Person entity types and produce the redundant
schema illustrated in Fig. 7.

262 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994

Fig. 7.

Fig. 8,

v7

Customer C# F
name

date
quantity

Customer - name

E

Places

I ,

Order -o#
\- odate

I

Ordhe 4ty

E

C. Example 3: Customers’ Orders

I Product l- P#

Another limitation in current methodologies which provide
for relationship integration ais that integration is often per-
formed only if the relationships have the same multiset of
participating entity types (which implies that they have the
same arity). This is too strong a restriction, as seen in the next
example (Fig. 8).

Here, ordered and ordline are two equivalent relationships,
linking a product to its destination. In V7 the latter is the
customer, while in VS it is the order placed by the customer.
Section VII will show how our methodology integrates the two
relationships despite the difference in the participating entity
types.

IV. A MODEL FOR THE DESCRIPTION
OF VIEW CORRESPONDENCES

Only users and the DBA definitely “know” whether and
to what extent views are (partially) describing the same real-
world objects, and how to match the descriptions. Of course,
it is possible to build automated tools to help in identifying
similarities, based on matching of names and descriptions.
Simple tools use a data dictionary to find homonyms and syn-
onyms. More sophisticated tools analyze names and structures
to evaluate a degree of similarity, from which they derive
their conclusions [121, [111, [9]. In any case, the DBA has to
confirm, or deny, the correspondences proposed by the tool.

We assume that knowledge of view correspondences is
provided by users or the DBA to the view integration tool.
That knowledge may be expressed using either declarative or
procedural statements. The latter approach is found in [26] and
[27], in the context of database integration. Following Motro,
the user specifies his global schema by defining how it is built
from the set of schemas of existing databases. The mapping
specification uses a set of restructuring primitives (later called
schema editing operations). This approach puts the burden of
mapping definitions on users, and it is far from evident that
they will be able to master the complexity of programming
mappings with these operators.

We prefer to limit the users’ task to point, in each view,
at elements that describe the same real-world objects, and to
identify what correspondences hold in between (in terms of
their structure and instances). The declarative approach allows
this. Consequently, the mapping between views is described
by users as a set of declarative statements, hereinafter called
correspondence assertions.

A correspondence assertion is a declarative statement, pro-
vided by users, asserting that the semantics of some piece of
data structure in one view is somehow related to the semantics
of some piece of data structure in another view.

There will be several kinds of correspondence assertions,
depending on involved data structures and on the nature of
the correspondence. Their definitions are given in this section.
All of them express the knowledge ‘tthis is related to this.”
Before we go into details about assertions, we must precisely
define what is meant by the semantics of some piece of data
structure.

A. About the Underlying Semantics of Data Constructs

In the ER approach, representation of a real-world object
depends on the level of perception one has in considering the
object: Basically, it will be modeled as an entity if perceived
as self existing, as a relationship if perceived as a link between
entities, and as an attribute if perceived as a property of some
other object. Correspondence assertions that have been used
so far in the ER framework are limited to the definition of
interrelationships between populations (or domains) of object
types at the same level of perception. These’ assertions relate
entity (relationship) types to entity (relationship) types in terms
of the object classes they describe, and attributes to attributes
in terms of their domains and instantiation. In [8], for instance,
attribute comparisons are deeply investigated. The same paper
also introduces the term real-world state of an object class A,
denoted RWS(A), defined as the set of real-world instances of
object class A at a given moment in time.

We also use the RWS idea to define the semantics of
an entity type, of a relationship type and of an attribute.
However, our definitions will allow us to compare object types
at different levels of perception (entity type versus attribute,
for instance). Moreover, we extend the scope of the RWS idea
to also apply to paths, a construct implicit in the ER approach
that has not received the attention it deserves, as shown below.

Real-World State of an Entity Type (Definition Dl): Let E
be an entity type; the real-world state of E, RWS(E), is the
set of real-world objects that occurrences of E represent.

There is a 1: 1 mapping between the population of E and
RWS(E).

Real-World State of a Relationship Type (Definition 02):
Let R be a relationship type, linking entity types El, E:!,
l .*, En; the real-world state of R, RWS(R), is the bag of
real-world object tuples [(01~02, l l l , o,)], such that Vi, 0; f
RWS(Ei) and the objects in a tuple are linked by a real-world
association represented by R.

Square brackets denote multisets.
In definition D2, we are concerned with multisets of tuples,

not sets, as the ERC+ model allows the same set of entities

SPACCAPIETRA AND PARENT: VIEW INTEGRATION

to participate in several occurrences of the same relationship
type. There is a 1: 1 mapping between the population of R and
RWS(R). +

Real-World State of an Attribute (Definition 03): Let A be
an attribute; the real-world state of A, RWS(A), is the set of
real-world objects that the values of A represent.

RWS(A) is not necessarily a deterministic concept. For
instance, let us consider a “month” attribute. There are several
possible interpretations of RWS(month): either as the set
of integers {1,-e=, 12)) or as the set of character strings
(“January”,* l 0, “December”), or as the set of months in the
common language sense, irrespective of the coding of the asso-
ciated value. On the other hand, a complex attribute describing
the manager of a project will have its RWS interpreted as the
set of persons who are actually managing some project.

Generally speaking, one could think of a lexical RWS,
where the interpretation is related to the coding of the at-
tribute values, and a nonlexical RWS, where the interpretation
abstracts from the actual coding.

The multiplicity of RWS interpretations is not a problem
insofar as, once the concept is used in an correspondence
assertion, its meaning is uniquely determined within that
context.

There is a total surjective function from the values of A to
RWS(A).

As stated above, we shall now define the concept of a path,
needed for proper view integration, and the associated real-
world state. As a path is a sequence of links, we first define
links.

Link (Definition 04): Let X and Y be elements in a schema
(entity type, relationship type, and/or attribute), then X-Y is
a link if

Y is an attribute of X (or vice-versa); then X-Y is called
an attribute link;
or X is an entity type bound by the relationship type Y
(or vice-versa); then X-Y is called a role link. In case of
a cyclic relationship type, the name of the role is required
and written above the hyphen.

Path (Definition D5): Let X1, X2,. . l , Xn be elements in a
schema (entity types, relationship types, and/or attributes) such

. that& E {l,Z,=*.,n-1}, X; is linked to X;+l,eitherby an
attribute link or by a role link, then X1-X2-= l O-X, is a path.

Real-World State of a Path (Definition 06): The real-
world state of the X1-X2-*. O-X, path, RWS(Xl-X2-
l l O-X,), is the bag of real-world object pairs [(01, on)] such
that 01 E RWS(X1) and o, E RWS(X,), and there exist
objects 02,03, l l . , on- 1 such that Vi E {1,2,**=,n - l},
o; E RWS(X;), with oi and o;+l linked by the real-world
association represented by the Xi-X;+1 link.

B. Element Correspondence Assertions

The RWS concept allows for definition of correspondence
assertions. The basic ones, given below, deal with object
classes and refer to usual set relationships (equivalence, in-
clusion, intersection, and exclusion).

Let X1, X2 be two elements (entity type, relationship
type, or attribute), X1 from view V-, X2 from view V2,

and 01~02 two real-world objects, such that 01 ERWS(X~),
o2 E RWS(X2).

Element Equivalence Assertion (Definition D7): The asser-
tion that X1 and X2 are equivalent, expressed by the statement

Xl G x2

states that at any time either

1) RWS(Xl) = RWS(Xz), or
2) there is a total bijective function f: RWS(XI) *

RWS(Xz), such that 02 = f(o1> iff 01 and 02 have
the same semantics.

Element Inclusion Assertion (Definition 08): The assertion
that X1 contains X2, expressed by the statement

Xl 2 x2 -

states that at any time either

1) RWS(X1) 3 RWS(X2) is true, or
2) there is a-total injective function f: RWS(X2) +

RWS(Xl), such that 02 = f(ol) iff 01 and 02 have
the same semantics.

Element Intersection Assertion (Definition D9): The asser-
tion that X1 and X2 intersect, expressed by the statement

x1 nX2,

states that at some time either

1) RWS(X,)n RWS(X2) # 8 is true, or
2) there is a partial injective function f: RWS(X2) +

RWS(X& such that 02 = f(o1) iff 01 and 02 have
the same semantics. cl

Element Exclusion Assertion (Definition DlO): The asserl
tion that X1 and X2 are disjoint, expressed by the statement

Xl #X2,

states that at any time

1) RWS(X,)n RWS(X2) = 8 is true, and
2) there is no function f: RWS(X2) + RWS(X& such

that 02 = f(ol) iff 01 and 02 have the same semantics.
cl

This last assertion is meaningful (useful) iff there is a cor-
responding element X3, in some other view V3, such that
X3 3 X1 and X3 3 X2.

In-each case, condition a) is intended to cope with the
situation in which X1 and X2 are at the same level of
perception (both entity types, or both relationship types, or
both attributes). It is worthwhile noting that we do not require
that corresponding elements have the same identifiers (as in
[8], for instance). This is consistent with the structural object
orientation of the ERC+ model and will apply as well for
object-oriented models.

Conditions b) are intended to extend the scope of integration
to heterogeneous perceptions of the same objects, allowing for
comparisons of attributes with entity types, and so on.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994

67 Author

I I
name birthdate books

/\
title ISBN

1 Book

title ISBN authorsnames

Fig. 9.

Fig. 10.

Example I: Entity/Attribute Correspondence: Our first ex-
ample to illustrate the usage of correspondence assertions
refers to the library information system discussed in Section
III.

Suppose the diagrams shown in Fig. 9 are part of two views
to be integrated:
RWS(Author) is the set of authors in the library. Clearly,
from a lexical point of view, RWS(authorsnames) is equal
to RWS(name), the set of all authors’ names. However, it is
equally true to state that, from a nonlexical point *of view,
RWS(authorsnames) is equal to RWS(Author): the names of
the authors, authorsnames, is nothing but a designation of the
corresponding authors. Therefore, the following assertions are
both valid:
-Authoroname z Bookeauthorsnames (thanks to condition a)
-Author G Bookaauthorsnames (thanks to condition b).

The first assertion obviously compares lexical objects (char-
acter strings), while the second one compares nonlexical
objects. Which interpretation of RWS(authorsnames) applies
is determined by the other term in the assertion.

Example 2: Entity/relationship correspondence: Our sec-
ond example refers to the marriage views as discussed in
Section III (see Fig. 10).

If the two views see the same set of persons, it is obvious
that the RWS of Person in the two views are equal. For
the RWS of RMarriage and EMarriage, it is a bit less evi-
dent: RWS(RMarriage) is the multiset of married couples and
RWS(EMarriage) might be something else-for instance, the
set of marriage contracts. Nevertheless, there is a 1: 1 mapping
between the two RWS’s. Thanks to condition b), it is therefore
correct to assert: RMarriage G EMarriage.

C. Correspondences Between Attributes
of Corresponding Elements

The above correspondences between RWS are asserted
independently from what information the views keep on the
objects: There is no obligation for the views to describe cor-

responding objects with the same set of properties (attributes,
in ER terms). However, if it is the case that corresponding
elements are described, in the different views, with the same,
or similar, attributes, the integrator should know about these
similarities. This knowledge is needed to produce a nonre-
dundant integrated schema, in which common attributes are
integrated into a single one.

To that purpose, we introduce assertions about attribute
correspondences, to be used within the context of an element
correspondence assertion, as defined below.

Example: Consider the above Marriage views (VSV6).
Name of Person and date of Marriage will be identified in the
two views as corresponding attributes. Equivalence assertions
(in which the left term refers to V5, the right one to V6)

Personaname = Personaname
RMarriageodate = EMarriagedate

will specify that, whenever two corresponding persons (mar-
riages) are considered, the name (date) attribute in V5 holds
the same value as the name (date) attribute in V6.

Value equality is not the only possible case. Two attributes
may correspond and nevertheless represent the same property
in different ways.

l The coding scheme may differ: salaries in US$ versus the
same salaries in another currency.

l One view may carry only a partial record of the property,
or a resume (like a statistical aggregate). For instance,
salary in one view versus salary of less than 100000
in the other view (where perception of salaries may be
restricted for privacy purposes). Children (multivalued in
one view) versus number-of-children in the other view
is an example of resume.

l Both views may carry only a partial record of the prop-
erty, with the partial records overlapping or being disjoint:
children in both views, but restricted to boys on one
side and to girls on the other side, is an example of
disjointness.

The notion of partial record for a property refers to the fact
that only some of the possible values of this property are of
interest to the user. Applied to a monovalued attribute, partial
recording implies that the attribute is described as optional (to
accept “no value” when the actual value is outside the domain
of interest). More facets to be considered have been suggested
in [S], i.e., integrity and security constraints, and allowable
operations. We will not discuss these additional facets, as they
do not change the nature of the problem.

In our model, assertions about corresponding attributes of
corresponding elements X and Y are stated as part of a
correspondence assertion between X and Y, using a “with
corresponding attributes” (WCA) clause. This WCA clause is
defined below. As in [8], the notation Values(A), where A is
an attribute, is used to refer to the set of values of A in all the
actual occurrences (or values) of the parent element. Values(A)
is a subset of the domain associated with A.

Corresponding Attributes Assertions (Definition Dl I): Let
X1 (car) X2, be an element correspondence assertion,
with (or, 02) being a pair of corresponding objects: 01 E
RWS(X& o2 E RWS(X2).

Person1 G Person2 with corresponding attribute

name = name.

Other assertions might hold between attributes of Person1
(name, salary-inUS$, number-of-children, children-under-l 6,
boys) and attributes of Person-2 (name, salaryinFF, children,
girls) : v-

a

0

l

0

salary-in-US$ = FF-to-US$-exchange (salary-inFF)
FF-to-US$-exchange is a function transforming an
amount expressed in French francs into the equivalent (at
some specified day) amount in US dollars. The inverse
function may also be specified: US$-toFF-exchange
(salary-inUS$) = salary-in_FF;
number-of-children = count(children), where children is
a multivalued attribute;
children-under-16 = select 16(children) Both are multival-
ued attributes, but only children under 16 are recorded
in the first view; select16 is a function extracting from
children only those values where age is under 16;
boys # girls both are multivalued attributes and have the
same structure, but boys records only male children while
girls records only female’ children;

SPACCAPIETRA AND PARENT: VIEW INTEGRATION

Let el, e2 be the occurrences representing 01 and 02 in the
database. Finally, let AlI, A12, + . l , AIn be attributes of X1,
and A21, A22, l - - , AZ, be attributes of X2 (if X1 or X2 is
a simple attribute, it is implicitly considered here as having
itself as unique component). Then,
X1 (car) X2 with corresponding attributes

attcon(A11, A21), attcora(42, A22), l l l 7

a~~m&41,/42,)

is also a correspondence assertion that states that X1 (cor)X2
is true, and for each attcori(Al;,Azi),

l If attcor;(Al;, A24 is Al; = A2i, then for any 01,02
pair, el l Ali = e2 l A2i;

l If attcori(Al;, A2i) is A2i = fi(Ali), then fi is a
surjective function (explicitly defined by the DBA) from
Values(Al;) onto Vdues(A2i), such that at any time for
any 01,02 pair, e2 l A2i = fi(el l Ali). In particular, the
fi function may be bijective, or it may be a subsetting
function such that Ali 3 A2i. Its explicit definition is -
required for its implementation in the views to integrated
schema mappings.

l If attcori (Ali, A2i) is Ali UAzi,~ then it is possible that for
some 01,02 pair, el @Ali ne2 l A2i # 8 (for a monovalued
attribute this reduces to el l Ali = e2 l A2i).

l If attcori(Ali, A2i) is Ali # A2i, then for any 01,02

pair, el l Ali n e2 l A2i = 8, but it is possible to define
a domain D such that at any time D 3 Values(Ali) and -
D > Values(A2;). cl

Examples: Assume there are two Person entity types
asserted to be equivalent:

Attribute correspondences should not contradict
dences asserted for their parent elements [8].

correspon-

D. Path Correspondence Assertions

The analysis of views interrelationships also calls for the
identification of correspondences among paths in the views.

265

Refer to the first two views, Vl and V2, of the library
information system. If we suppose that the two views see
exactly the same objects (books and authors), the element
correspondence assertions between Vl and V2 are (in each
assertion, the left term refers to V2, the right term to V2):

Book = Author l books with corresponding attributes:

title = title, ISBN =ISBN.

Bookeauthors = Author with corresponding attributes:

name = name, birthdate = birthdate.

These two assertions will generate in the integrated schema
(IS) two entity types, Book and Author. Nothing in the above
correspondence assertions states the fact-obvious to a human
but not to a program- that each time a Book b has an author
a in Vl, the corresponding a Author has this b Book in V2.
The integrator will generate in IS two different relationship
types between Author and Book, each one expressing one of
the two links: Book-authors in Vl and Author-books in V2.

In order to allow the integrator to integrate those two links
into a unique relationship type, the DBA has to state that each
link is the reverse of the other. In our methodology, the DBA
will define the following path correspondence assertion (which
is explained below):

Book - authors = books - Author.

Path Equivalence Assertion (DeJinition D12): Let El-
E2-. . . -En be a path within view V, and Fl-F2-• l l -Fp be
a path within view V’, such that there is an assertion relating
El to Fl (via a function f: RWS(E1) --) RWS(F1)) and an
assertion relating E, to Fp (via a function f’: RWS(E,) ---f
R~w$)).

Let RWS’(E1) be the subset of RWS(E1) defined by its
restriction to El objects, which are involved in the asserted
correspondence with F1 objects. Let RWS’(Fl), RWS’(E,)
and RWS’(F,) be similar restrictions of the corresponding
RWS.

Let RWS’(E1-E2-=. l -En) be the subbag of RWS(El-
E2-’ l e-E,), defined by its restriction to object
pairs in RWS’(El > x R~w%-l) 7 and similarly
for RWS’(Fl-F2-• l l -Fp). Finally, let (el, e,> E
RWS’(E1-E2-• . *-En) and (fl, fp) E RWS’(Fl-F2-•. l -Fp).

The assertion that the two paths are equivalent, expressed
by the statement

El-E2- l l l -E, = FI-F2-. . l -Fp

states that at any time, either

1) RWS’(El-E2-0. e-E,) = RWS’(Fl-Fz-•. e-F& or
2) there is a total bijective function g

RWS’(El-E2-’ l O-E,) w RWS’(Fl-F2-’ l +Fp)
such tllat (Fl, f*) = g((e1,e,)) iff fl = f(e1>,
fp = f’(En) and the Fl-f, and the el-e, paths have
the same semantics. cl

The
0
0
0

other assertions are as follows:
&E2-. . .- E, z) Fl-F2-’ . ‘-Fp.
El-E2-’ l e-En 6 Fl-F2-• l a-F*.
El-E2-’ 9 9 -En # Fl-F2-• l +-Fp.

266 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994

These may be readily defined in the same way as element
assertions.

The assertions we have defined above are not the only ones
that may relate two views. As an example, assertions may
involve aggregation functions: An attribute in one view may
represent an average over several attributes in another view;
an entity may correspond to a set of entities (like in the well-
known convoy example, where a convoy is a set of ships).
This type of correspondence will be dealt in future work. We
also defer dealing with generalization links.

V. RULES FOR VIEW INTEGRATION

Once correspondence assertions between views have been
stated, the integration algorithm can proceed. Analyzing each
correspondence assertion, it generates one or several constructs
in the integrated schema, in accordance with the appropriate
integration rule. These rules are described hereinafter, while
the algorithm is described in the next section.

The background to our rule definitions consists of two basic
principles, which are model independent:

1) The scope of integration rules should cover both ob-
jects and links integration. As these two concepts are
present in any data model (semantic, functional, ER,
object-oriented, etc.), their integration rules should be
translatable from one model to another.

2) Whenever conflicting representations exist in different
views, the integrated schema will hold the least restric-
tive representation. This allows us to support all other
representations, which can be derived through restrictive
mappings.

Conflict resolution is not just a matter of schema conform-
ing. Usage of different modeling concepts usually implies
different constraints on objects or links in the schema. In
the ERC+ framework,. entities, relationships, and attributes
bear different existence dependencies. Entities are free from
such dependencies (unless constrained by attached roles). Re-
lationships depend on participating entities (two or more), and
attributes depend on their (unique) parent element. Therefore,
entity type is the preferred integrated concept in case of
conflict. Additional links, and the associated cardinalities, will
bear the needed existence dependencies.

Example: Views Vl and V2 (library information system)
carry an entity type/attribute conflict on representation of
books. Integration generates an entity type Book in the in-
tegrated schema (V3), which is complemented with .a rela-
tionship type to link it to Author. This new relationship type
represents the two links, Book-authors (V 1) and Author-books
(V2). Both views state that there does not exist any book
without at least one author. In VI, this is because authors is
a mandatory attribute of Book. In V2, books, as an attribute,
exists only if its parent element, Author, exists. This existence
dependency of book is expressed in V3 by making mandatory
the role of Book.

Applied to the ERC+ model, the above two principles led
us to define the following six integration rules:

l The first one governs integration of element correspon-
dence assertions, except for the case where the two
corresponding elements are both attributes.

l The second and third ones cope with path correspondence
assertions.

l The fourth and fifth ones govern the case of correspon-
dence assertions between attributes.

l The last rule applies to integration of elements that are
not involved in correspondence assertions.

A special case when two attributes are asserted to corre-
spond is made, due to the fact that the ER approach does
not allow for attribute sharing: An attribute belongs to one
and only one parent element. Applying the first rule to the
assertion “attribute A of X is the same as attribute B of Y”
(without X and Y corresponding to each other) would result
in generating an attribute AB, son of both X and Y, which
contradicts model rules.

A. Integration of Element Correspondence Assertions

Our first rule applies to correspondence assertions between
elements as described in Definition D7. The elements may be
entity types, relationship types or attributes, but not two at-
tributes. This last case is discussed in Section V-C. Following
our basic principles, integration rule 1 states that:

1) corresponding elements of the same modeling concept
(two entity types or two relationship types) are integrated
into a similar element (respectively, an entity type or a
relationship type), and

2) corresponding elements of different modeling concepts
(entity types, relationship types, and attributes) are inte-
grated into an entity type.

If the existence of one (or both) of the elements to be
integrated depends upon other elements, integration rule 2 or
6 will generate, for each existence dependency, a link whose
cardinalities will express that dependency.

Integration Rule I: Elements Integration Rule: Let X1, X2
be two elements in two views, X1 E VI, X2 E V& such that
Xl E x2.

If we denote by X the element in the integrated schema
resulting from the integration of X1, X2, then:

l If X1 and X2 are not of the same type, X is an entity
type;

l If X1 and X2 are of the same type but are not attributes,
X is of the same type as X1, X2. cl

This rule considers only equivalence assertions. A detailed
analysis of how the other element assertions are dealt with
(compared to equivalence) may be found in [7] or [8]. Our
approach would be similar to Jardine’s one.

B. Integration of Links

Entity types are the only elements whose integration may
not require additional integration of links. On the contrary,
relationship type and attributes integration calls for integration
of role links and attribute links, which express their existence
dependencies. Correspondences between links are asserted as
path correspondences, with each path consisting of only two
elements. According to Definition D12, these elements are
asserted as corresponding. Obviously, integration of the links
in between generates a path connecting the IS elements that

SPACCAPIETRA AND PARENT: VIEW INTEGRATION

Vl v2

Al A2 A

Al-A2

Bl rB2 a

Al-B1 - A2-B2

Bl B2

Fig. 11.

result from integration of the link ends in the views illustrated
in Fig. 11.

The IS path is built to conform to the following ER axioms:

l If A or B is an attribute, A-B is an attribute link.
l If A is an entity type and B a relationship type, A-B is

a role link.
l If A and B are two entity types, a new relationship

type-say, X-is inserted, and the A-B link becomes an
A-X-B path. X acts as a pure link relationship: It has
no attributes, no significant name, and no other semantics
that “link A and B.” This case occurs when A (or B)
results from the integration of elements of different type
(Rule 1).

A and B cannot both be relationship types (integration rule
1). As elements and links are equivalent, cardinalities of the
two links are necessarily the same, and cardinalities of the
integrated link are set to the same values.

Integration Rule 2: Links Integration Rule: Let Al and B1
be two linked elements in view VI, AZ, and Bz be two
linked elements in view V& and the following correspondence
assertions:

B1 z B2

Al-Bl = AZ-B2.

Let A be the integrated element in IS corresponding to Al
and AZ, let B be the integrated element in IS corresponding to
B1 and Bz, then the integration of Al-B1 and AZ-B2 links is:

l a role link, if A and B are an entity type and a relationship
type;

l an attribute link, if A and B are any element and an
attribute;

l a link relationship type with its two roles (standard name,
no attribute) if A and B are two entity types.

The cardinalities of the integrated link, or path, are:

cardmin(A) = cardmin(Al) = cardmin(AZ)

cardmax = cardmax = cardmax(AZ)

cardmin(B) = cardmin(B1) = cardmin(B2)

cardmax(B) = cardmax(B1) = cardmax(Bz).

0

C. Integration of Composite Paths

Two different cases may involve a composite path in a
correspondence assertion, i.e.,

267

l when a path corresponds with a link, or
l when two paths, neither one a direct link, correspond with

each other.
Let us first consider the case where one of the two paths is

a direct link. For instance,

El-& G Fl-Fz-. . l -Fp+Fp.

In this case, the composite path will be integrated into IS, but
not the direct link, which would be redundant as it is deducible
from the composite path.

Let us assume that Fl , F2, b . l , Fp- 1, Fp elements have been
integrated as F{ , Fi , l l . , FL- 1, Fi into IS.
The integration of the composite path proceeds step by step,
considering each link in the path. For each i = 1,2, l l . , p - 1
either a role link, an attribute link, or a link relationship type
with its two roles is created in IS between F;’ and Fi’_t,,
according to the concepts modeling F/ and Fz!+l, as in Rule 2.

Cardinalities of the integrated path are kept unchanged.
Let us now consider the case where neither of the two

paths is a direct one (nor may they be decomposed into
corresponding direct links). This means that the two views
record alternative ways to go from the same (or corresponding)
source information to the same (or corresponding) target
information.

If the two paths do not have common elements, which is the
case here, they both have to be recorded in IS. The only thing
the integrator can do to preserve database consistency would
be to add an integrity constraint to IS, stating that, for the same
source element, the element reached through one path must be
the same as the element reached through the other path.

Integration Rule 3: Paths Integration Rule: Let El, E2,
l l 9 E, be elements in view VI.

Let Fl, F2,**+ Fp be elements in view V2, with the follow-
ing correspondence assertion:

El f Fl.

Let G1 be the integrated element in IS corresponding to El
and

l

0

Fl. Then:

The correspondence assertion between a link and a path,

El 432 s F1-F2-. l . -Fp

with E2 I Fp generating GP in IS, generates in IS a path
Gl-Fi-• l l -FLDl-G,, where Fi, l l l , FLwl are elements
of IS corresponding to F2, l l l , F&l, and each link of
the path is created according to the concepts modeling
the linked elements, as in Rule 2.
The correspondence assertion between two composite
paths,

E1-E2-mee-En = Fl-Fz-a*e-F, n > 2,p > 2,

with E, = Fp generating G, in IS generates in IS two
paths and an integrity constraint. The two paths are:

G1-E;- . l +-EL-,-G,

G1-F;- l . l -F;_,-G, ’

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994

where Ei,. l . , EL-, are elements of IS corresponding
to E2, . . . , En-l, and Fi, + . . , Fisl are elements corre-
sponding to F2, l l . , Fp-1, and each link of the paths is
created according to the modeling concepts of the linked
elements, as in rule 2.
The integrity constraint states that the two paths link the
same occurrences. cl

D. Integration of Attributes

Attribute integration, as relationship type integration, re-
quires the integration of elements and links. As we have
seen above, integration of two corresponding attributes is not
managed by Rule 1 because of the peculiarity of the existence
dependency of attributes: They depend on exactly one object.

Attribute integration is easily managed if the corresponding
attributes belong to objects that are themselves involved in
a correspondence assertion, i.e. the attribute and the attribute
link correspondence assertions are described by a WCA clause
(Definition Dl 1).

The opposite situation is that of two corresponding attributes
that are not related to any couple of corresponding elements
in a path correspondence assertion. There is only one cor-
respondence assertion A = B involving those attributes. In
that case, A and B cannot be integrated into an attribute
in the integrated schema. This attribute correspondence only
expresses a constraint on the domains of the two attributes,
without any immediate impact on the process of building
the integrated schema. The integrator will just keep track of
this kind of correspondence, as it might become useful in
a subsequent integration step, where these attributes would
correspond to an entity or relationship type in some other view.
If no more views are to be integrated, the only thing to do is to
generate in the integrated schema an integrity constraint stating
the correspondence between the set of values of A and B.

An intermediate situation is when corresponding attributes
relate to some corresponding objects, different from their direct
parents (otherwise, it would be part of a WCA clause). In
other words, there is a path correspondence, where the paths
connect the corresponding attributes to some elements asserted
to correspond to each other. In this case, the correspondence
assertions between the attributes and the paths are handled
together with the same technique as for path integration.
One or two attributes are created in the integrated schema,
according to the fact that one path can be deduced from the
other or not.

Rules for managing the two cases where integration is
possible are formally defined below.

Integration of Attributes of Corresponding Elements: An
equivalence between two elements generates an element. The
set of its attributes in the integrated schema will consist of
one attribute for each pair of corresponding attributes, plus
one attribute for each attribute belonging to only one view
(with no corresponding attribute in any other view). As entities
are equivalent, cardinalities of integrated attributes are the
strongest.

Integration Rule 4: Integration of Attributes of Correspond-
ing Elements: Let El be an element in view VI, E2 an element

in view V& with the following correspondence assertion:

El E E2,

with corresponding attributes

AlI = A21, A12 = A22, - - - 7 Al, = A2w

Then, the integrated element E in IS corresponding to El and
E2 will have:

l an attribute A; for each attribute correspondence Ali =
f42i*

Ai’s domain and cardinalities are equal to those of Ali
and A2i 7 i.e.,

cardmin(A;) = cardmin(Al;) = cardmin(AZ;)

cardmax(Ai) = cardmax(Al;) = cardmax(A2i).

l an attribute B$ for each attribute Bj of El (or of E2)
that has no correspondent.
B’j ‘s domain and cardinalities are equal to Bj’s ones:

cardmin(Bg) = cardmin(Bi)

cardmax(Bi) = cardmax .

Integration of Attributes of Noncorresponding Elements:
The last case to be considered is the one where two corre-
sponding attributes terminate corresponding paths. The differ-
ence with Rule 3 about paths integration is that the attributes
have not yet been incorporated into the integrated schema
(as stated in Section V-A), which makes the above rule not
applicable.

The purpose of the path correspondence, combined with the
attribute correspondence, is to avoid attribute duplication in
IS. Indeed, the semantics of these correspondences states that
two different paths lead to the same information. Therefore,
only one of the two paths should be implemented in IS, and
the attribute inserted at the end of this path. Which path is
transferred into IS is determined with the same approach as
for path integration. If one of the paths is a direct link, the other
path is chosen. If both are composite paths, the two have to be
kept, with their terminal attributes, and it is not possible for
the integrator to avoid the redundancy. An integrity constraint
is added to the integrated schema.

Integration Rule 5: Attributes with Path Integration Rule:
Let El,E2,*=*, E, be elements and A an attribute in view
VI; and let Fl,F2,=*= , Fp be elements and B an attribute in
view V2, with the following correspondence assertions:

El E Fl

A=B’

Let G1 be the
and Fl; then:

integrated element in IS corresponding to El

l The correspondence assertion

El-A = Fl-F2 l l l -F,-B

SPACCAPIETRA AND PARENT: VIEW INTEGRATION

Fig. 12.

l The correspondence assertion

El-&-. . . _ E,-A s FI-F2- l l l -Fp-B n>2,p>2 - -

generates in IS two attributes and an integrity constraint.
The attributes are: A’, which is an attribute of Ek, where
EL is the element corresponding to E,; and B’, which is
an attribute of FL, where FL is the element corresponding
to Fp.

Domains and cardinalities of A’ and B’ are, respectively,
the same as those of A and B.

The integrity constraint states that the two paths link the
same values.

E. Add Rule for Elements and Links without Correspondent

This last rule takes care of elements and links that exist in
only one view. It has already been implicitly used in Rule 4,
where attributes that are defined in only one view are added
to the integrated schema.

Integration Rule 6: Add Rule: Any element (entity type or
relationship type) that exists in a view and has no correspond-
ing element in any other view is added to the integrated schema
with all its attributes without modification.

Let X,--Y, be a link (role or attribute link) that exists in
view Vl and has no corresponding link nor path in view V2.
Let X and Y be the elements of IS corresponding to X1 and
Yl. Then, a link or a link relationship type X-Y is added to
IS, according to the modeling concepts of X and Y.

Cardinalities of X-Y are defined as follows:
If X1 is equivalent to X(X1 E X), then

cardmin(X) = cardmin(X1)

cardmax = cardmax(Xl).

If not (Xl is only a subset of X), then

cardmin(X) = 0

cardmax(X) = cardmax(

Cardinalities of Y are defined in the same way.

F. Examples

The following diagrams sketch how integration rules are
applied to usual cases. Cardinalities of links are not shown.

Case 1) Equivalence of Two Entity Types: An equivalence
between two entity types generates an entity type (Rule 1 plus
Rule 4 for attributes). (See Fig. 12.)

In every case, each time Rule 1 is run, Rule 4 is also
activated in order to add attributes to integrated elements.
Hereinafter we will not repeat it.

Fig. 1

Fig. 13.

v2

Fig. 15.

Case 2) Equivalence of an Entity Type and an Attribute: An
equivalence between an entity type E and an attribute A, of
some element X, generates an entity type, say EA (Rule 1).
Rule 6 generates for the X-A attribute link a relationship
type linking EA to the entity type representing the element to
which the original attribute is attached in the view (X in our
example). The name for the generated relationship type may
be automatically generated by the integrator, or be specified
by the DBA. (See Fig. 13.)

Case 3) Equivalence of Two Relationship Types: In this
case, the correspondence assertions are

R=R, X=X, ZrZ

X-R = X-R, Z-R G Z-R.

(See Fig. 14.)
An equivalence between relationship types generates a

relationship type (rule 1). Link integration (Rule 2) generates
one role link for the two X-R links and one for the two Z-R
links. Rule 6 adds role links without correspondent: Y-R and
W-R. The integrated relationship type will therefore link all
entity types resulting from the integration of the participating
entity types in the views.

Case 4) Equivalence of an Entity Type and a Relation-
shipType: An equivalence between an entity type E and a
relationship type R generates an entity type, say, ER (Rule
1). Rule 6 generates, for each role of R, a relationship type
linking ER with the entity types resulting from the integration
of the entity types participating in R (here, X and Y). (See
Fig. 15.)

Case 5) Equivalence of a Relationship Type and an Attribute.
An equivalence between an attribute A and a relationship type
R generates an entity type, say, RA (Rule 1). Rule 6 generates

270 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994

Fig. 16.

paths. The initial step of the algorithm is intended to isolate
correspondences whose integration is to be deferred. /*

Remove from the set of element correspondence assertions
all attribute correspondences and put them aside; remove these
attributes from the views (temporarily).

Remove from the set of path correspondence assertions all
correspondences where the paths terminate on corresponding
attributes, and put them aside.

the same substitution for R as in the immediately previous B. Elements Integration

case, plus a relationship type linking E and RA. This last */ Phase 1 (Integrate Corresponding elements /*): For each
relationship type results from adding the E-A attribute link element correspondence assertion X1 (car) X2, do:
of view VI to the integrated schema.

(See Fig. 16.)
Other examples of more complex situations are described

in Section VII. They will show how paths are integrated.

0
VI. VIEW INTEGRATION ALGORITHM

Different algorithms may be designed to perform view
integration based on the six rules we have defined in Section V.
Certainly, algorithms will vary depending on which integration
processing strategy is chosen: n-ary versus binary. N-ary
strategies integrate n views in one shot. In this case, the
integrator will have to sum up all correspondences involving
the same object through all views. With that global knowledge,
it will be able to decide which constructs to build in the
integrated schema, and to generate the appropriate mappings
between each view and the integrated schema.

Binary strategies integrate two views at a time. They are
simpler but must be iterated over the remaining views before
the integration process terminates.

Our integration rules implicitly assumed a binary strat-
egy (they may easily be extended to n views at a time).
Accordingly, in this section we propose a straightforward
algorithm that integrates two views. The algorithm is split
into several steps, shown in Sections A through D below.
These steps first integrate corresponding elements that are not
attributes. Then, corresponding paths are integrated. Finally,
corresponding attributes are processed.

Once all the views have been integrated, one may want
to refine the resulting integrated schema. Indeed, integration
rules may have created constructs that can be simplified
without semantic loss. Refinement may be performed either
automatically or interacting with the DBA. Automatic use of
a refinement rule is shown in Algorithm 2.

Comments are written in italics.
Algorithm 1) Integration of Two Views (VI and V2): Input:

Vl, V2, and the correspondence assertions in between.
Output: an integrated schema IS and the VI-IS, V2-IS

correspondences.

A. Deferring Attribute Correspondences

*/ As we have seen in the previous section, attribute
correspondences, other than those included in a “with cor-
responding attributes” clause of corresponding elements, must
be processed after integration of the other elements and of the

Execute Rule 1 (element integration rule).
Execute Rule 4 (integration of attributes) for the inte-
grated element.
Mark as already processed, in V 1 and in V2, X1, X2,
their attributes and their attribute links.
Generate the correspondence assertions X1 (cor)X in
VI-IS and Xz(cor)X in V2-IS.

enddo
I Phase 2 (Add Noncorresponding Elements I): For each
Vl element and for each V2 element that has not been marked
as processed in Phase 1, do:

l Execute Rule 6 (add rule).
l Mark this element as processed, and its attributes and its

attribute links (in Vl or in V2).
l Generate the correspondence assertions in VI-IS or in

v2-IS.

enddo

C. Path Integration

*I Phase 1 (Add Path Correspondence Assertions for Roles
of Equivalent Relationship Types): When the DBA states that
two
type

relationship types are
s link equivalent entity

equivalent, and these relationship
types, this implicitly defines equiv-

between corresponding ro le links
implici explicitly declares these

in the two views. This
t correspondences, so

alence
phase
that they may be taken into account during the next phase /*

For each pair of corresponding equivalent relationship types,
RI in Vl, R2 in V2, such that

R1 links E1,Fl,--,Gl, R2 lib E2,F2,-**,H2,

Rl =R2, E1=E2, Fl z F2, l -a.

do:

l Add to the set of path
followin ,g asserti ons:

correspondence assertions

El -Rl E E2-R2, F1-R1 = F2-R2,

enddo
/ Phase 2 (Integrate Corresponding Links and Paths I):
For each path correspondence assertion X1-a l l -

21 (car) X2-a . l --22 , do:
l Execute the appropriate integration rule: Rule 2 if two

links are involved, Rule 3 if composite paths are involved.

SPACCAPIETRA AND PARENT: VIEW INTEGRATION 271

l Mark as processed, in Vl and in V2, the corresponding
links.

l Generate the path correspondence assertions in VI-IS
and in V2-IS.

enddo
/ Phase 3 (Add Noncorresponding Links I): For each

/\
title ISBN

Vl link and for each V2 link that has not been marked as Fig. 17.
processed, do:

l Execute Rule 6 (add rule).
l Mark this link as processed (in V2 or in V2).

and of corresponding attributes of noncorresponding elements.

l Generate the path correspondence assertion in Vl-IS or
Last, we discuss a new example, taken from [8], which

in V2-IS.
involves integration of an entity type and a relationship type,
and refinement of the integrated schema.

enddo

D. Integration of Attribute Correspondences

*/ We now consider attribute and path correspondence
assertions that have been put aside in Section VI-A /*

For each attribute correspondence assertion, Al (car) AZ, do:

If there is a path correspondence assertion involving
Al and A2 then execute Rule 5 (attribute with path
integration rule) else add both attributes, Al and AZ, to
IS.
endif
Generate the path correspondence assertions in Vl-IS
and/or in V2-IS.
enddo
of Algorithm 1

Algorithm 2) Refinement of an Integrated Schema: Input: an
integrated schema IS.

Output: an equivalent integrated schema IS’ and the*
IS-IS’correspondences.

*/ Replace entity types, which are only bound to link
relationship types, by ERC+ relationship types /*

For each entity type E in IS such that all its roles are bound
to link relationship types Rl, R2, 0 l l , Rn, whose cardinalities
are l:l, do:

l Substitute a new relationship type (say, R) for E together
with all its roles and related relationship types. R links
all entity types that were bound by link relationship types
to E. R’s attributes are the attributes of E.

l Generate the following correspondence assertions in
IS-IS’:

enddo
end of Algorithm 2

VII. EXAMPLES ILLUSTRATING THE
VIEW INTEGRATION ALGORITHM

This section is intended to illustrate the main aspects of our
algorithm. The library information system shows how different
modeling constructs (entity types and attributes) are integrated
and the importance of links integration. The second one, about
customers’ orders, requires integration of a composite path

A. Example 1: Library Information System

Let us consider the views Vl, V2 from Section III (see
Fig. 17).

The set of correspondence assertions between Vl and V2
consists of two assertions about elements and one about paths:
Book G Author l books with corresponding attributes: A

title = title, ISBN = ISBN
Book oauthors G Author with corresponding attributes:

name = name, birthdate = birthdate
Book-authors = books-Author

Step 6.1 of the integration algorithm is not required: There
is no attribute correspondence

Step 6.2, phase 1, will start integrated schema

bY
the

assertion.
building the

the first assertion: Book = considering
ts are not of the same type,

Authorabooks.
an entity type,

As
say two elemen

Book, is generated in IS. Book has title and ISBN as attributes.
The following correspondences are generated:

a) Vl-IS: Book = Book with corresponding attributes: title
= title, ISBN = ISBN.

b) V2-IS: Authorobooks = Book with corresponding at-
tributes: title = title, ISBN = ISBN.

Similarly, the next correspondence will be dealt with:
Bookeauthors = Author. An entity type, say Author, is
generated in IS, with name and birthdate as attributes. The
following correspondences are generated:

a) V l-IS: Bookoauthors = Author with corresponding
attributes: name = name, birthdate = birthdate.

b) V2-IS: Author = Author with corresponding attributes:
name = name, birthdate = birthdate.

Step 6.2, phase 2: This phase is not needed. There is no
noncorresponding element.

Step 6.3, phase I: This phase is not needed. There is no
relationship type.

Step 6.3, phase 2: Deals with the unique path correspon-
dence:

Book-authors = books-Author

Both Book-authors (V 1) and books-Author (V2), are direct
links. According to Rule 2, their integration consists in insert-
ing a link in IS between Book and Author. As these are two
entity types, the new link will conform to the following pattern:
role-relationship type-role. Assuming the new relationship type

272 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994

name birthdate title ISBN

Fig. 18.

l-iGi+name

Customer C# F
name

stu

P#

Fig. 19.

is named BA, two more correspondences are generated:

-Vl-IS : Book - authors E Book - BA - Author

-V2-IS : Author - books E Author - BA - Book

Nothing else is left to be done. The integration has produced
the integrated schema shown in Fig. 18.

B. Example 2: Customers’ Orders

Let us now consider the customers’ orders example. The
views to be integrated are illustrated in Fig. 19.

The set of correspondence assertions between V7 and V8
consists of the following assertions:
Customer E Customer with corresponding attributes:

name=name
ordered 5 ordline with corresponding attributes:

quantity=qty
Product E Product with corresponding attributes:

p# = P#

ordered-date E Order-Odate
ordered-date E ordline-Order-Odate
Customer-ordered E Customer-places-order- ordline

Step 6.1 puts aside the two correspondences involving
attributes date and Odate, and removes date and Odate from
the views.

Phase 1 of step 6.2 then proceeds with the first three
assertions, inserting into IS:

l an entity type Customer, with name and C# attributes,
l a relationship type, say oline, with an attribute quantity,
l an entity type Product, with the P# attribute,

and generating the appropriate correspondence assertions
V7-IS and VS-IS.

Phase 2 of step 6.2 adds to IS the places and Order elements
from V8:

l a relationship type places, without attributes,
l an entity type Order, with the 0# attribute,

and generates additional correspondence assertions V7-IS and
V8-IS.

Customer C#

5
name

Places

Fig. 20.

Ordline

Product

Order

E
O#
Odate

quantity

P#

v9 VlO

Car

I I
SSN Lic# SSN Lic#

Fig. 21.

Phase 1 of step 6.3 adds the following path correspondence
assertion between V7 and V8:
Product-ordered E Product-ordline.

Phase 2 of step 6.3 integrates the following paths:
Customer-ordered = Customer-places-Order-ordline
and generates in IS three links for the composite path:
Customer-places, places-Order, Order-oline.

Then, the paths
Product-ordered = Product-ordline.
are integrated, generating in IS the Product-oline link.
Adequate correspondences are generated for V7-IS and
V8-IS.

The next step, 6.4, deals with the correspondences involving
the date and Odate attributes (which were put aside by step
6 1) . . .
orderedodate = OrderoOdate
ordered-orderedodate = ordline - Order-OrderaOdate.

The path correspondence includes a direct link: ordered-
date. Therefore, the other link is chosen for integration in IS.
The ordline-Order link already is in IS. The algorithm has only
to add the Order-Odate link, which implies creating Odate in
IS as attribute of Order. Some more assertions go into V7-IS
and V8-IS.

As no refinement is needed, the final integrated schema is
as shown in Fig. 20.

C. Example 3: Cars’ Ownerships

Our last example was proposed by [8] to show a case
of entity-type/relationship-type integration. It is based on the
views illustrated in Fig. 21.

Correspondence assertions are:

l Person = CarownershipeSSN with corresponding at-
tributes: SSN = SSN.

l Car = CarownershipoLic# with corresponding attributes:
Lic# = Lic#.

l owns z Carownership.
l owns-Person = Carownership-SSN.

l owns-Car = Carownership-Lic#.

SPACCAPIETRA AND PARENT: VIEW INTEGRATION 273

Car
I

facilities, to map initial views into the integrated schema. In
other words, instead of forcing users to agree on a unique

Fig. 22.

I
Lic#

representation, we want to support their views as they are,
and automatically build the underlying schema from which all
views can be mapped in some way.

Fig. 23.

Integration
types in IS:

l Person
SSN.

We did not discuss how mappings are built. In the ER
context chosen for this paper, they will basically use the
functionalities of the ERC+ algebra to modify, queries and
restructure their results before they are delivered to users.

To implement a formal declarative approach, we defined
a model for describing correspondence assertions. Driven by

1 starts with step 6.2, which generates three entity users’ assertions, the integrator tool acquires the necessary
knowledge about similarities in the semantics of the views. For

(integration of Person and SSN), with attribute each assertion, formal rules state how to derive the constructs
that are to be inserted into the integrated schema. Finally, we

l Car (integration of Car and Lic#), with attribute Lic#.
l Ownership (integration of owns and Carownership).

Path integration, step 6.3, adds the Person-Ownership and
Car-Ownership links. This process implies that two new
relationships are added-one, say PO, between Person and
Ownership and one, say CO, between Car and Ownership.
Cardinalities for the PO-Ownership and CO-Ownership roles
are 1: 1.

After this step, the integrated schema is as shown in Fig. 22.
In this case, if the refinement algorithm is run, the rule

applies and the PO-Ownership-CO structure is replaced by
a simpler Ownership relationship type (see Fig. 23), which is
the final expected result.

VIII. CONCLUSION AND FUTURE WORK

A powerful schema integration ,methodology is the key to
successful database design and federated systems. For design
purposes, it should allow users to build their view of the
database independently of other users’ views. For federated
environment, it should support reuse of existing databases
and existing application programs, without contradicting the
launching of new federated database services.

We propose an integration methodology, designed to meet
the above objectives. To that purpose, our approach is based
on the following. major features:

l automatic resolution of structural conflicts (arising be-
cause of different representations of the same real-world
objects),

l conflict resolution performed without modification of
initial views,

l use of a formal declarative approach for user (or DBA)
definition of interviews correspondences,

l applicability to a variety of data models, and
l automatic generation of structural and operational map-

pings between the views and the integrated schema.
Operational mappings provide support to allow users to
query and update the database through their own view.

The first two features are essential with respect to the goals.
They contrast with current methodologies, in which views are
modified to conform to each other. Our approach relies on the

proposed an integration algorithm and examples which show
how the algorithm achieve

Last of all, in designing
s the desired resul .t.
our methodology we had a strong

concern with identifying the fundamentals of integration, so
that the methodology could be transposed to major data models
(semantic, object-oriented, functional, etc.). Whatever the data
model, schemas can be interpreted as graphs, i.e., sets of
nodes and edges. We focused on defining integration rules
for these two sorts, which we called elements and links. This
paper showed the interpretation of the approach in terms
of an ER-like data model. ER elements are entity types,
relationship types, and attributes. ER links we considered
here are connections between a relationship type and the
participating entity types (role links), as well as connections
between attributes and the element they relate to (attribute
links). In case of an object-oriented model, elements would be
object classes and attributes, while links would be connections
between objects and their components.

This paper highlighted the first three features in the above
list, with the aim of putting forward the essential ideas of the
proposed methodology. We plan to discuss the other features
in forthcoming papers.

Future work will be devoted to:

l integration of inclusion, intersection, and exclusion asser-
tions (we intend to analyze when and how it is appropri-
ate to build generalization hierarchies in the integrated
schema);

l consideration of generalization links in correspondence
assertions and integration rules;

l detailed analysis of integration of corresponding attributes
in corresponding elements;

l integration of 1 : n correspondences, in which one
instance or value in one view corresponds to a set of
instances or values in the other view.

Our plans also include specification and implementation
of an intelligent view definition facility, so that most of the
integration problems in an actual situation are solved at view
definition time, rather than once the views are defined.

ACKNOWLEDGMENT

idea that the complexity inherent in structural conflicts should The authors thank Prof. B. Bhargava for helpful suggestions
be supported by establishing appropriate, powerful mapping that significantly aided in improving this paper.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 2, APRIL 1994 274

[ll

PI

PI

141

PI

161

PI

[91

kl

[111

WI

WI

WI

u51

WI

WI

WI

H91

PO1

WI

REFERENCES

V. Y. Lum et al., “1978 New Orleans data base design working report,”
5th Int. Co@ Very Large Data Bases, Rio de Janeiro, Oct. 1979, pp.
328-339.
C. Batini, M. Lenzerini, and S. B. Navathe, “A comparative analysis
of methodologies for database schema integration,” ACM Computing
Surveys, vol. 15, no. 4, pp. 323-364, Dec. 1986.
J. de Souza, “SIS-a schema integration system,” in Proc. BNCODS
Conf., 1986.
F. N. Civelek, A. Dogac, and S. Spaccapietra, “An expert system
approach to view definition and integration,” in Proc. 7ih Int. Conf.
Entity-Relationship Approach, Rome, Nov. (16-18, 1988, pp. 97-l 17.
A. P. Sheth, J. A. Larson, A. Cornelio, and .S: B. Navathe,. “A tool for
integrating conceptual schemas and user views,” in Proc. IEEE 4th Int.
Con. Data Engineering, Los Angeles, Feb. 1-5, 1988, pp. 176-183.
J. Diet and F. H. Lochovsky, “Interactive specification and integration
of user views using forms,” in Proc. 8th Int. Conf. Entity-Relationship
Approach, Toronto, Oct. 18-20, 1989, pp. 376-390.
D. A. Jardine and S. Yazid, “Integration of information submodels,” in
Information Systems Concepts: An In-Depth Analysis, E. D. Falkenberg
and P. Lindgreen Eds. Amsterdam: North-Holland, 1989, pp. 247-267.
J. A. Larson, S. B. Navathe, and R. Elmasri, “A theory of attribute
equivalence in databases with application to schema integration,” IEEE
Trans. Software Eng., vol. 15, no. 4, Apr. 1989.
M. Bouzeghoub and I. Comyn-Wattiau, “View integration by semantic
unification and transformation of data structures,” in Proc. 9th Int. Con&
Entity-Relktonship Approach, Lausanne, Oct. 8-10, 1990.
S. Hayes and S. ,Ram, “Multi-user view integration system (MUVIS):
An expert system for view integration,” in Proc. IEEE 6th Int. Conf.
Da,ta Engineering, Los Angeles, Feb. 1990.
S. B. Navathe and S. G. Gadgil, “A methodology for view integration in
logical database design,” in Proc. ‘8th Int. Conf. Very Large Data Bases,
Mexico City, Sept. 8-10, 1982, pp. 142-164.
C. Batini and M. Lenzerini, “A methodology for data schema integration
in the entity-relationship model,” IEEE Trans. Software Eng., vol. SE- 10,
no. 6, pp. 650-664, Nov. 1984.
M. V. Mannino and W. Effelsberg, “Matching techniques in global
schema design,” IEEE Int. Co@ Data Engineering, Los Angeles, Apr.
24-27, 1984, pp. 418-425.
R. Elmasri and G. Wiederhold, “Data model integration using the
structural model,” in Proc.. ACM-SIGMOD Int. ConJ Management of
Data, Boston, June 1979, pp. 191-202.
S. B. Navathe, R. Elmasri, and J. A. Larson, “Integrating user views in
database design,” IEEE Comput., vol. 19, no. 1, Jan. 1986, pp. 50-62.
M. A. Casanova and V. M. P. Vidal, “Towards a sound view integration
methodology,” in Proc. 2nd ACM SIGMOD-SIGACT Symp. Principles
Of Database Systems., Atlanta, March 21-23, 1983, pp. 36-47.
J. Biskup and B. Convent, “A formal view integration method,” in Proc.
ACM-SIGMOD Int. Conf. Management of Data, Washington, DC, May
28-30, 1986, pp. 398407.
B. Convent, “Unsolvable problems related to the view integration
approach,” in Proc. Int. Conf Database Theory, Rome, Sept. 8-10,
1986, pp. 141-156.
S. Spaccapietra, C. Parent, and Y. DuPont, “Automating heterogeneous
schema integration,” VLDB J, vol. 1, no. 1, pp. 81-126, Aug. 1992.
C. Parent and S. Spaccapietra, “An entity-relationship algebra,” in Proc.
IEEE Int. Con. Data Engineering, Los Angeles, Apr. 24-27, 1984, pp.
500-507.

“An algebra for a general entity-relationship model,” IEEE
G ‘software Eng., vol. SE- 11, no. 7, July 1985, pp. 634-643.

[22] S. Spaccapietra, C. Parent, K. Yetongnon, and M. S. Abaidi, “General-
izations: A formal and flexible approach,” in Management of Data, N.
Prakash, Ed.. New York: McGraw-Hill, 1989, pp. 100-l 17.

[23] C. Parent, H. Rolin, K. Yetongnon, and S. Spaccapietra, “An ER calculus
for the entity-relationship complex model,” in Proc. 8th Int. Conf. Entity-
Relationship Approach, Toronto, Oct. 18-20, 1989, pp. 75-98.

[24] C. Parent and S. Spaccapietra, “A model and an algebra for entity-
relation type databases,” Technol. Science Informatics, Special Issue:
Databases, vol. 6, no. 8, Nov. 1987, pp. 623-642.

1251 C. Parent and S. Spaccapietra, “About entities, complex objects and
object-oriented data models,” in Information System Concepts: An In-
depth Analysis, E. D. Falkenberg and P. Lindgreen Eds. Amsterdam:
North-Holland, 1989, pp. 193-223.

[26] A. Motro and P. Buneman, “Constructing Superviews,” in Proc. ACM-
SIGMOD Int. Conf Management of Data, Ann Arbor, MI, Apr. 29-May
1, 1981, pp. 5&64.

[27] A. Motro, “Superviews: Virtual integration of multiple databases,” IEEE
Trans. Software Eng., vol. SE-13, no. 7, July 1987, pp. 785-798.

Stefano Spaccapietra (SM’93) received the Doctorat d’etat from the Univer-
sity of Paris VI in 1978.

He has been an Assistant Professor at the University of Paris VI from
1969 to 1983. From 1983 to 1988, he was a full Professor at the Institute
of Technology, University of Burgundy, Dijon, France. Since 1988, he is a
full Professor at the Computer Science Department, Swiss Federal Institute of
Technology, Lausanne, Switzerland, where he chairs the database laboratory.
His first interest was in the area of database programming languages and
data modeling, but moved in 1975 to system architectures for distributed
database management. Heterogeneous databases lead him back to modeling
aspects. Together with C. Parent, he developed the ERC+ approach, an entity-
relationship model with object-oriented capabilities. His main research topics
now include federated databases and visual interfaces. He has more than 100
publications in the area of distributed databases and conceptual modeling.
Dr. Spaccapietra chaired for six years the Database Reference Model IS0
working group, and for five years, the distributed database working group
with AFCET, the French Computer Society. He chairs the Steering Committee
for Entity-Relationship Conferences, is Secretary of the IFIP Working Group
on Databases, and is a member of the executive committee of the Database
Group of the Swiss Computer Society.

Christine Parent received the Doctoral degree in computer science in 1975
and the Doctorat d’etat in 1987, both from the University of Paris VI.

She was an Assistant Professor at the University of Paris VI from 1970
to 1984. Since 1984, she has been a full Professor at the Computer Science
Department, University of Burgundy, Dijon, France, where she chairs the
Database Laboratory. She has been teaching and researching in data manage-
ment since 1970. Her first research was directed towards distributed database
management. Since 1983, she was deeply involved in the development of
an extended ER model and of the associated algebraic and calculus-like
manipulation language.

Dr. Parent has published extensively in technical journals and confer-
ences on distributed databases, data modeling issues, and data manipulation
languages. Since 1990, her research has focused on schema integration.

