
The Use of Information Capacity in
Schema Integration and ‘Translation

R. J. Miller* Y. E. Ioannidist R. Ramakrishnant

Dept. of Computer Sciences, Univ. of Wisconsin-Madison
{rmiller, yannis, raghu}@cs.wisc.edu

Abstract
In this paper, we carefully explore the assumptions behind
using information capacity equivalence as a measure of
correctness for judging transformed schemas in schema
integration and translation methodologies. We present a
classification of common integration and translation tasks
based on their operational goals and derive from them the
relative information capacity requirements of the original
and transformed schemas. We show that for many tasks,
information capacity equivalence of the schemas is not strictly
required. Based on this, we present a new definition of
correctness that reflects each undertaken task. We then
examine existing methodologies and show how anomalies
can arise when using those that do not meet the proposed
correctness criteria.

1 Introduction

Formal work on schema equivalence has largely been ig-
nored within practical schema integration and transla-
tion tools. Practitioners have felt that theoretical work
is too narrow in scope to be applicable to the problems
they face [RR89]. A s a result their work is driven by
an intuitive, rather than formal, notion of correctness.
Some recent work on translation and integration has suc-
cessfully used information capacity equivalence as a ba-
sis for judging the correctness of transformed schemas
[Hu186, MS92, RR87, and others]. Such work formally
provides sets of equivalence preserving transformations

‘PartialIy supported by NSF grant IRI-9157368.
t PartialIy supported by grants from NSF (IRI-9113736 and IRI-

9157368 (PYI Award)), DEC, IBM; HP, and AT&T.
tP@iaUy supported by a David and Luciie Packard Foundation

Fellowship in Science ‘and Engineering and by grants from NSF
(IRI-9011563 and a PYI Award), DEC, Tandem, and Xerok

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed foT
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endowment.
To copy otherwise, OT to republish, requires a fee and/or special
permission jTom the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland 1993

of schemas for specific data models.

We take a closer look at the assumptions behind
using information capacity equivalence as a measure of
correctness by examining a number of common tasks that
require schema integration or translation. We present a
classification of these tasks based on their operational
goals and derive from them the information capacity
requirements of the original and transformed schemas.
For many tasks, information capacity equivalence of
the schemas is not required. Rather it is sufficient
to guarantee dominance of either the original or the
transformed schemas. Based on this result, a new
definition of correctness for transformed schemas is
presented that takes into account the integration task
and its operational goals.

We examine the literature on schema transformations
with this new definition of correctness in mind. We iden-
tify many transformations, proposed within several dif-
ferent methodologies, that do not achieve their opera-
tional goals, and articulate the additional assumptions
required to rectify the problem. As part of this process,
we highlight the anomalies that can arise due to errors in
the transformation rules and show how query mappings
that are based on incorrect schema transformations can
produce incomplete or inconsistent answers.

We then extend our definition of correctness to pro-
hibit the generation of transformed schemas contain-
ing a conflict. We distinguish heterogeneity of schemas
(structural or constraint mismatch) from conflicts cre-
ated by constraints on schemas that cannot be simulta-
neously satisfied and show that determining if a trans-
formed schema contains a conflict is undecidable in gen-
eral. However, in many practical situations a tool can
detect conflict and use this knowledge to correct errors
in the specification of schemas.

We conclude by showing the value of this work to prac-
titioners. The new definition of correctness lends itself
to use in practical tools. Translation and integration
tools must work with incomplete information. However,
knowledge of the assumptions necessary to ensure correct

120

transformations can be included in a tool and used to
intelligently ask a designer about additional constraints
that may hold in the schemas to be integrated. Because
correctness is based on information capacity, not preser-
vation of opaque dependencies, missing information that
must be inferred by the system can be formulated in
terms familiar to the designer.

2 Information Capacity
Before introducing the notion of information capacity,
we define some useful concepts that may be interpreted
differently in different contexts.
Definition 2.1 Let A and B be sets. A mapping
(binary relation) f : A + B is functional if for any
a E A there exists at most one b E B such that f(u) = b;
injective if its inverse is functional; total if it is defined on
every element of A; and surjective (onto) if its inverse is
total. A functional, injective, total, surjective mapping
is a bijection.

Let I(S) denote the set of all valid instances of some
schema S. A schema S conveys information about
the universe it models. This information is essentially
captured by I(S) which contains all the possible states
of the modeled universe. From a different perspective,
the information capacity of S determines its set of
instances 1(S). T wo schemas can be compared based
on information capacityl, where intuitively, a schema
S2 has more information capacity than a schema Sl if
every instance of Sl can be mapped to an instance of
S2 without loss of information. Specifically, it must be
possible to recover the original instance from its image
under the mapping. The above are made precise below.

Definition 2.2 An information capacity preserving
mapping (or information preserving mapping) between
the instances of two schemas Sl and S2 is a total, injec-
tive function f : I(S1) + I(S2).
Definition 2.3 If f : I(S1) + I(S2) is an information
capacity preserving mapping, then SZ dominates Sl via
f, denoted Sl 5 S2.

Definition 2.4 An equivalence preserving mapping be-
tween the instances of two schemas Sl and S2 is a bijec-
tion f : T(S1) + I(S2).
Definition 2.5 If f : I(S1) -+ I(S2) is an equivalence
preserving mapping, then Sl and S2 are equivalent via
f, denoted Sl E S2.
Example 2.1 To illustrate the above, consider the
simple relational schemas Sl: empl(eno, ename, sal)
and S2: emp2(eno, ename, Sal, age). The attribute eno
is the key in both tables. One may define many intuitive
information preserving mappings from I(S1) to I(S2),
where each instance of empl is mapped to some instance
of emp2 with the same employees (i.e., the same eno,

1 Information capacity has been used extensively in the trans-
lation and integration literature [AABM82, BC86, Bor78, Eic91,
Hu186, HY84, MS92, His82, RR87, and others]. While the precise
details of the definitions differ among authors, we present defini-
tions that are in keeping with the spirit of the existing literature.

but also the same ename and Sal), ignoring the values of
age. Therefore, S2 dominates Sl (Sl 3 S2), which is to
be expected, since more information is captured in emp2
than in empl. 0

In principle, arbitrary mappings f may be used to
satisfy the above definitions of dominance and equiva-
lence. In fact, the definitions do not even require that
the mappings be finitely specifiable; they can simply be
an infinite list of pairs of schema instances. Clearly, such
mappings are of little use in a practical context. Various
restricted classes of mappings have been proposed in the
past [Hu186], for example, internal mappings, which only
reorganize and do not invent values, and mappings that
are queries in some query language. While such map-
pings have many desirable properties, many of them are
still unacceptable in a practical environment, because
schema instances with no intuitive relationship between
them are allowed to be associated via the mappings.

In practice, the notions of dominance and equivalence
are most useful if the associated mappings are required to
capture a meaningful semantic correspondence between
schemas. None of the classes of mappings discussed in
the literature has been shown to guarantee this [H~186].
In fact, existing systems operate at the schema level
(using transformations between schema components)
rather than at the instance level.

Definition 2.6 Let Sl and 32 be families (sets) of
schemas. A (schema) transformation is a total function
F : Sl + S2. If Sl and S2 are specified in different
data models, the transformation F is sometimes called a
translation.

A schema transformations should induce a mapping
between the sets of instances of the schemas. A
transformation is desirable if it induces an equivalence
preserving mapping.

Definition 2.7 A transformation F : Sl + S2 is an
equivalence preserving transformation if for all Sl E Sl,
Sl E F(Sl)?

Schema transformations are not arbitrary functions,
but are usually defined by a bijection (respectively a to-
tal, injective function) between components of the orig-
inal and the transformed schema when schema equiv-
alence (respectively dominance) is desired. Moreover,
they are usually constrained to induce only internal map-
pings on instances. Since schema transformations are de-
fined on finite schemas, they can be finitely specified, and
so ideally can the instance mappings that they induce.

Our treatment of integration and translation in this
paper is based entirely on schema transformations and
on instance mappings that these induce. In the next
section, we show that by ensuring that such mappings

ZNote that this condition implies the data model commutative
mapping principle described elsewhere [Ka190] and corresponds to
the definition of lossless schema transformations [Tro93].

121

are in fact information capacity preserving some very
important operational goals can be achieved.

3 Taxonomy of Schema Integration and
Translation Tasks

Schema translation and integration are necessary com-
ponents of several diverse tasks with very different goals
and operational requirements. Unfortunately, in many
discussions of schema integration and translation, the
specific task in mind is not made explicit, which results
in occasional errors and misconceptions.

Our approach to developing correctness criteria for
integration and translation consists of two steps. First,
we identify a collection of operational goals that arise
in the context of different integration tasks involving
a pair of schemas. For each goal, we identify what
relationship exists between the two schemas in terms of
information capacity (Section 3.1). Second, we identify
the operational goals implicit in a given integration task.
We then use the analysis of goals presented earlier to
determine what information capacity based constraints
must hold with respect to schemas involved in the
integration task (Sections 3.2, 3.3, and 3.4). In Section 5,
we use the formal basis for correctness developed in this
section and examine several transformations proposed in
the literature in conjunction with different integration
tasks.

3.1 Operational Goals and Relative
Information Capacity

Let 5’1 and S2 be two schemas in some data model(s).
Consider a system where Sl is used at the user-interface
level and S2 is used at the database level. That
is, users interact with the system through Sl, while
the data is stored under S2. We call such a system
unidirectional. We identify three possible operational
goals for unidirectional systems. In what follows, il E
I(Sl), i2 E 1(S2), and il = f(i2) for some mapping f
being discussed.

(Gl) Querying through Sl the data stored under
S2. This is the minimum possible- operational goal
and captures the case where Sl is a view of S2 in the
traditional sense. To achieve Gl, any query on Sl must
correspond to a unique query on S2 that returns the
same answer. For that, it is sufficient for the view
dejinition to induce at the instance level a total function
f : I(S2) -t I(S1). In that case, for a query q on il, the
following holds:

q(i1) = q(f(i2)) = q 0 f(i2). (1)
That is, the query q on il is mapped to the unique

query q o f on i2. Based on the required properties of f
(a total function), we conclude that f does not have to
be information preserving to achieve Gl: the information
capacities of Sl and S2 may be incommensurate.

(G2) The goal Gl, plus viewing through Sl the entire
database stored under S2. To achieve G2, we need a
total function f : I(S2) -+ I(S1) as above, but we
also need f to not lose any information. An instance
of Sl should uniquely determine an instance of S2, i.e.,
f should also be injective so that its inverse f-l is well
defined (albeit possibly not for all instances in I(S1)).
Then, by the equalities of(l), one may use f-l as a query
on il to retrieve/view the entire database instance i2.
More formally, f-‘(il) = f-‘(f(i2)) = i2. Therefore,
based on the required properties of f (a total injective
function), we conclude that f must be an information
preserving mapping to achieve G2: Sl must dominate
s2.

(G3) The goal G2, plus updating through Sl the data
stored under S2. To achieve G3, at a minimum we need
a total injective function as above. Consider an update ‘11
that changes il to a new instance il’, i.e., am = il’. To
perform the update on the underlying database, any il’
must determine a unique instance i2’ of S2, i.e., f must
also be surjective (onto I(S1)). In that case, because f is
injective, f-’ is also uniquely defined on any il’. Hence,
21(il) = il’ W u(f(i2)) = f(i2’) * f-l(u(f(i2))) =
f-‘(f(i2’)) = i2’ Th e composition f-l ouo f corresponds
to the update on S2 that generates the unique new
instance i2’. Therefore, based on the required properties
off (a bijection), we conclude that both f and f-’ must
be information preserving mappings to achieve G3: S2
and Sl must be equivalent.3

In addition to the above, consider a system where some
data is stored under Sl and some under S2. Moreover,
some users interact with the system through Sl and some
through S2. We call such a system bidirectional. As
an example, two heterogeneous independent applications
exchanging data in a distributed environment form a
bidirectional system. We identify a unique operational
goal for such a system.

(G4) Querying through Sl the data stored under S2
and vice-versa. For practical purposes, a single instance-
level mapping is desired. Clearly, this goal is equivalent
to Gl for both directions between Sl and S2. Therefore,
f should be a total function (for one direction) and
a surjective injection (for the other direction), i.e., a
bijection. Therefore, to achieve G4 S2 and Sl must be
equivalent. Given this, updates can be done through
both Sl and S2.

Summarizing the above, we have identified several
possible operational goals for systems that involve
two schemas. For each one of these goals, we have

3We note that goals Gl-G3 also put implicit constraints on the
query and update languages of Sl and S2. For Gl (respectively
G2), 9 o f (respectively j-‘) must be a query on S2. For G3,
f -’ ouof must be a valid update on S2. Such language constraints
are discussed elsewhere [Ka190].

122

demonstrated whether or not the two schemas must
be in a dominance or equivalence relation. This
is extremely valuable in analyzing various integration
and translation tasks in the following subsections. In
addition, we have shown how such properties are
necessary to be able to translate queries and updates
between schemas automatically, an absolute necessity for
practical heterogeneous systems.

3.2 Database Integration

Database integration or global schema design is
a process that takes several, possibly heterogeneous,
schemas and integrates them into a view that provides a
uniform interface for all the schemas [ADD+Sl, BLN86,
DH84, LNE89, MB81, ME84, et al]. If the local schemas
are specified in different data models, they may be
translated into a common model before integration is
performed. The process is depicted in the top part of
Figure 1, where both an integration and a translation
step are shown.

DATAtiASE INTEGRATION

Intprgrted Translated
Schemas

4 f 0 0
queries

integration 0 2-O @
translation I

0 0-J
VIEW INTEGRATION

User
Views

Tr;r$sfed Integrated
Schema

-0 0
queries

0
t f

-----S-- 0
translation integration

-0 0
Figure 1: Information capacity requirements of tasks.

Clearly, database integration generates a unidirec-
tional system, where Sl is the, integrated view and S2
is the union of the local schemas. Given that this is an
integration task, the view must faithfully represent the
integration of all schemas. Hence, the operational goals
of the system resulting from the integration may be G2
and possibly G3 if updates are allowed through the view.
By the analysis in Section 3.1, in the former case the in-
tegrated view (Sl) must dominate the union of the local
schemas (S2), while in the latter case the two must be
equivalent. The composition of the integration mapping
f and the translation mapping t shown in Figure 1 is
the information (equivalence) preserving mapping from

I(S2) to I(Sl), SO both f and t must be information
(equivalence) preserving as well.

3.3 View Integration

View integration or logical database design is a
process that takes a set of user views and logically
integrates them into a single conceptual schema [BLN86,
BC86, SZ91, LNE89]. Th ese views contain requirements
for the portion of a database of interest to different
users. The result of their integration is the schema
for an actual database. The user views are optionally
maintained to permit users to query the database
using their own customized interface. If the views
are specified in different data models they may be
translated into a common model before the integration
is done. Depending on the model used for integration,
the resulting conceptual schema may also be translated
into a target schema in a final step. For example, the ER
model is commonly used for schema integration and the
relation model used for the target schemes. The process
is depicted in the bottom part of Figure 1, where both an
integration and two optional translation steps are shown.

As in database integration, when the user views are
maintained, view integration generates a unidirectional
system. However, the roles of Sl and S2 are reversed:
Sl corresponds to the collection of the user views and
S2 is the integrated schema. The goals remain the
same as before, G2 and possibly G3, and therefore the
conclusions are reversed: for G2, the integrated schema
(S2) must be dominated by the user views (Sl), while
for G3,. the two must be equivalent. Analogously to the
previous case, the inverses of the integration mapping f
and the translation mappings t and t’ (Figure 1) must
be information preserving.

If the user views are not maintained and no interaction
with the data is performed through them, then the
resulting system is in some sense ‘nondirectional’, and
does not have any operational goals of the type discussed
in Section 3.1. Therefore, it may not be strictly necessary
for the integrated schema to be dominated by the user
views. However, by the nature of the view integration
process, the integrated schema often contains additional
constraints, including interschema constraints, that are
not expressed on any of the individual views. Moreover,
the constraints on the views capture useful information
that must be preserved in the integrated schema as well.
Therefore, it is again desirable for the integrated schema
to be of less information capacity. 4

41nformalIy, the constraints may be treated as information
that must be preserved and perhaps enhanced during the design
process. These constraints commonly restrict the information
capacity of the views. In such cases, it may still be a desirable
(though no longer strictly necessary) goal to preserve these
constraints by preserving information capacity.

123

3.4 Schema Translation

As we saw earlier, schema translation is often combined
with database integration [ADD+911 or view integration
[RR87, MS921 m a heterogeneous environment. The
information capacity requirements on the translated
schemas depend on the task at hand. This difference is
often not recognized in practice. Schema translation may
also be required in situations not involving integration.
In a unidirectional system, where both Sl and S2 are
individual schemas, the mapping from S2 to Sl involves
only a translation. Assuming that G2 is the most
common goal for such systems, Sl should dominate S2
(where for database integration, Sl is the integrated
view and for view integration Sl is the set of original
user views). Also, in a bidirectional system, data is
exchanged between the two parts of the system that must
be translated. Having G4 as the goal, the two schemas
must be equivalent.

3.5 Comments

In practice, in the process of any of the two types of inte-
gration tasks discussed above, designers may provide ad-
ditional information that affects the information capacity
of the original schemas in the opposite direction from the
one described in Sections 3.2 and 3.3. For database inte-
gration, the reason is that the original schemas are often
incomplete because they are specified in a model that
does not support the expression of all constraints that
hold in the universe of discourse. Additionally, there
may be interschema constraints that hold in the inte-
grated view but are not specified in any one of the orig-
inal schemas. For view integration, the reason is that it
may be revealed during integration that the constraints
on the views are not valid in the integrated schema. In
both cases, such information may lead to an integrated
schema that is not in the appropriate dominance relation
with the original schemas as described above. However,
the additional information provided by the designer may
be considered as part of the original schemas; the fact
that the designer is the source is irrelevant. Taking this
into account, the dominance relations are as described.
We discuss how such missing or inconsistent constraints
may be taken into account in Section 7.

4 The SIG Formalism
In Section 5, we study several methodologies that have
been proposed for yiew integration or database integra-
tion in light of the information capacity requirements
that we have described above. The methodologies that
we consider use various data models to express the trans-
formations. To ease the task of analyzing and presenting
the transformations, we use a single data model for de-
scribing the relevant schema families. Specifically, we
employ schema intension graphs (SIGs), a formalism de-
fined elsewhere [MIR]. Within SIGs, constraints that im-

pact the information capacity of a schema are explicitly
represented in a simple graph notation. These graphs
are therefore a convenient tool for proving or disproving
equivalence of schemas5

We define informally the features of SIGs that are
relevant to our subsequent discussion. A schema
intension graph is a graph G = (N, E) defined by two
finite sets N and E. The set N contains (i) a typed
set of symbols each used to represent a finite set of data
values, and (ii) arbitrary products and sums of these
symbols used to denote cross products and unions of the
corresponding sets, respectively.

The set E contains labeled edges between two nodes.
Edges are used to represent binary relations on the sets
assigned to the nodes. An edge e is denoted by e : X-Y
indicating that it is an edge between nodes X and Y.
The set E may contain edges between product and sum
nodes as well as multiple edges between the same pair
of nodes. Some of the edges of E may be designated as
projection or selection edges. A selection edge, denoted
u : X-Y, indicates that the set assigned to the node X is
a subset of the set assigned to Y. The edge u represents
the identity relation ,on the elements of X. A projection
edge, denoted z$xy : X x Y - X or ~5,~ : X x Y - Y,
represents the projection on X (respectively Y) values.

An instance S of a schema intension graph G (i.e., a
database state) is a function defined on the sets N and
E that assigns specific sets to nodes (denoted S[X] for
X E N) and specific binary relations to edges (denoted
S:[e] for e E E). The set of all instances of G is
I(G) = {Cs] S is an instance of G}.

Each edge of a SIG is annotated with a (possibly
empty) set of properties. Each property is a constraint
that restricts the valid set of binary relations that may
be assigned to an edge by an instance. Specifically,
an annotation of a SIG G = (N, E) is a function A
whose domain is the set of edges E. For all e E E,
d(e) c {f, i, s, t). An instance 9 of G is a valid instance
of A if for all e E E, if f E d(e) (respectively i, s or
t E d(e)) then s:[e] is a functional (respectively injective,
surjective or total) binary relation.

In reasoning about SIGs, edges may be combined using
two constructors <, >> and [[, I].

l Two edges ei : Z - X, es : Z - Y can be combined
into the edge < ei,ez >>: Z - (X x Y) called the
constructed product of ei and ez. In any instance of
the constructed edge, (z,
(2, r) E gi[el] and (z, y) E

E cS[<< ei,ez >] iff

5We are not recommending that practitioners take a step
backward in time and start using a simpler rather than more
expressive data model for integration. We use SIGs here as an
expository tool. We also stress that SIGs are in fact powerful
enough to express the relational schemas with functional and
inclusion dependencies as well as schemas expressed in models with
inheritance [MIR].

124

l

5

Two edges ei : X-Z, ez : Y -2 can be combined into
the edge [[ei, ex]] : (X+Y)-2 called the constructed
sum of ei and e2. In any instance of the constructed
edge (W,Z E 9[[[ei,ez]]] iff (w,z> E Q[ei] or
(w, z) E Ds e2]. r’

Analysis of Transformations

Using the SIG formalism, we have examined a large
number of database or view integration methodologies
that have been proposed in the literature. Based on the
stated operational goals of each methodology, we have
used the taxonomy of Section 3 to study the transfor-
mations proposed within the methodology and under-
stand their properties with respect to information ca-
pacity. While in most cases the notion of correctness
is not explicitly stated in the original references, based
on intuitive assumptions, we have been able to classify
most of the previous work. The entire effort has been
very beneficial. First, transformation rules originally de-
scribed in the context of very diverse models, have been
unified under the SIG formalism. This has permitted
the identification of common themes underlying many
transformations. Second, the analysis of transformations
based on information capacity has identified many errors
in the existing literature. Several transformations have
been found to not preserve information capacity, imply-
ing that any methodology incorporating them would fail
to achieve its stated operational goals. Third, for each
incorrect transformation, we have used information ca-
pacity arguments to identify the missing assumptions
that would validate the transformation. Fourth, we have
obtained a better understanding of how queries can be
transformed between schemas using the instance-level
mappings induced by the transformations that preserve
information.

All these points have convinced us of the importance
of using information capacity preservation as a correct-
ness criterion for integration and translation. We illus-
trate the above by focusing on three broad classes of
transformations. For each class, we have chosen one or
two transformations from different methodologies among
those studied and present the details of our analysis. The
specific transformations were chosen because they have
similar counterparts in other methodologies. For each
transformation, we discuss (1) the methodology in which
it is proposed; (2) our formulation of the transformation
in SIGs; (3) a natural instance mapping induced by the
transformation; (4) under what assumptions the map-
ping meets the goals of Section 3.1; (5) how the trans-
formation may be correctly used in an integration task;
(6) how queries can be translated based on the trans-
formation; and (7) related transformations. In all cases,
we only present the essential properties of the transfor-
mation and omit details that are not pertinent to our
analysis.

5.1 Merging through Generalization

For both view and database integration, several method-
ologies have been proposed that begin with two or more
schemas, union the schemas into a single schema, and
perform restructuring (or merging) transformations on
components of the new schema. The restructuring trans-
formations are designed to identify common structures
which are then combined to produce a conceptually
cleaner schema. One of the most common types of trans-
formations merges two or more object classes with over-
lapping attributes using generalization. In the following
subsections, we analyze one such transformation from a
specific methodology.
5.1.1 Description of Methodology
The specific transformation that we consider belongs to a
database integration methodology that uses a simple se-
mantic model containing classes and two types of binary
relationships, corresponding to attribute relationships
(key and non-key) and generalization [MB81, Mot87].
The stated goal of the work is to provide a faithful repre-
sentation of the underlying schemas and to allow queries
on the integrated view (referred to as a superview) to be
automatically transformed into queries against the com-
ponent schemas. This is goal G2 which requires that the
integrated schema dominate the original schemas.
5.1.2 Description of Transformation

The meet transformation restructures a schema contain-
ing two classes with a common key. The two classes typ-
ically come from different schemas that are integrated.
In the transformed schema, all common attributes are
removed from the original classes and a superclass with
these attributes is created.

F R a
A - Original Schema (Sl)

; I. I. -,

i Eion i e........... :.
i Functiona!
:---:
-..........I 4.
i lnjectlve i
a--:
I............ ;.
i Total i
i-i
r :.
:Surjectivei
;+:

B - Transformed Schema (S2)

Figure 2: The meet transformation.

Let S and T be classes with a common key composed
of the attributes {Ki,Kq,Kk} = Ii’. Let R =

125

{RI, Rz, RP} be the set of all common non-key
attributes. Additionally, S has non-key attributes P =
{Pi, Pz, Pp} and T has non-key attributes Q =
(91, Qz, . . . , Qq}. The SIG representing this schema is
shown in Figure 2A (Schema S1).6 For any set of nodes
N, the node N represents the product of all nodes in N.
In the SIG representation, we typically do not depict all
projection edges. Intuitively, an attribute relationship
from S to Pi is represented by the composition of the
edge p and the projection edge rr:.

The meet transformation converts Sl into S2, shown
in Figure 2B. Schema S2 contains a new class S + T
representing the generalization of S and T. All common
attributes are made attributes of S+T. The edges gl and
g2 represent generalization relationships. The classes
S and T “inherit” all attributes in K and R via the
composition of the generalization edges with the edges
k’ and PI.

5.1.3 Induced Mapping on Instances

While instance level mappings are not explicitly defined
in the discussion of the meet transformation, the authors
suggest the following mapping. Let f : I(S1) + I(S2)
and 9 E I(S1).

l The new node S + T is populated with the union of
elements in S and T, f(Q)[S + T’j = S[Sj U Q[T’j.

l For all other nodes X in S2, f(S)[X] = 3[X].
l The edges are populated as follows:

fw.PY = w ; f(Wdl = %I;
f(‘W-‘I = Q[b-l,~211 I; f(W’1 = s;[Pl, WI I;
f(w711 = &[s$
fW[4 = %x1.

f(3;) [d] = &[T] ;

To be correct, the transformation must induce a
mapping that is a total function. Therefore, the authors
state that if an element of S and an element of T have
the same key then they must agree on all attributes of R.
Otherwise, the relation 3[[[rl, r2]]] (which determines
the nonkey attributes of the merged class) would not
necessarily be functional, and not every valid instance of
Sl could be mapped to a unique valid instance of S2.

5.1.4 Additional Requirements for Information
Capacity Preservation

Even under the above constraint, the meet transforma-
tion is not information preserving, i.e., S2 does not dom-
inate Sl. The relation cS[[[kl, k2]]] is not guaranteed to
be functional or injective. Hence, it does not always form
a valid instance of the edge k’. To illustrate this, con-
sider schemas Sl and S2 of Figure 3 which conform to the
structure of the abstract schemas in Figure 2. According
to the constraints on Sl, two different people, an instruc-
tor i and a student s; may both be named “A. Walker”.

61n this figure and later figures, we represent information
from the two original schemas together in the schema Sl. The
transformed schema is 92.

The edge Name in the integrated schema, which is pop-
ulated with [[Std- name, Inst - name]], would therefore
contain the pairs (s, “A. Walker”) and (i, “A. Walker”).
So the Name edge is not injective. Conversely, if the
same person p is an instructor and a student, he or she
may have St&name “A. Walker” and Inst-name “Dr.
Walker”. The edge Name would then contain the pairs
(p, “A. Walker”) and (p, “Dr. Walker”). So Name is
not guaranteed to be functional.

Student (I Std~name)
Inst-name

Name<-,hStructor

A - Original Schema (Sl)
Name

Person- Name

iti ii-i,

B - Transformed Schema (S2)

Figure 3: The meet transformation on a specific schema.

The additional requirement necessary to ensure Sl 5
S2 is that two elements in s;[Sl and %[T] share the same
key if and only if they are identical. Formally, ifs E $;[A
and t E C?[Tl then s = t if and only if for a unique k
(s, k) E 3[kl] and (t, k) E %[k2]. Keys must be unique
not only within a node but across nodes that are to be
merged.

If the additional constraint on uniqueness of keys is
imposed on instances of Sl then f is an information
preserving mapping. This mapping is not surjective,
however, since a valid instance of S2 may populate the
edges gl and g2 with relations other than the identity
relation. These instances are not in the range of f. In
fact, no information preserving mapping from S2 to Sl
exists and so S2 5 Sl. Intuitively, in any mapping
of instances of S2 to instances of Sl, the two binary
relations gl and g2 are lost.
5.1.5 Usage

Before this transformation is used in a database integra-
tion methodology it should be verified that the constraint
on keys holds across the component schemas. The exis-
tence of the mapping f confirms that the goal G2 can
be met for all instances meeting this constraint. This
transformation is not appropriate for view integration
methodologies (even if the uniqueness constraint holds)
since the integrated schema has strictly more informa-
tion capacity. The transformation could be modified to

126

produce a schema in which the edges gl and g2 are re-
ctricted to be selection edges (that is edges that must be
populated with the identity relation). It is a straight-
forward exercise to show that such a schema is domi-
nated by the original schema. Equivalence would hold
for this new transformation if the key uniqueness con-
straint holds in the original schema. With this change,
goal G3 is achieved.

5.1.6 Mapping Queries

We have shown that the information preserving mapping
f is necessary to ensure that the G2 operational goal can
be achieved. We now demonstrate how this is done in
practice by giving an example of transforming queries on
the superview S2 to queries on the underlying schema
Sl. Below is a sample query on the schema S2 of Figure
3.?

Range of P is Person
Retrieve P where Name(P) = “A. Walker”

Cd)

This query must be translated into a query on the
underlying schema Sl. The schema transformation can
be used to automatically generate the set of queries q2.

Range of Pl is Student (4)
Range of P2 is Instructor
Retrieve Pl where Std-name(P1) = “A. Walker”
union
Retrieve P2 where Inst-name(P1) = “A. Walker”

The two queries in q2 are the result of composing ql
with the mapping f. The node Person is mapped by
f to the union of Student and Instructor and so the
query ql is replaced by two queries. The edge Name
maps to the constructed sum of the edges Std-name
and I&-name. Hence, in each of the two transformed
queries Name is replaced by Std-name and In&name,
respectively. The queries of q2 produce the same result
as ql on any potential instance of the database, i.e.,
q2(i2) = q2 0 f(i1) = ql(i1).

Consider what would happen if the constraint on
uniqueness of keys across Student and Instructor in-
stances did not hold. Let S be an instance of Sl contain-
ing a student and an employee both named A. Walker.
Each person is unique and therefore has a different iden-
tifier stored in the Student and Instructor nodes. In S2,
Name is a key for people so the user is expecting query ql
to return a single person. Query q2, however, will return
both people. In fact, the response to any query on Sl
must either omit information contained in 3 about one of
these two people or violate the constraints of the schema
S2. This simple example demonstrates the importance
of verifying the correctness of a transformation.

7We use an intuitive QUEL-like query language to illustrate
query modification.

5.1.7 Related Work

Other methodologies describe related transformations by
example or provide mechanisms for defining views with
similar effects [DH84, EicSl]. Similar assumptions are
typically required to ensure these transformations create
equivalent schemas. This same example can also be
modified to show that the information ordering used in
other schema merging proposals does not correspond to
information capacity dominance [BDK92].

5.2 Merging Object Classes

An alternative strategy to unioning schemas and then
performing restructuring transformations is to superim-
pose structures that have been identified as referring to
the same set of real world concepts. We examine one
such transformation in the following subsections.

5.2.1 Description of Methodology

The specific methodology we consider is designed to be
used in both view integration and database integration
[NEL86, LNE89]. T o achieve this goal, the transformed
schema must have equivalent information capacity to the
original schemas (Section 3). The methodology uses the
entity-category-relationship (ECR) model, an extension
to the ER model [EHW85].

5.2.2 Description of Transformation

We describe a merge transformation for entity classes
with a single attribute as key. We present only one
alternative of a family of transformations from this
methodology [LNE89, NEL86]. Consider two schema-s
containing two entity classes with key nodes h’i and
K2 respectively. Both entity classes have common
attributes S = {Sr , Ss}. Additionally, Kl has
attributes A = {Al,AA} and Ii2 has attributes
B = {Bl, ..‘, BB}. Suppose these two classes have been
identified as referring to the same real world concept,
so there is a bijective correspondence between instances
of the two classes. This scenario is represented by the
schema Sl of Figure 4A representing the union of the
two schemas with the bijective correspondence explicitly
represented by the edge e. This schema is transformed
into the integrated schema S2 of Figure 4B containing
the single class Kr which is associated with the union of
the two attribute sets.

5.2.3 Induced Mapping on Instances

While the authors do not discuss an instance level
mapping, an intuitive mapping f : I(S1) --+ I(S2) can
be defined as follows. Let S E I(S1).

l For all nodes X in S2, f(S)[X] = s;[X].
l For the edge f3, f(s)[f3] = oS[<< fl, (~40 f2oe) >I.
l Projection edges are mapped to the corresponding

projection edges of Sl. When there are two possible
edges in Sl (resulting from the multiple paths to the
nodes of S) projections involving a2 are used.

127

Kl -EE K2

f’ t t ‘2

A - Original Schema (Sl)

Kl A AxBxS

?
x5

s
B - Transformed Schema (S2)

Figure 4: The result of merging two entities.

The combination of two total functional edges with
the <<, >> constructor is necessarily a total function, so
f3 is only populated with total functions. The map f is
therefore a total function mapping every valid instance
of Sl to a unique valid instance of S2.

5.2.4 Additional Requirements for Information
Capacity Preservation

The map f is clearly not injective since it loses infor-
mation about the node K2 (and edge ~3). Any two
instances of Sl that are identical except for values as-
signed to the node K2 will map to the same instance of
S2. The following assumptions are sufficient for f to be
an information preserving mapping. Since S2 does not
represent values of K2 or the bijection e, K2 can be con-
strained to be identical to Kl (that is K2 and Kl must
be assigned identical values in any valid instance) and
e constrained to the identity map. Furthermore, in Sl,
there are two distinct paths representing binary relations
between Kl and S. If these two paths are constrained
to be identical then an instance of the two paths can be
uniquely represented by the single path from Kl to S
in S2. This second constraint corresponds to the rela-
tionship uniqueness assumption (RUA), often asserted in
relational theory, that a schema represents at most one
relationship between any given set of attributes [AP82].
Under this assumption, and the assumption that the keys
of the object classes are identical, the map f is an infor-
mation preserving mapping and Sl 3 S2.

Now consider the inverse mapping function g :
I(S2) + I(S1) defined on instances 9 E 1(S2).

l For all nodes X # K2 in Sl, g(ZZ)[X] = 9[X] and
g(Q)[K2] = Q[Kl];

l g(S)[e] = id~[~~l; g(Q)[fl] = Q,[7rAxS 0 f3];
g(3)[f2] = 3[7PXS 0 f3].

The map g is an information preserving mapping that

carries every instance of S2 to a unique instance of Sl
without losing any information. Hence, S2 5 Sl.

5.2.5 Usage

The information preserving mapping g carries instances
of the integrated schema to instances of the original
schema and does not require any constraints or assump-
tions on the original schemas. Hence, g is sufficient to
guarantee that the goal G2 can be achieved for view
integration. However, instances of the original schema
must satisfy the RUA and the relationship between key
values restricted to the identity in order for f to be an
information preserving transformation. Under these con-
straints, f is sufficient to guarantee that the goal G2 can
be achieved for database integration. Furthermore, un-
der these same constraints g = f-l and both f and g
are equivalence preserving. Hence, Sl G S2 and goal G3
can be met.

5.2.6 Mapping Queries

We consider an example in which the merge transfor-
mation is used for database integration so that queries
on the integrated view S2 are translated into queries
on the underlying schemas. Consider schemas Sl and
S2 of Figure 5, which conform to the structure of the
abstract schemas in Figure 4. Schema Sl contains two
sets of nodes describing student records; the first is from
the Registrar’s view and the second from the Bursar’s
view. The edge e represents an interschema constraint
not present in either user view.

Student -&Customer

Std-aftr
+ t

CM-attr

GPA x Name Tuition x Name

d *Name %ition GPA

Registrar’s View Bursars’s View

A - Original Schema (Sl)

atlr
Student I GPA x Tuition x Name

(All projection edges
are labeled by the
terminating node.) $A Tion ime

B - Transformed Schema (S2)

Figure 5: The merge transformation on a specific
schema.

Consider the following query on the integrated view.
Range of C is Student (4)
Retrieve C where Name(attr(C)) = “A. Walker”

This query must be translated into a query on the

128

underlying schemas. The mapping f can be used to
automatically generate the query 92.

Range of C is Student (q2)
Retrieve C where Name(Std-attr(C)) = “A. Walker”

The node Student in S2 is mapped by f to the Student
node in Sl. The path Name o attr is mapped to the
path Name o Std - attr (the mapping takes advantage
of the definition of the <<, >> constructor).

The mapping f always transforms a query about
names into a query on the Name edge of the Registrar’s
schema. There is no way to query the Name edge of
the Bursar’s schema through the integrated view S2.
If the same student has a different name within the
Registrar’s schema and the Bursar’s schema then the
view does not faithfully represent the full integration of
the two underlying schemas. The reason for this is that
the mapping f is information capacity preserving only
under the assumption that names of identical people in
the two schemas are identical.

5.2.7 Related Work

Additional merging transformations are suggested under
the same proposal. Again, most of the transformations
add constraints and so guarantee that the integrated
schema is dominated by the original schemas. If the
original schemes are assumed to satisfy the RUA then
many of the transformations also guarantee dominance
in the opposite direction.

Similar transformations are included in methodologies
based on the relational model to merge two relations
[BC86]. In that work, the precondition for applying
the transformation is the existence of an integration
constraint asserting that the projection of the two
relations on the common attributes (including the key)
is identical in all instances. This constraint is sufficient
to ensure that the transformed schema has equivalent
information capacity to the original. Other relational
work has used less restrictive preconditions for merging
two relations [MS92]. Null dependencies and general
inclusion dependencies are used to ensure information
capacity is preserved.

5.3 Structural Mismatch

The merging of schemes (whether via unioning or super-
imposition) is often preceded by a “conflict” resolution
phase. During this phase similar information that is rep-
resented in different constructs within different schemas
is identified and the mismatch is resolved by chang-
ing one of the structures. Methodologies baaed on the
ER model typically have transformations to change at-
tributes to entities (and vice versa) and entities to rela-
tionships (and vice versa) [BL84]. Methodologies using
richer models including specialization or generalization
have a greater array of transformations to handle the
greater number of possible mismatches [SZ91, WE79].

5.3.1 Description of Methodology

We focus on a view integration methodology included in
a database design tool [SZ91]. The tool recognizes struc-
tural differences and either applies a single resolution
transformation or provides the designer with a choice of
resolution transformations. We examine two situations
and show how considering information capacity can 1)
suggest an alternative transformation that may be ap-
propriate under certain conditions and 2) guide the de-
signer in the choice of transformations to apply. The
proposal that we consider uses the Binary-Relationship
(BR) model which models objects and binary relation-
ships between objects.
5.3.2 Description of Transformation 1 -

Entity-Relationship Mismatch

The first structural mismatch transformation concerns
an entity-relationship (object-relationship) mismatch.
An object class 01 in one schema is identified as having
the same meaning as a relationship rl in another (i.e.,
there is a bijective correspondence between instances of
01 and instances of ~1). We consider the case where the
relationship is n:l as depicted in Figure 6A. According
to the described integration methodology, the mismatch
is resolved by adding a 1:l relationship between 01 and
the determining object class of the relationship. The new
schema (S2) is depicted in Figure 6B.

rl
01 02 -03

A - Original Schema (St)
Constraint: a bijedive correspon-
dence between instances of 01
and instances of rl .

e
Ol--02----3- r’ 03

B - Transformed
Schema (S2)

02
d
F fl

OLE 02’ ~--+--s- 03

C - Alternative Transformed Schema (S3)

Figure 6: An entity and relationship that refer to the
same concept.

5.3.3 Additional Requirements for Information
Capacity Preservation

Schema S2 allows instances that do not correspond to
instances of the original schema. Specifically, let 01
be the class Research-Assistantship (RAship) containing
attributes for the salary, semester and job description of
an RA. Let rl be the relationship RAship, 02 the class
of graduate students, and 03 the class of professors. So
rl represents student-professor pairs containing students
that hold an RAship with a specific professor. A valid
instance of S2 could associate an RA salary with a
graduate student (via the edge e) who is not employed
as an RA by any professor (via the edge rl). Such an
instance violates the constraint in Sl that every instance

129

of the RAship class 01 must correspond to a unique
instance of the RAship relationship rl (and vice versa).
So S2 has more information capacity than Sl. This
transformation therefore may not be appropriate for view
integration.

Clearly, every instance of Sl could be mapped to an
instance of S2 via an information preserving mapping.
So Sl 5 S2 and this transformation is appropriate to
meet the goal G2 in a database integration context.
However, G3 cannot be achieved.

To ensure that only graduate students participating
in the relationship rl (and therefore doing work for a
specific professor) can be associated with an instance
of 01 (and earn a salary), the set of graduate students
holding RAs must be explicitly represented as in Figure
6C. There is a natural bijective mapping function
between instances of Sl and S3 and so Sl 3 S3 and this
modified transformation may be used in view integration
and also to achieve goal G3.

5.3.4 Description of Transformation 2 -
Relationship-Generalization Mismatch

The next transformation involves a mismatch between a
relationship edge and a generalization edge, both defined
on the same two object classes. The two edges have
been identified as referring to the same concept. Figure
7 shows the two constructs with one possible set of
annotations of the relationship edge. To resolve this
mismatch, the designer is given the option of changing
either the relationship edge to a generalization edge or
vice versa [SZSl]. The two constructs are then merged
(superimposed). However, an analysis of information
capacity can be used to guide the designer in making
a choice.

Ol-*Q--n2 01&02 01402

Schema I Schema II

A - Original Schemas B - Transformed Schema
(One Option)

Figure 7: A generalization edge and a relationship edge
that refer to the same concept.

5.3.5 Additional Requirements for Information
Capacity Preservation

If the annotations on e are consistent with the general-
ization edge (d(e) C {f, i, t}) then Schema II dominates
Schema I. Schema I does not dominate Schema II since
instances of the edge u must be subsets of the identity.
If d(e) = {f, i, s, 1) the two schemas are incomparable
in terms of information capacity. Not every bijective re-
lation is a subset of the identity and not every subset of
the identity is a bijection. Constraints must therefore be

added or deleted to arrive at a schema that dominates
(or is dominated by) both schemas.

5.3.6 Comments

There is a subtle distinction between the assumptions be-
hind the resolution of this mismatch and the resolution
of entity-relationship mismatches. The assertion that
an entity and relationship refer to the same real world
concept was interpreted as the existence of a bijection
between instances of the two constructs. In the trans-
formed schema this bijection is explicitly represented. In
resolving mismatches between two types of relationships,
however, the same assertion was interpreted as stating
that instances of the two constructs are identical. This
distinction is important in considering information ca-
pacity. In the first case, the designer is asserting that
there is a new correspondence between values that is not
captured in the original schemas and should be added in
the integrated schema. In the second case, the designer
is asserting the identity of values in two schemas to be
integrated. This distinction is often glossed over in inte-
gration strategies and a designer may not realize that the
same statement is being interpreted in different ways.

6 Conflicts

We have shown that schema translation and integration
may require putting additional constraints on a schema
or set of schemes. Any time the information capacity
of the original schemas is reduced (even by the addi-
tion of interschema constraints) the possibility of an ir-
reconcilable conflict in the schemas must be considered.
As mentioned above, the word conflict has traditionally
been used within the integration literature to indicate a
mismatch or heterogeneity in the original schemas. For
instance, a structural mismatch, where the same infor-
mation is represented by different constructs of the data
model, is often called a structural conflict. However, it
is important to recognize the distinction between hetero-
geneity and true conflict. We reserve the term conflict
to mean constraints in a schema or set of schemas that
cannot be simultaneously satisfied.’

Information capacity can be used to formally under-
stand and reason about conflicts. A conflict forces the
information capacity of a schema or part of a schema
to be the empty set.g The potential for conflict will de-
pend on the language used to express constraints. In
some data models, including the relational model with
just functional dependencies, conflicts may not be pos-
sible. In more expressive formalisms, including schema
intension graphs, conflicts may arise.

‘We also note that conflict applies to a schema rather than to
an instance of a schema that may hold contradictory information.
Instance level conflicts are beyond the scope of this paper.

‘Other authors refer to such schemas as inconsisfent [AP86].

130

It is critical that a schema transformation tool rec-
ognize potential conflicts and use this information to
guide the designer in correctly specifying constraints and
choosing transformations. A tool that blindly takes the
union of constraints specified on constructs may produce
a schema for which certain constructs have no informa-
tion capacity. These constructs could be removed from
t#he schema without changing the information capacity of
the schema. Clearly, such a situation could be very con-
fusing. Furthermore, the burden should not be placed
on the designer to recognize such situations.

6.1 An Example of Conflict

We consider an example of a conflict that may arise in
view integration and discuss how a tool can guide the
designer in resolving the conflict. Views I and II in
Figure 8A represent two user views of information about
students and workstation allocation in a university.
From the CS Department’s point of view, all students
are either teaching assistants (TAs) or research assistants
(RAs) and not both (so the node students is the disjoint
sum of TAs and RAs). The department has the resources
to dedicate at least one workstation to every student.
The Bursar’s office controls the grant money used to pay
for resources allocated to RAs. Each grant assigned to
a student may be used to pay for only one workstation.
Every RA is assigned a workstation under at least one
grant and furthermore, every workstation paid for by
grant money must be associated with some student.
These two different views are depicted in Figure 8A.

GElIlk
Resoufce Work-

RA+-----btation

TA RA
View I - CS Dept. View II - Bursar

A - Original Schemas (Sl)
Allocated Work-

2fq---;z!f~

TA RA
B - Integrated Schema (S2)

Figure 8: Integration of schemas via superimposition.
Integrated schema has a conflict.

Suppose the designer has indicated that the node
Workstation in View I is identical to the node Worksta-
tion in View II. An integration methodology that recog-
nizes Allocated and Grant-Resource as distinct relation-
ships and superimposes user views would create Schema
S2. The constraints on instances imposed by the edges
Allocated, Grant-Resource and a2 imply that for any

valid instance 3, IS[Student]l 5 I9[Workstation]I <
IDs[RA]I < JS[Student]l (a simple inference rule can be
used to deduce this). Hence, in any valid instance of the
schema there are exactly as many students as RAs. As
a result, there can never be any TAs (since the sets TAs
and RAs are defined to be disjoint). It is unlikely that
this is the intent of the schemas. Rather, it is proba-
bly the case that the set of workstations in View II is a
subset of the workstations in View I.

It should not be up to the designer to recognize that
this schema contains a conflict. Rather a tool should
identify the conflict and guide the designer in resolving
the conflict. Appropriate questions include: “Are there
no TAs?” or (‘1s it always the case that there is a
one-to-one correspondence between every RA and every
workstation?” These questions can be used to determine
that the edge Grant-Resource should not be surjective
onto the Workstation node in the integrated schema.

6.2 Conflicts in SIGs

For SIGs, we can precisely define the notion of conflict.
SIGs contain only sets and binary relations on sets. A
conflict can occur if there are no valid instances for a
node or edge due to the constraints contained in a specific
graph.

Definition 6.1 For a SIG G = (N, E) with annotation
function A, a node X E N is a conflict node if for all
valid instances 3, 3[X] = 8. An edge e E E of G is a
conflict edge if for all valid instances 3, 3[e] = 8.

An edge is a conflict edge if one of the incident nodes
is a conflict node. So for SIGS we characterize conflicts
by the existence of a node that is constrained to have no
members in any valid instance. Ideally, a tool would be
able to test for the presence of conflicts in an arbitrary
schema. However, testing for conflicts (even in SIGs
without selection, projection, or constructed edges) is
undecidable in general.

Theorem 6.1 Let G = (N, E) be a SIG with annota-
tion function A. Testing whether a node X E N is a
conflict node is undecidable. lo

The proof of this theorem uses the fact that annota-
tions on edges can be used to express complex cardi-
nality constraints on the size of nodes in any valid in-
stance. Similar cardinality constraints can be expressed
in most data models so the result generalizes. Schema
III of Figure 8 expresses the equation TA + RA 5 RA
where the variable TA represents the size of the teaching
assistant node and the variable RA represents the size
of the research assistant node. Clearly, the only solu-
tion to this equation (in positive integers) is TA = 0.
While the problem of deciding if an arbitrary polyno-
mial has nonzero (integer) solutions is undecidable, the
constraints arising in practice are likely to be such that

“The proof is contained in the full version of this paper.

131

simple algebraic techniques can be used to detect con-
flicts in many of these cases. In particular, schemas will
often express only linear systems of equations (as in the
above example).

‘7 Practical Tools and Information
Capacity

In earlier sections, we argued that understanding schema
transformations in terms of information capacity offered
significant benefits in terms of i) identifying all rele-
vant assumptions clearly, and ii) understanding the ap-
propriateness of a transformation for a given integra-
tion/translation task. In this section, we address the
question of what role such formally justified transforma-
tions have in a practical tool. Our discussion is brief,
but we hope to convince the reader of two points. First,
formally justified transformations offer some significant
benefits. Second, they continue to be of value even when
used in conjunction with other, non-rigorously justified,
transformations and integration steps, as is to be ex-
pected in a practical setting for integration.
7.1 Outline of a Tool

The scope of an integration tool clearly goes beyond
just schema transformations. For example, a tool
must provide book-keeping support for several kinds
of domain and catalog information, guidance to the
user in identifying semantic matches between different
elements of schemas to be integrated, and capabilities
for graphical viewing of schemas. However, support
for schema transformations is a very important aspect
of such a tool, with great potential for automation,
and it is this aspect that we consider here. A tool
must contain a catalog of transformations for the data
model(s) of interest. For each transformation, some
information is maintained, for example: preconditions
on the applicability of the transformation (e.g., there
must be two classes that share a key and possibly some
nonkey attributes), the induced instance mapping, and
its properties.

A set of transformations can be used in several ways.
A user could choose to apply a given transformation
on a given pair of input schemas (or fragments of
schemas). Alternatively, after the user specifies a certain
amount of information, the system automatically chooses
transformations and schema fragments on which to apply
them.
7.2 Benefits of Including Support for Schema

Transformations

Having the system explicitly support transformation
rules has several important benefits:

1) All assumptions implicit in a transformation can
be automatically checked each time the transformation
is applied. If the tool does not have enough informa-
tion to verify some assumptions, the user can be intelli-

gently prompted using easily understood questions, for
instance: “Are the values of attribute X always identical
to attribute Y?” or “Is every instance of class X associ-
ated with an instance of class Y?“.

2) Where more than one transformation can be ap-
plied, and there is not enough information to determine
which is appropriate, the tool can ask the user, and of-
fer meaningful suggestions. For example, consider the
schemas of Figure 7. Suppose 01 is the set of gradu-
ate students and 02 the set of university employees and
that both are identified by their university id numbers.
In Schema I, graduate students have been represented as
a subclass of employees (denoted by the selection edge
o), while in Schema II there is a functional relationship
(which the user may have labeled “is-a”) from students
to employees. Rather than asking the designer which
schema is correct, a tool could ask the designer if any
employee in Schema II can be related to more than one
graduate student (that is, whether the “is-a” edge is in-
jective). If not, the next question should be whether a
student can be related to an employee with a different
id number. If the answer to both questions is negative,
then the choice of Schema I as the integrated schema
is appropriate. Otherwise, the tool must consider the
possibility that Schema I is incorrectly specified or that
these two relationships are not identical.

3) As we illustrated in earlier sections, using transfor-
mation rules at the schema level can lead to automatic
query transformation as well.

4) The sequence of transformation steps in an actual
integration may be automatically recorded and serve as
a history of the integration. Such a record is valuable
both during the course of integration (e.g., to check
assumptions made thus far) and subsequently, as meta-
information about the integrated schema.
7.3 The Role of Information Capacity

In order to realize the full potential of a system that
supports schema transformations, it is important to
thoroughly understand the assumptions associated with
a rule and the mappings between schema elements.
We have argued that a good way to obtain such
an understanding is to analyze these rules from the
standpoint of information capacity. A potential further
benefit, of course, is that in addition to achieving a sound
integration at the schema level, we also obtain a sound
query-level mapping.

We have studied several proposed transformations but
we have not come close to exhausting the possible trans-
formations that a designer may formulate in the con-
text of a specific integration task, based on a semantic
understanding of the data. However, if a designer pro-
poses a new transformation and provides the correspond-
ing instance mapping, a tool may still make use of this
information in combination with the automated trans-

132

formations. Such ad hoc transformations may therefore
be integrated into our methodology. Given a fully spec-
ified ad hoc transformation, translation of queries and
instances may still be done automatically. (An interest-
ing question is whether a tool can be developed to exam-
ine arbitrary schema transformations from the point of
view of information capacity, and automatically identify
missing assumptions and mappings.)

8 Conclusions and Future Work
We have examined schema integration and translation
tasks and proposed a definition of correctness that ac-
counts for the different goals of related tasks. By an-
alyzing the correctness of proposed schema transforma-
tions, we have shown how potentially severe anomalies
can be avoided. Additionally, we have demonstrated how
the notion of correctness provides an opportunity for in-
creased intelligence in an interactive schema transforma-
tion tool.

References
[AABM82] P. Atzeni, G. Ausiello, C. Batini, and

M. Moscarini. Inclusion and Equivalence between Re-
lational Database Schemata. Theoretical Computer
Science, 19:267-285, 1982.

[ADD+911 R. Ahmed, P. DeSmedt, W. Du, W. Kent,
M. A. Ketabchi, W. A. Litwin, A. Rafii, and M. C.
Shan. The Pegasus Heterogeneous Multidatabase
System. IEEE Computer, pages 19-26, December
1991.

[AP82] P. Atzeni and D. S. Parker. Assumptions in
Relational Database Theory. In Proc. of Conf. on
PODS, pages l-9, Los Angeles, CA, March 1982.

[AP86] P. Atzeni and D. S. Parker. Formal Properties
of Net-Based Knowledge Representation Schemes. In
Proc. of Data Eng. Conf., pages 700-706, 1986.

[BC86] J. Biskup and B. Convent. A Formal View
Integration Method. In Proc. of SIGMOD Conf.,
pages 398-407, Washington, D.C., May 1986.

[BDK92] P. Buneman, S. Davidson, and A. Kosky.
Theoretical Aspects of Schema Merging. In Proc. of
EDBT Conf., pages 152-167,1992.

[BL84] C. Batini and M. Lenzerini. A Methodology for
Data Schema Integration in the Entity Relationship
Model. IEEE Trans. on Software Eng., SE-10(6):650-
664, November 1984.

[BLN86] C. B t’ a mi, M. Lenzerini, and S. B. Navathe.
A Comparative Analysis of Methodologies for Data-
base Schema Integration. ACM Computing Surveys,
18(4):323-364, December 1986.

[Bor78] S. A. Borkin. Data Model Equivalence. In Proc.
of Conf. on VLDB, pages 526-534, 1978.

[DH84] U. Dayal and H. Y. Hwang. View Definition
and Generalization for Database Integration in a
Multidatabase System. IEEE Trans. on Software
Eng., SE-10(6):628-644, November 1984.

[EHW85] R. El masri, A. Hevner, and J. Weldreyer.
The Category Concept: An Extension to the Entity-
Relationship Model. Data and Knowledge Eng.,
1(1):75-116, June 1985.

[EicSl] C. F. Eick. A Methodology for the Design and
Transformation of Conceptual Schemas. In Proc. of
Conf. on VLDB, pages 25-34, Barcelona, Spain, 1991.

[Hu186] R. Hull. Relative Information Capacity of
Simple Relational Database Schemata. SIAM Journal
of Computing, 15(3):856-886, August 1986.

lHY841 R. Hull and C. K. Yan. The Format Model: A .
The&y of Database Organization. J. ACM, 31(3):518-
537, 1984.

[Ka190] L. A. Kalinichenko. Methods and Tools for
Equivalent Data Model Mapping Construction. In
Proc. of EDBT Conf., pages 92-119, 1990.

[LNE89] J. Larson, S. B. Navathe, and R. Elmasri. A
Theory of Attribute Equivalence in Databases with
Application to Schema Integration. IEEE Trans. on
Software Eng., 15(4):449-463, April 1989.

[MB811 A. Motro and P. Buneman. Constructing
Superviews. In Proc. of SIGMOD Conf., pages 56-
64, 1981.

[ME841 M. V. M annino and W. Effelsberg. Matching
Techniques in Global Schema Design. In Proc. of Data
Eng. Conf., pages 418-425, 1984.

[MIR] R. J. Miller, Y. E. Ioannidis, and R. Ramakrish-
nan. Schema Equivalence in Heterogeneous Systems:
Bridging Theory and Practice. Submitted for Publica-
tion.

[Mot871 A. Motro. Superviews: Virtual Integration of
Multiple Databases. IEEE Trans. on Software Eng.,
13(7):785-798, July 1987.

[MS921 V. M. Markowitz and A. Shoshani. Represent-
ing Extended Entity-Relationship Structures in Rela-
tional Databases: A Modular Approach. ACM Trans.
on DB Systems, 17(3):423-464, September 1992.

[NEL86] S. B. N avathe, R. Elmasri, and J. Larson.
Integrating User Views in Database Design. IEEE
Computer, 19(1):50-62, January 1986.

[Ris82] J. Rissanen. On Equivalences of Database
Schemes. In Proc. of Conf. on PODS, pages 23-26,
1982.

[RR871 A. Rosenthal and D. Reiner. Theoretically
Sound Transformations for Practical Database Design.
In Salvatore T. March, editor, Proc. of Entity-
Relationship Conf., pages 115-131, NYC, NY, 1987.
Elsevier Science Pub.

[RR89
1

A. Rosenthal and D. Reiner. Database Design
Too s: Combining Theory, Guesswork, and User
Interaction. In Proc. of Entity-Relationship Conf.,
pages 391-405, Toronto, Canada, 1989.

[SZ91] P. Shoval and S. Zohn. Binary-Relationship
Integration Methodology. Data and Knowledge Eng.,
6:225-250, 1991.

[Tro93] 0. De Tr o y er. On Data Schema Transformation.
PhD thesis, Katholieke Universiteit Brabant, Nether-
lands, 1993.

[WE791 G. Wiederhold and R. Elmasri. The Structural
Model for Database Design. In P. P. Chen, editor,
Entity-Relationship Conf., pages 237-257, Los Ange-
les, CA, December 1979. North-Holland Pub. CO.

133

