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Abstract 1. Introduction 

Fundamental notions of re1ativ.e. information 
capacity between database structures are studied in the 
context of the relational model. Four progressively less 
restrictive formal definitions of ‘dominance’ between 
pairs of relational database schemata are given. Each of 
these is shown to capture intuitively appealing, 
semantically meaningful properties which are natural for 
measures of relative information capacity between 
schemata. Relational schemata, both with. and without 
key dependencies, are studied using these notions. A 
significant intuitive conclusion concerns the informal 
notion of relative information capacity often suggested in 
the conceptual database literature, which is based on 
accessability of data via queries. Results here indicate 
that this notion is too general to accurately measure 
whether an underlying semantic connection exists between 
database schemata. Another important result of the 
paper shows that under any natural notion of information 
capacity equivalence, two relational schemata (with no 
dependencies) are equivalent if and only if they are 
identical (up to reordering of the attributes and 
relations). The approach and definitions used here can 
form part of the foundation for a rigorous investigation of 
a variety of important database problems involving data 
relativism, including those of schema integration and 
schema tra&lation. 

‘This work wppotted in par1 by NSF grrnts ET-81-0’1480 and 
IST-63-06517. This is WI extended abstract of (191 
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A central issue in the area of databases is that of 

data ‘relativism., that is, the general activity of 

structuring the same data in different ways. Considerable 
effort has-been directed at understanding data relativism 
as it arises in the ares of user view construction [lo], 
view integration 118, 21, 31, 32, 391, *derived’ data 
[I?, 24, 331, schema %implification’ (8, 9, 241, translation 

between data models 17, 11, 12, 22, 25, 26, 271, and 

relational database normalization theory [4, 6, 13, 28, 401. 
A predominant theme in much of this work has been to 
build new schemata from existing ones using various 
structural manipulations 18, 18, 24, 31, 32, 391. The new 

schemata are intended to have equivalent information 
capacity with the original schema, or to ‘subsume. the 

information capacity of the original schemata in some 

sense. In these investigations there is typically no forma1 
definition. of the notions of equivalent or dominant 
information capacity. The intuitively appealing approach 
usually taken is’to say the one schema is dominated by 
another if any query directed at the fist can be 
translated into an equivalent query of the second 

-[7, 8, 13, 17, 24, 31, 32, 391. (In addition, it is often 

assumed implicitly that data structured according to the 
first schema can be transformed into the second schema 

by some .nice. mapping, for instance, a fried query 

which maps instances of the first schema into instances of 
the second.) We informally call this2 .query-dominance.; 

*This notion has its roota in the notion of Bequiualence 
introduced by Codd 1131, and s variant 01 query-dominance was used 
to formally investigate horizontal and vertical decomposition in 121. 
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The objective of the current paper is to introduce and 
us& simple but rigorous theoretical tools for studying this 
and related measures of relative’information capacity in 
the very simple context of schemata from the relational 
database model.’ 

The present investigabion makes two fundamental 
contributions. The first consists in several theoretical 
results which, yield conceptual insights into the area of 
relatire inlormation capacity. For example, one result 
(Theorem 5.1) indicates that the notion of query- 

dominance described above does not correspond to a 
natural, semantically meaningful type of information 

capacity dominance. In particular, it appears that the 
notion of query-dominance is too broad to accurately 

measure whether an underlying semantic connection 
exists between database schemata. A second result 
(Corollary 6.2) shows that with virtually any reasonable 
measure of relative information capacity, two relational 
schemata wit.hout dependencies are equivalent if and 
only if they are identical (up to reordering of the 
attributes and relations). This substantiates the 
intuition that t.he relational model in the absence of 
dependencies does not provide enough data structuring 

mechanisms to represent a given data set in more than 
one way. 

The second fundamental contribution of the paper 
is to develop a solid mathematical foundation upon 

which to base an extensive theoretical investigation of 

relative information capacity between database 
schemata. This foundation fiids its roots in some early 
work on query-dominance (usually in connection with 

relational database normalization [Z, 3, 13]), and in the 

more recent, abstract work of [20]. In the present work, 

notions from these earlier works (along with one new 

one) are presented in a simple, rigorous manner and 

shown to correspond to intuitive and significant 
properties of natural measures of relative informtition 

3Tbe investigation here is fundamentally different than 
investigations such as IS, 301 and [lS] into the equivalence of 
relational database schemes. The bask concern in 15, m] is the 
equivalence of two views of an underlying universal relation, where 
the views are defined simply by projections. III (Is] the focus is the 
equivalence and dominance between relational views constructed 
from a given underlying relational scheme using projection and join. 
h the current paper we do not restrict ourselves to views of of a 
f&d underlying schema, nor to schema manipUtatiOn via projection 
and join alone. 

capacity. The approach here provides mechanisms for 

sludying relative infqrmation capacity using a variety of 
different mathematical techniques, including 
mathematical logic, combinatorics, and finite 
permutation group theory. Although the scope of the 
current paper is somewhat limited, it is clear that the 
definitions for measuring relative information capacity 
present.ed here can be generalized to other contexts 
within the relational model, and also to other database 
models. Thus, the. approach here can serve as part of 
the foundation for theoretical investigations of many 
aspects of data relativism. 

In the paper, four progressively less restrictive 

formal measures of relative information capacity are 

defined.l Suppose that P and Q are two relational 
database schemata. Speaking informally, we say that Q 
dominates P if there are functions u and r such that (i) o 

maps t.he family of instances of P into the family of 
instances of Q, (ii) r maps the family of instances of Q 
into the family of ipstances of P, and (iii) the 

composition of u followed by z is the identity on the 
family of instances of P. Three of the measures of 

information capacity are based directly on this 
fundamental notion, and are obtained by making certain 
rest,rictions on the maps o and r. The first, called’ 

calculous dominance, is the measure which arises if b 
and I are required to be (essentially) expressions of the 
relational calculus. (It is known [3] that this notion is 

equivalent to query-dominance, although easier to work 
with.) The second notion, called generic dominance, is 
less restrictive than calculous dominance and captures 

the notion that ‘natural. database transformations treat 
domain elements as .essentially uninterpreted objects’ 

[l, 201. (This is accomplished by requiring that u and r 

commute with essentially all permutations of the 

‘The first of these, calculous dominance, has its roots in the 
notion of ‘query equivalence’ as described in 1131, and a yariant of 
calculous dominance has been formally studied in 12, 31. Another 
two of these measures, namely absolute and generic dominance, 
were originally idtroduced in the more general Format Model 1201. 
Generic dominance was also studied in [34]. 

5 We choose to calI this type of dominance ‘calculous’ rather 
than ‘algebraic’, because it appears that a definition based on the 
first order predicate calculus is easier to generalize to other data 
models than one based on the relationally-based algebraic 
operators. 
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underlying set of basic domain elements.) The third 

measure, internal domainance, (which is even less 
restrictive) captures the intuitive notion that (at a 
logical or conceptual level) %atural’ database 

transformations are not based on numeric computations 
or string manipu1ations.o This is accomplished by 
requiring that u and T do not ‘invent’ or .construct. 
new domain elements (or data values) from the set of 
domain elements already occurring in an instance (aside 
from a finite set of data values, which corresponds to the 
set of constants occurring in a relational expression). 

The fourth measure, absolute dominance, is based on a 
family of cardinality conditions implied by internal 
dominance, and is relatively easy to work with. 

This report is an extended abstract of a full paper 
by the same name 1191. .Complete proofs and additional 
motivation for the results stated here are-presented in 
[IS). This abstract is organized ss follows. In Section 2 

the slightly modified version of the relational’model used 
for this investigation is described. (The modification 
allows us to easily express the fact that some attributes 

of a relation share the same set of possible domain 
values, while other attributes have fundamentally 
distinct sets of possible domain values.) In Section 3 the 
four measures of relative information capacity are 
formally defined and motivated. Section 4 presents 
some basic results concerning the four measures. Results 
indicating that query-dominance does not accurately 
messure the presence of semantic correspondence 
between schemata are given in Section 5, and the result 
concerning equivalent schemata is given in Section 6. 
Concluding remarks are made in Section 7. 

2. Relation Specifiers and Schemata 

The purpose of thii short section is to introduce 

and motivate the slightly modified version of the 
relational model that will be used in this investigation. 

It is assumed here that the reader is familiar with the 

fundamental concepts 
Since the focus here 

of the relational model (29, 361. 

is different than that of most 

‘This notion highlights the fact that the current investigation is 
concerned witb .purP database access and ttansforamtion 
lanuguages, i.e., those which focus primarily on the data structures 
provided by the database model. 

investigations of this model, the reader is warned that 

we’shall use some’symbols here in a manner different 
than found elsewhere. 

Speaking informally, a fundamental premise of our 
investigation is that the structure of relations is 
determined primarily by two things: the number of 
‘columns’ that a given relation has, and the sets of 
possible values which can appear in each of these 
columns. For example, if a column is intended to 
contain salary data, then we would expect that only 
positive integers are permitted as entries in that column, 
whereas in a column for person-names we would expect 
only names (or perhaps, alphabetic strings).’ To formally 
capture these ideas we establish a set of ‘basic types’ 
(or domain designators), along with a fmed domain of 
possible values associated with each basic type: 

Notation: Let B be a fned countable set of bdsic 

t~pe.9.~ Let the function Dom be defined on 8 such that 

a. Dam(B), the domain of B, is a countably 

infinite set of abstract symbols for each B E 
8; and 

b. Dam(B) tl Dam(C) = 0 whenever B # C. 

The set DOM of all domain elements is the set 

UBEpmW 

In many cases, two or more columns of a relation 
may have exactly the same domain (e.g., START-DATR 

and END-DATE). For this reason, relations are 
specified using (finite) sets of basic types, where each 
basic type may occur more than once: 

Definition: A non-keyed (relation) speciliet is a0 finite 
multiset over 8. The support of a non-keyed specifier R 

is the set supp(R) = {B E 8 ] R(B) > 0). 

7R. Fagin studied tbis notion using ‘domain dtpendtnciesD 116). 
Also, R. Reiter bas studied this using the logic-based formalism of 
‘typed’ databases 135,361. 

8We assume that there is a Tied, unspecified total ordti on 8. 

‘A multiset over a set X is a total function M:X 4 N (the 

natural numbers). A multisct M is /initc il {X E X 1 M(X) > 0) is 

finite. If x E X then x is an demmt bf M, denoted x E M, if M(x) 
>.O. 

’ 
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While not all possible real-world relations can be 

modeled within the framework that is being developed 
here, the results obtained in this limited context are of 
sufficient interest to warrant investigation; furthermore, 

in this new area it is important to resolve simple 
problems before tackling the more complicated ones. 

We generally denote a non-keyed specifier by 
listing its elements, with multiple occurrences where 
appropriate. For instance, if R is a specifier with 

support {A,B,C} and R(A)=2, R(B)=l, and R(C)=3, 
we denote R by AABCCC or A2BC3. 

Formally, (relational) instances are associated with 

non-keyed specifiers as follows: 

Definition: If R is a non-keyed specifier, an instance of 
R is a finite subset of” X BES,pp(R)(X~~)(Dom(B))). The 
family of instances of R is denoted I(R). 

We now extend our notation to include one key 
dependency per relation. Key dependencies, especially 
in the case of one key dependency per releation, are 
fundamental to many semantic data models, including 
t.he functional data model 123, 371 and the entity- 
relationship model [ll]. Key dependencies are 
incorporated into our notation in the following 
convenient manner: 

Definition: A keyed (relation) specifier is an ordered 
pair (R,S) of multisets over 8, usually written as R:S. 

The support of R:S, supp(R:S), is” supp(RS). An 

instance of R:S is a total function from an instance I of 

R to X BEsupp(S)(X~~!(Dom(B))). (We typically view such 

instances as if they are members of I(RS), i.e., as finite 
sets of ordered tuples.) The family of instances of a 

keyed specifier R:S is denoted I(R:S). 

Note that a non-keyed specifier R can be viewed as 

the keyed specifier R:0. 

loWe view Cartesian products suchas this one as ‘flattened’, 
that is, we view this product as a single product of subsets of DOM 
rather than as a product 01 products of subsets of DOM. 
Furthermore, we view the columns of this product to be orderetl by 
the context of the discussion. If no order is specified by that 
context, then the underlying ordering on 0 is used. 

l$f L and M are multisets over X then their union, L U M, is 

the multiset K such that K(X) = L(X) + M(x) for each x E X. 
Fohowing relational tradition, if R and S are non-keyed specifiers, 

we denote their union R U S by RS. 
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Speaking informally, a relation scheme consists of 

one or more relations, some of which may share the 
same underlying (column) structure. For this reason, we 
formally define a relation schema to be a multiset of 
relation specifiers: 

Definition:‘* A (relational) schema is a finite 
multiset” P = P,,P,,...,P, of relation specifiers. The 

support of P is the set supp(P) = U~=rsupp(Pj). An 

instance of P is an element of14 I(P) = Xr&I(P$. If Pj 

is non-keyed for 1 5 j 5 n, then P is a non-keyed 
relational schema. 

As an aside, we note that the collection of non- 
keyed relational schemata as defined here corresponds 
precisely, in the terminology of the Format Model [20], 

to the collection of formats which are constructed using 
a composition of one or more subformats, each of which 
is a collection of a composition of one or more basic 

types (except that here we do not associate ‘tokens. 
with the various components of our relational schemata). 

Finally, we (briefly) mention the version of the 
relat.ional calculus used here. (Further details are given 
in [IQ].) We assume that the reader is familiar with the 

calculus as described in [14, 29, 381). In the current 
investigation we use, in the terminology of (381, the 
domain relational calculus in the sense that the 
variables and constants in our calculus range over 
individual domain elements. In keeping with our 
definition of basic types and the fact that their 

associated domains are disjoint, we assume that each 

(domain-value) variable occurring in our calculus 
expressions is associated with a given basic type. 

Finally, given relational schemata P = P,,...,P, and Q 

= Ql,...,Qn, a (relational) calculus ezpression from P 

to Q is an n-tuple c = (.f,,...,&) where tj is a 

‘*We use the term ‘schema’ here to distinquish it from the usual 
notion of a relational ‘scheme’, where a set of attributes as opposed 
to a multiset of basic types is speci?ied for each relation 129, 381. 

13When listing the occurrences of elements in a schema we 
-parate them by commas to avoid ambiguities. (For example, 

A*,R* denotes a schema with two specifiers, while A%* denotes a 
single specifier (or a schema with one specifier in it).) 

14Rlements of I(P) are n-tuples (thus, we do not view this 
product as *flattened’); and as before the order al the coordinates 
in this product are given by the context of the discussion, or if no 
such order is determined, by some unspecified but lmed ordering. 



(conventional) calculus expression which takes as input 

an instance of P and yields ss output an instance of Qj 

(1 5 j 5 n). In this case we write .$P + Q. 

3. Four Measures of Relative Information 

Capacity 

restructured (via u) to ‘fit* into Q, and restructured 

again (via r) to .fit’ into P, in such a way that the 
result is the same as the original. This suggests that Q 

has at least as much capacity for storing information as 
does P. 

In this section the four measures of relative 
information capacity are introduced and motivated. As 
noted in the Introduction, the first of these, calculous 
dominance, has its roots in the notion of .query 
equivalence. as described in [13], and a variant of it has 

been formally studied in 12, 31. As will be seen, this 
notion is equivalent to the notion of query-dominance 
described in the Introduction, but is easier to work with. 

Two other measures of relative information capacity, 
namely absolute and generic dominance, were originally 
introduced in the more general Format Model 1201, and 
generic dominance was also studied in 1341. Finally, the 
notion of internal dominance is a new notion which is 
based solely on the intuition that natural database 
transformations do not .invent. or .construct* new 
domain elements from old ones. The section concludes 

with a result stating that the four measures of 
information capacity are progressively less restrictive. 

The first of our measures is based on restricting 
the class of permissahle database transformations to be 
calculus expressions. We note that the notion in [2] of 
one schema being included in a second one is the same 
as our notion here of calculous dominance, except that 
in their formal investigation the query language used 
includes only the operations of projection, selection, join 
and union, which does not have the full power of the 
relational calculus. (For example, set difference cannot 
be realized using these operators). 

Definition: Let P and Q be schemata. Then Q 
dominate8 P calculously, denoted P 5 Q (talc), if 

there is a pair of calculus expressions [:P -) Q and w:Q 
+ P such that P 5 Q via (~,w). P and Q are 
calculously equivalent, denoted P - Q (talc), if P 5 Q 
(talc) and Q 5 P (talc). 

It is easily verified that calculous dominance is 
transitive and reflexive, and that calculous equivalence is 
an equivalence relation. 

To begin the formal discussion, we present a 
notion fundamental to our approach: 

Definition: Let P and Q be relational schemata. A 

(schema) transformation from P to Q is a map u:I(P) 

+ I(Q). In this caSe we write cr:P 4 Q. 
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To compare the notion of calculous dominance as 
just defined with the notion of query-dominance 
described in the Introduction, we present a formal 
definition of query-dominance for the current setting: 

Note that a calculus expression .$:P ? Q can be 
viewed as a transformation. 

In the spirit of [2, 3, 13, 201, we define relative 
information capacity using a pair of transformations, the 
composition of which forms the identity on the 
dominated family of instances: 

Definition: Let P and Q be schemata. Then Q query- 
dominates P if there is a calculus expression r:P + Q 
such that for each relation specifier R and each calculus 
expression a:P -+ R, there is a calculus expression a:Q 
-+ R such that o = fit. 

The next result formally states the equivalence of 
calculous dominance and query-dominance. 

DeKnition: Let P and Q be schemata, and let u:P + 

Q and KQ + P. Then Q dominate8 P via (u,z), 

denoted P 5 Q via (u,r), if 7000 (i.e., the composition of u 

followed by r) is the identity on I(P). 

Proposition 3.1 [3, 131: Let P and Q be schemata. 

Then Q query-dominates P iff P 5 Q (talc). 

Suppose that P 5 Q via (u,r). Thii means that 
information structured according to P can he 

There are two advantages to the definition here of 
calculous dominance over the definition of query- 
dominance. First, calculous dominance is easier to work 
with because it involves only two calculus expressions (as 



opposed to infinitely many). Second, as will be seen 
shortly, the form of the definition of calculous 
dominance is easily generalized to provide a variety of 
techniques for studying it. 

The second measure of relative information 
capacity, called ‘generic dominance,’ is somewhat more 
general than calculous dominance, and is useful in 
showing that one schema does not calculously dominate 
another (see Proposition 4.5 below). Generic dominance 
formally captures an intuitively natural restriction on 
database transformations, namely that any 
transformation used should . . . . treat data values as 
essentially uninterpreted objects . ..’ [1, 201. (However, 
we do allow our transformations to use a bounded 
number of domain elements aa %onstantS., which 
correspond intuitively to the constants occurring in 
calculus expressions.) Az in [20], to define generic 
dominance we first formalize this property of genericity: 

Definition: Let Z C_ DOM. A Z-permutation (of 

DOM) is a function n:DOM 4 DOM such that 

a. x(z) ‘= z for each z E Z, and 

b. the restriction of I to Dam(B) is a 1:1 onto 
function from Dam(B) to Dam(B) for each B 
E 8. 

A transformation o:P + Q is Z-genetic if for each Z- 
permutation s and each*’ instance1 of P, no&) = box(I) 
(i.e., u and I commute on I(P)). 

Speaking informally, a Z-permutation s leaves Z 
fied, and the restriction of s to Dam(B) is. a 
permutation of Dam(B) for each basic type B. And, 
again speaking informally, a transformation is Z-generic 

if for each B E 8 it treats all elements of Dam(B) - Z as 
.equals.. 

It is easily verified that 

Lemma 3.2: Let P and Q be schemata, [:P -+ Q be a 
calculus expression, and let Z be the set of constants 
occurring in 4. Then.[ is a Z-generic transformation. 

Following [20], generic dominance is now defined 

15 permutations on DOM are extended to families d instances in 
the natural manner. 

by requiring that the transformations u and t which 
restructure data be generic. 

Definitior# Let P and Q be schemata. Then Q 
dominalee P generically, denoted P 5 Q (gen), if there 
is a finite Z C DOM and. Z-generic transformations u:P 

-+ Q and CQ 4 P such that P 3 Q via (u,r). P and 
Q are genetically equivalent, denoted P N Q (gen), if P 

5 Q (gen) and Q 5 P ken). 

As with calculous dominance and equivalence, it is 
easily verified that generic dominance is reflexive and 
transitive, and that generic equivalence is an equivalence 
relation. 

Generic dominance is of particular importance 
because it is independent of any data-access language, 
but captures a property of all such languages discussed 
in the literature.” (For example, each query in the 
language consisting of the relational algebra plus the 
least-fixed point operator ia generic although this 
language is strictly stronger than the relational algebra 
or calculus [l].) Thus, results stating that one schema is 
not generically dominated by another can be used to 
support an intuitive claim that the first schema is not 
query-dominated by the other, where any natural query 
language is being used. 

Our third measure of relative information capacity 
is more general than generic dominance, and focuses on 
the natural property that database transformations (at 
least, those used for restructuring data sets) are not 
typically based on numerical computations or string 
manipulations, and thus do not typically ‘invent. data 
values. (For example, a mapping which encodes the pair 
(i,j) of integers into the. single integer 2i3j is based on a 
computation, and in essence %vents’ the value 2i3i.) 

%hile technically different than the original definition of 
generic dominance @en in [ZO], it can be verified that the notion 
used here and the original notion are equivalent in the current 
context. 

“As noted earlier, this investigation is concerned only with 
‘pure’ database query or transformation languages which do not 
encompass numeric computation or string manipulation. 
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.To formally capture this property of not inventing 

data elements, we first need: 

Definition: Let I be an instance of a relation schema. 

Then the set of symbols of I, denoted Sym(I), is the set 
of elements of DOM which occur in I. 

In the following we allow each given 
transformation to l invent. a (finite) set of data 

elements, these corresponding intuitively to the set of 
constants that might occur in a calculus expression.” 

Definition: Let Z C DOM. A transformation o:P + 

Q is Z-internal if Sym(u(1)) C Sym(1) U Z for each I E 

I(P). 

Note that if Q is Z-internal for some fmite Z and 

Sym(I) > Z, then Sym(oj1)) C Sym(1). As implied by 
the following result, each Z-generic’transformation is Z- 

internal. (And by Lemma 3.2, each calculus expression 
is Z-internal for some finite Z.) 

Lemma 3.3: Let P and Q be schemata, Z E DOM, 

and a:P -+ Q be Z-generic. Then u is Z-internal. 

We now have: 

Definition: Let P and Q be schemata. Then Q 
dominates P internally, denoted P 5 Q (int), if there 
is a finite Z C DOM and Z-internal transformations o:P 

* Q and KQ + P such that. P 5 Q via (u,T). P and 

Q are internally equivalent, denoted P - Q (int,), if P 
5 Q (int) and Q -( P (int). 

As before, internal dominance is reflexive and 
transitive, and internal equivalence is an equivalence 
relation. 

Our final measure of relative information capacity 
d&s not have tde form of the other three, and is more 

general than all of them. The primary advantage of this 
final measure is that it is easily characterized in terms of 
the cardinalities of certain families of instances (see 
Theorem 4.2), and is therefore relatively easy to work 
with. 

18As noted in Section 7, it would also be interesting to study 
&internal transformations, i.e., transformations which do not 
*invent’ any domain elements at all. 

To define this type of dominance we need: 

Notation: Let P be a relation schema and Y c 

DOM. Then IY(P) = { I E I(P) 1 Sym(I) _C Y }. 

Suppose now that u:P -+ Q is Z-internal and Y > 

Z. Then for each I E $(P), 41) E I,(Q), In other 

words,” uIr,(P)] C I,(Q). Finally, if P 5 Q via (u,r) 

where u and r are Z-internal, then u is l-l and so20 

IIy(P) 1 _< 1 I,(Q) 1 for, each Y 2 Z. This motivates: 

Definition:*l Let P and Q be schemata. Then Q 
dominates P absolutely, denoted P 5 Q (abs), if there 
is a finite Z c DOM such that 1 Iy(P) I 5 ] IAQ) ] for 

each (finite) Y > Z. P and Q are absolutely equivalent, 

denoted P - Q (abs), if P 5 Q (abs) and Q 5 P 
(abs). 

We conclude the section by stating that each of 
the formal measures .of relative information capatity 
iniroduced above are indeed progressively less 
restrictive, in the sense that if P is dominated by Q 
according to one the the measures, then P is dominated 
by Q according to each of the subsequent measures: 

, 

Theorem 3.4: Let P and Q be schemata. Then P 5 

Q’(calc) implies P 3 Q (gen); P 5 Q (gen) implies P 

II: Q (int); and P 5 Q (int) implies P 5 Q (abs). 

As we shall see, the converse of each of these 
implications is also true for non-keyed relational 
schemata P and Q where Q consists of only one relation 
specifier (Theorem 5.1), and for non-keyed relational 
schemata involving only one basic type (Theorem 5.3). 
However, if Q contains more that one specifier, or if key 
dependencies are incorporated, than at least one of these 
converse implications fails (Proposition 4.5.) 

“If I:M + N and K C M, tben flKJ denotes { T(k) 1 k E K ). 

*‘If X is a set tben 1x1 denotes the cardinality of X. 

21While technically different tban the original definition of 
absolute dominance given in 1201, it is easily verified that the notion 
used here and the original notion are equivalent in the current 
context. 
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4. Some Basic Results 
contained in B1,..., B,, and let Y C DOM be a finite set 

with IY n Dom(Bj)l = xi, 1 5 j 5 n., Then 

In this section we present several. basic results 
concerning the notions of information capacity 
dominance defined above. The first result gives a 
characterization of absolute dominance in terms of 
certain functions. A simple application of this result is 
given to indicate how it can be used to show that 
calculous dominance does not hold, and this result is also 
used as the basis for Theorem 6.1. The second major 

result of the section (Theorem 4.4) gives a 
characterization of internal dominance. The third major 

result (Proposition 4.5) shows that absolute and internal 
dominance are different from generic and calculous 
dominance, and illustrates a technique for showing that 
generic dominance does not hold. The section concludes 
with a number of results giving sufficient conditions for 
dominance (of one. sort or another) to hold. Most 
important. of these is Theorem 4.7, which concerns 
schemata constructed from other schemata through ‘re- 
namings’ of the basic types used. 

The functions needed for the characterization of 
absolute dominance are now presented. 

Definition: Let R be a non-keyed relation specifier and 
let B,,..., BII be an enumeration of the basic types in 
supp(R) (and possibly some other basic types). Then the 
cardinality function of R (relative,to this enumeration) 

is t.he polynomial fR:Nn ---) N where 

R(B.1 

fR(;t, = aJ<j<ntxj ' 1' 
-- 

Now suppose that R is the keyed specifier S:T and Notation: Let P be a schema, and let Y ind Z be finite 

supp(R) E W,,..., Bn}. Then the cardinality function subsets of DOM. Then P(Y,Z) denotes { I E I(P) I Y 

of R js - Z C Sym(1) C Y }. 

‘R(x’, = [log&(n~<j<nxf(Bi)) Tk l)]‘[rr,<j<,(x~‘Bj’)]. 
-- -- 

Finally, let P = P,,...,P, be a relational schema with 

supp(P) C {B,,-., BD}. Then the cardinality function 

OfPis 

The significance of the cardinality functions is 
given by: 

Lemma 4.1: Let P be a relational schema with support 

J$(P)I = 2v 

The following characterization of absolute 
dominance is now immediate: 

Theorem 4.2: Let P and Q be ,relational schemata. 
Then P 5 Q (abs) iff there b some t 2 0 such that 

f,(?) _< f&) for each x’with xi 2 t (1 5 j 5 n). 

The above result provides an easy mechanism for 
showing that calculous dominance does not hold in many 
cases. For example, the following corollary yields the 
intuitive conclusion that a relation with two NAME 
columns and one NUMBER column is not query- 
dominated by a relation with one NAME column and 
two NUMBER columns. 

Corollary 4.3: AAB $ ABB (abs), and hence AAB $ 

ABB (talc). 

It is clear that the technique of the above proof 
can be applied in many situations to infer that one 
schema is not calculously dominated by another one. 

We now turn to tde second major result of the 

section, namely a characterization of internal 
dominance. In particular, this result shows that internal 
dominance is equivalent to a cardinality condition which 

is similar in spirit to the definition of absolute 
dominance. To state the result we need: 

Thus, instances in P(Y,Z) involve all the symbols 

of Y - Z, and no symbols outside of Y. Note thzit for 
each P and Y, P(Y,Y) = Iy(P). 

We now have: 

Theorem 4.4: Let P and Q be schemata. Then P j 
Q (int) iff there is. some finite Z E DOM such that 

(P(Y,Z)I 5 IQ(Y,Z)l for each finite Y > Z. 

We now turn to the third major result of the 
section, which shows t,hat there are examples where 
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absolute and internal dominance hold, but generic and 

hence calculous dominance do not. The general proof 

technique used to show that generic dominance does not 
hold is of interest, because it provides one of the few 
known methods for demonstrating that one schema is 
not calculously dominated by another one, even though 
absolute dominance holds. 

Proposition 4.5: 

a. AI3 5 A4,BB (abs,int) butz2 AB i\ 

[AA]‘,[BB]” (gen,calc) for each n > 0; and 

b. A:BB 5 AB (abs, int) but A:BB $ AB (gen, 

talc). 

It remains open whether absolute and internal 
dominance can be distinquished in the present context, 
or whether generic and calculous dominance can be 
distinquished in the present context. With regard to the 
latt.er question, it is interesting to recall the result of [l] 
which states that the ,generic query operation of 
transitive closure (of a binary relation) is not realizable 
by any calculus expression. In other words, the notions 
of generic and calculous can be distinquished in the 
context of query operations. 

Returning to general results, we now present 
several sufficient conditions for inferring dominance of 
one sort or another. The first result presents cases 
where the existence of one transformation (from P to Q) 
rather than two (both from .P to Q and back) are 
needed. The techniques used to prove this theorem are 

quite general, and so it appears that these results also 
hold in more general database models. In particular, 
both parts of this theorem hold in the Format Model 1201 
(assuming that the definition of family of instances used 
there is modified in analogy to the definition used here). 
It remains open whether the theorem also holds for 

calculous dominance. 

Theorem 4.6: Let P and Q be schemata. Then 

a. P 5 Q, (gen) iff there is a finite set Z C 
DOM and a 1-l Z-generic transformation 
o:P -+ Q. 

22 If R is a specifier and k 1 0, then [Rlk denotes the schema 
with k occurrences of R. 

b. P 5 Q (int) iff there is a finite set Z c 
DOM and a l-l Z-internal transformation 
o:P + Q. 

The next result examines the impact of changing 
the basic types occurring in schemata. Speaking 

informally, the result states that dominance is preserved 
by re-namings of basic types (even if different basic 
types are identified by the renaming.) For this result 
we use: 

Definition: A homomorphism (on 8) is a function h:B 
+ 8. If h is a homomorphism and R is a non-keyed 
specifier, then h(R) denotes the non-keyed specifier U 
where U(A) = C,,(B)=AR(B) for each basic type A. If R 
and S are non-keyed specifiers then h(R:S) = h(R):h(S), 
and if P = P,,...,P, is a schema then h(P) = 

V’J,...,W’,). 

Theorem 4.7: Let P and Q be schemata, and h a 

homomorphism on 8. If P 5 Q (xxx) then h(P) 5 

h(Q) (xxx), where ‘xxx’ ranges over ‘talc’, ‘gen’, lint’, 

and labs’. 

The converse of this result does not hold for any of 

the types of dominance, since ABB $ AAB (xxx) (by 

Corollary 4.3) but AAA 5 AA4 (xxx), where ‘xxx’ 
ranges over each of the four types of dominance. 

We conclude the section with three relatively 
simple results for inferring dominance between two 
schemata, given dominance by two other schemata. 
Each demonstrates the preservation of dominance under 

a kind of ‘additivity’. 

Proposition 4.8: Let P, Q, and R be schemata. 

Then 

a. P 5 Q (xxx) + RP -( RQ (xxx), where 

‘xxx’ ranges over ‘talc’, ‘gen’, and lint’; and 

b. P 5 Q (abs) H RP 5 RQ (abs). 

CoroIlary 4.8: Let P, Q, R, and S be schemata, with 

P 5 Q (xxx) and R -< S (xxx). Then PR 5 QS (xxx), 
where ‘xxx’ ranges over ‘talc’, ‘gen’, ‘hit’, and ‘abs’. 

Proposition 4.10: Let R, S, U, V’ and T be non-keyed 

specifiers. Then 
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a. R:S -< u:V (xxx) 3 TR:S 5 TU:V (xxx), 

where ‘xxx’ ranges over ‘caic’, ‘gen’, and 

‘int’; and 

b. R:S 5 U:V (abs) H TR:S -( TU:V (abs). 

It remains open whether the converse of part (a) ot 

either of Propositions 4.8 or 4.10 holds for any of 
calculous, generic or internal dominance. 

5. Calculous Dominance vs. Semantic 
Correspondence 

In this section we present results which indicate 

that the notion of calculous dominance (and hence, 
query-dominance) does not accurately refl@ or measure 

the presence of ‘semantic correspondence* between 

schemata. Our first result, Theorem 5.1, characterizes 
calculous dominance between non-keyed relational 
schemata, where the dominating schema consists of a 
single specifier. This result implies that calculous 

dominance holds in a variety of counter-intuitive 
situations (see Example 5.2). The section concludes with 
a result which implies that each of the types of 
dominance is the same in the context of non-keyed 

relational schemata which involve only one basic type. 

For the first. result, we use the natural partial 

ordering of non-keyed specifiers, considered simply ps 

multi3et.s: 

Notation: For non-keyed specifiers R and S, write R c 

S if R(B) < S(B) for each B E 8. Write R C S if R c 

S and R(B) < S(B) for some B E 8. 

We can now state: 

Theorem 6.1: Let P = R,,...,R, be a non-keyed 
schema and S a non-keyed specifier. Then the following 

are equivalent: 

a. P 5 S (talc); 

‘b. P -( S (gen); 

c..P 5 S (int); 

d. P 5 S (abs); and 

e. either n = 1 and R, c S, or n > 1 and Ri 

C S for each j, 1 5 j 5 n. 

The following example illustrates the significance 
of this result. 

Example 5.2: Assume that a (large) set of NAME 
values and a (large) set of NUMBER-values is fixed 

(where there is no ordering or other predicate on either 
of these sets). Suppose further that a relation scheme R 
consists of 50 relations Ri, each of which has one column 
with NAME-values and two columns with NUMBER- 
values; and also 50 relations Sj, each of which has two 
columns with NAME-values and one column with 
h’UhlSER-values. Also, let T be a relation scheme with 
a single relation in it, where that relation has two 
columns for N-values and two columns for 
NUMBER-values.. By Theorem 5.1, R -( T (talc) and 
so R is query-dominated by T. Since it appears that 
there is no intuitively appealing, semantically 
meaningful 1-l mapping of instances of R to instances of 
T, this indicates that query-dominance does not 
accurately measure whether there is a *semantic* 
connection between pairs of schemata. cl 

We briefly consider a natural analog of Theorem 
5.1 for keyed specifiers. Specifically, suppose that the 
statement of the theorem were changed to allow keyed 
specifiers, and that condition (e) were changed to read 

@e&her n = 1 and P, 5 R (xxx), or n > 1 and both P. I 
5 R (xxx) and Pi # R for each i, 1 < i 5. nB (where 

‘xxx’ ranges over one (or more) of the four types of 
dominance). A counterexample to this modified version 
of the theorem is easily obtained. For example, it is 
easily verified that A:B -( A:BB (talc) (and hence for 
each of the types of dominance) but [A:B13 $ A:BB 
(abs) (and hence for none of them). 

The final result of this section concerns dominance 
bebween non-keyed schemaia which involve only one 

basic type. (Note that many of the early investigations 
of the relational calculus were essentially based on 
relational schemata of this type.) 

Theoiem 6.5: Let P and Q be non-keyed relational 
schemata over a single basic type B. Then the following 
are equivalent: 

a. P 5 Q (talc); 

b. P 5 Q ken); 
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C. P 5 Q (int); 

d. P 5 Q (abs); and 

e. the23 leading coefficient (as a polynomial) 01 
lQ(x) - l,(x) is a non-negative integer. 

It remains open whether the above result can be 
generalized to apply to pairs of relational schemata 
involving keyed specifiers. More specifically, while it is 
clear that, A:A 5 A2 (talc) and it can be shown that 
A:A2 5 A2 (talc), it is pnknown whether A:A 5 A2 

(talc) for each n 2 0. 

6. kquivalence implies Equality 

This section presents the result ‘that if P and Q 
are non-keyed schemata and they are equivalent under 
any 01 the notions 01 dominance, then P = Q (up to re- 
ordering). A corollary 01 this result (presented at the 
end of the section) implies that for any ‘natural. notion 
01 information capacity equivalence, a pair 01 non-keyed 
relational schemata are equivalent if and only if they are 
equal. This supports the intuition that in the relational 
model (with no dependencies) there is essentially at most 
one way to represent a given data set. It is interesting 
to note that a result of [ZO] concerning the Format 
Model provides contrast with the results mentioned here. 

In particular, it is shown there that two formats may be 
generically equivalent and yet be unequal.24 

We now have: 

Theorem 6.1: Let P and Q be non-keyed relational 
schemata. Then the following are equivalent: 

a. P - Q (talc); 

b. P - Q (gen); 

c. P - Q (int); 

d. P - Q’(abs); and 

e. P = Q. 

2’3Tbe leoding coe]licient of a polynomial of one variable is the 
cr*fficirat of the term baving the highest exponent. 

24 Furthermore, in [20), it is &own tbat two formats are 
gcncrically equivalent if and only il one can be formed horn the 
other using a MI of six natural, local, structural trandormations 

(called ‘reductions’) and tbeir inverses. 

While it appears that the above theorem can be 
generalized to keyed relational schemata, no proof is 
currently knoivn. 

The following corollary 01 Theorem 6.1 can be 
interpreted as a result concerning any ‘natural. notion 
01 relative information capacity dominance in the 
following sense: The corollary considers all ‘measures << 
which lie in the #region* between equality (i.e., 
isomorphism) and absolute dominance. Since we would 
expect any ‘natural’ measure 01 information capacity 
(which does not involve computation) to lie in this 

region, the corollary applies to all such ‘natural. 
measures. 

I 
Corollary 6.2: Let < be any binary relation on non- I 
keyed relational schemata such that for each pair P, Q 
01 schemata, 

:I , 

a. P < Q * P -( Q (abs); and 
::: 

b.P=Q*PPQ. 

Also, let x be defined so that P =: Q ill P < Q and Q 
< P. Then for each pair P, Q of schemata, P x Q ill 

P = Q. 

I 

7. Concluding remarks 

The model 01 relative information capacity 

introduced here can serve asepart 01 the foundation for 
the theoretical study 01 data relativism as it arises in a 
variety of database areas. While several interesting 
results have been reported above, the investigation also 
raises a number of important questions. In this section 
some of these are briefly mentioned. 

A major area demanding further investigation is to 
. 

seek measures 01 .relative informatIon capacity other 
than the ones presented here. For example, the results 
01 Section 5 indicate that none 01 the types 01 
dominance studied, here correspond closely to the 
intuitive notion 01 .semantic correspondence.. A more 

‘natural. measure might be obtained by modifying 
calculous dominance (and the other types as well) so 
ihat constants are not allowed. Alternatively, other 
‘abstract. properties 01 natural database 
transformations (such as being generic or internal) might 
be formalized and investigated. For example, a 

* transformation 0:P + Q can be called additive if for 
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each I and I’, we havez5 ~(1 U I’) = u(I) lJ u(r). 

Another direction is to consider a broader notion 
of information capacity which incorporates update 
capabilities. For example, suppose that some update 
language UL is fixed (e.g:, one consisting of all 
compositions of the primitive operations of delete one 
tuple, insert one tuple, and update one tuple). Defime P 

5 Q (UL) if (i) P 5 Q (talc) via calculus expressions t 
and w, and if (ii) whenever I E I(P) and p is an update in 
LZ of I then there is an update p’ in UL of ((I) such that 

$([(I)) = ((r(I)). This approach may give insight into 
the .view-update. problem. 

A third general area is to consider the various 
complexity issues raised by this investigation. For 
example, what is the complexity of deciding whether P 

5 Q (xxx)? If it is known, say, that P 5 Q (talc), then 
how hard is it to find a pair (,w of calculus expressions 
such that P 5 Q via (&w)? Finally, it is also important 

to examine the complexity of actually performing 4 and 
w on instances of P and Q, that is, to examine the ease 
of translating between these two schemata. 

A variety of other issues can be studied using the 

model of information capacity presented here. For 

example, it would be interesting to examine relative 
information capacity between schemata taken from 
database models besides ‘the relational one; and to 
examine relative information capacity between schemata 
P and Q, where P is taken from one model and Q from 
another (similar to [27]). Within the relational model, it 
would be useful to examine the impact of null values and 

new dependencies. 

Finally, a number of specific open questions are 

raised in this report. Most provacative, perhaps, is the 
question of whether the notions of calculous and generic 
dominance are actually coextensive in the context of 
relational schemata as defined here, or at least in the 
context of non-keyed relational schemata. The 
analogous questions for internal and absolute dominance 
are also of interest. As noted in Section 6, it remains 
open whether the result on equivalence (Theorem 6.1) 

2.5By U we mean coordinate-wise anion. Speaking inluilively, we 

ah view 1 U I’ M uadefined if any of the coordinate8 violate oue of 
lb? key dcpcadcacier built into the correspoudiog 8pccifie.r. 

can be extended to relational schemats with keys. 
Finally, simple characterizations of calculous, generic 
and internal dominance remain unknown. Indeed, there 
are simple questions about these types of dominance that 
remain unresolved. For example, if A is a basic type, 
what is the greatest value of n > 0 for 
AA (gen)? 
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