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Abstract

Fundamental notions of relative information
capacity between database structures are studied in the
context of the relational model. Four progressively less
restrictive formal definitions of ®*dominance® between
pairs of relational database schemata are given. Each of
these is shown to capture intuitively appealing,
semantically meaningful properties which are natural for
measures of relative information capacity between
schemata. Relational schemata, both with-and without
key dependencies, are studied using these motions. A
significant intuitive conclusion concerns the informal
notion of relative information capacity often suggested in
the conceptual database literature, which is based on
accessability of data via queries. Results here indicate
that this notion is too general to accurately measure
whether an underlying semantic connection exists between
database schemata. Another important result of the
paper shows that under any natural notion of information
capacity equivalence, two relational schemata (with no
dependencies) are equivalent if and only if they are
identical (up to re-ordering of the attributes and
relations). The approach and definitions used here can
form part of the foundation for a rigorous investigation of
a variety of important database problems involving data
relativism, including those of schema integration and
schema tranislation. '
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Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

‘ © 1984 ACM 0-89791-128-8/84/004/0097 $00.75

97

1. Introduction

A central issue in the area of databases is that of
data that is,
structuring the same data in different ways. Considerable

*relativism®, the general activity of

- effort hasbeen directed at understanding data relativism
- as it arises in the areas of user view construction [10},

view integration [18, 21, 31, 32, 39}, *derived® data
[17, 24, 33], schema *simplification® [8, 9, 24], translation
data models [7, 11, 12, 22, 25, 26, 27),

relational database normalization theory [4, 6, 13, 28, 40).

between and
A predominant theme in much of this work has been to
build new schemata from existing ones using various
structural manipulations [8, 18, 24, 31, 32, 39]. The new
schemata are intended to have equivalent information
capacity with the original schema, or to ®subsume® the
information capacity of the original schemata in some
sense. In these investigations there is typically no formal
definition- of the notions of equivalent or dominant
information capacity. The intuitively appealing approach
usually taken is to say the one schema is dominated by
another if any query directed at the first can be
translated into an equivalent query of the second
{7,8,13,17,24,31,32,3)]. (In addition, it is often
assumed ifnp]icitly that data structured according to the
first schema can be transformed into the second schema
by some ®nice® mapping, for instance, a fixed query
which maps instances of the first schema into instances of
the second.) We informally call this? *query-dominance®:

2This notion has its roots in the motion of B-equivelence

introduced by Codd [13), and a variant of query-dominance was used
to formally ipvestigate horizontal and vertical decomposition in 12}



The objective of the current paper is to introduce and
use simple but rigorous theoretical tools for studying this
and related measures of relative information capacity in
the very simple context of schemata from the relational
database model.3

The present investigation makes two fundamental
contributions. The first consists in several theoretical
results which yield conceptual insights into the area of
relative information capacity. For example, one result
(Theorem 5.1) indicates that the notion of query-
dominance described above does not correspond to a
natural, semantically meaningful type of information
capacity dominance. In particular, it appears that the
notion of query-dominance is too broad to accurately
measure whether an underlying semantic connection
exists between database schemata. A second result
(Corollary 6.2) shows that with virtually any reasonable
measure of relative information capacity, two relational
schemata without dependencies are equivalent if and
only if they are identical (up to re-ordering of the
This substantiates the

intuition that the relational model in the absence of

attributes and relations).

- dependencies does not provide enough data structuring
mechanisms to represent a given data set in more than

one way.

The second fundamental contribution of the paper
is to develop a solid mathematical foundation upon
which to base an extensive theoretical investigation of
relative information capacily between database
schemata. This foundation finds its roots in some early
work on query-dominance (usually in connection with
relational database normalization [2, 3, 13]), and in the
more recent, abstract work of [20]. In the present work,
notions from these earlier works (along with one new
one) are presented in a simple, rigorous manner and
shown to correspond to intuitive and significant

properties of natural measures of relative information

3The investigation here is fundamentally different than
investigations such as [5, 30] and [15] into the equivalence of
relational database schemes. The basic concern in [5, 30] is the
equivalence of two views of an underlying universal relation, where
the views are defined simply by projections. In [15] the focus is the

equivalence and dominance between relational views constructed .

from a given underlying relational scheme using projection and join.
In the current paper we do not restrict ourselves to views of of a
fixed underlying schema, nor to schema manipulation via projection
and join alone.

capacity. The approach here provides mechanisms for
studying relative information capacity using a variety of
different

mathematical

mathematical  techniques, including

logic, combinatorics, and finite
permutation group theory. Although the scope of the
current paper is somewhat limited, it is clear that the
definitions for measuring relative information capacity
presented here can be generalized to other contexts
within the relational model, and also to other database
models. Thus, the approach here can serve as. part of
the foundation for theoretical investigations of many

aspects of data relativism.

In the paper, four progressively less restrictive
formal measures of relative information capacity are
defined.* Suppose that P and Q are two relational
database schemata. Speaking informally, we say that Q
dominates P if there are functions ¢ and 7 such that (i) o

» maps the family of instances of P into the family of

98

instances of Q, (ii) r maps the family of instances of Q
into the family of instances of P, and (iii) the
composition of o followed by r is the identity on the
family of instances of P. Three of the measures of
information capacity are based directly. on this
fundamental notion, and are obtained by making certain
The first, called®
calculous dominance, is the measure which arises if &
and r are required to be (essentially) expressions of the
relational calculus. (It is known [3] that this notion is
equivalent to query-dominance, although easier to work
with.) The second notion, called generic dominance, is

less restrictive than calculous dominance and captures

restrictions on the maps ¢ and r.

‘the notion that ®natural® database transformations treat

domain elements as "essentially uninterpreted objects*
[1, 20]. (This is accomplished by requiring that ¢ and r
commute with essentially all permutations of the

4Tlle first of these, calculous dominance, has its roots in the
notion of "query equivalence® as described in [13], and a variant of
calculous dominance has been formally studied ir [2, 3]. Another
two of these measures, namely absolute and generic dominance,
were originally introduced jn the more general Format Model [20].
Generic dominance was also studied in [34]. :

5We choose to call this type of dominance "calculous® rather
than "algebraic®, because it appears that a definition based or the
first order predicate calculus is easier to generalize to other data
models than onme based on the relationally-based algebraic
operators. .



underlying set of basic domain elements.) The third
measure, internal domainance, (which is even less
restrictive) captures the intuitive notion that (at a
logical or level) "natural® database
transformations are not based on numeric computations
or string manipulations.6 This is accomplished by
requiring that ¢ and r do not *invent®" or "construct®
new domain elements (or data values) from the set of
domain elements already occurring in an instance {aside
from a finite set of data values, which corresponds to the
set of constants occurring in a relational expression).
The fourth measure, absolute dominance, is based on a
family of cardinality conditions implied by internal
dominance, and is relatively easy to work with.

conceptual

This report is an extended abstract of a full paper
by the same name [19]. .Complete proofs and additional
motivation for the results stated here are.presented in

[19]. This abstract is organized as follows. In Section 2
the slightly modified version of the relational model used
for this investigation is described. (The modification
allows us to easily express the fact that some attributes
of a relation share the same set of possible domain
values, while other attributes have fundamentally
distinct sets of possible domain values.) In Section 3 the
four measures of relative information capacity are
formally defined and motivated. Section 4 presents
some basic results concerning the four measures. Results
indicating that query-dominance does not accurately
measure the presence of semantic correspondence
between schemata are given in Section 5, and the result
concerning equivalent schemata is given in Section 6.
Concluding remarks are made in Section 7.

2. Relation Specifiers and Schemata

The purpose of this short section is to introduce
and motivate the slightly modified version of the
relational model that will be used in this investigation.
It is assumed here that the reader is familiar with the
fundamental concepts of the relational model [29, 38].
Since the focus here is different than that of most

ﬁThis potion highlights the fact that the current investigation is
concerned with "pure® database access and transforamtion
lanuguages, i.e., those which focus primarily on the data structures
provided by the database model.

99

investigations of this mode), the reader is warned that

we shall use sorhe'symbols here in a manner different
than found elsewhere.

Speaking informally, a fundamental premise of our
investigation is that the structure of relations is
determined primarily by two things: the number of
*columns® that a given relation has, and the sets of
possible values which can appear in each of these
columns. For example, if a column is intended to
contain salary data, then we would expect that only
positive integers are permitted as entries in that column,
whereas in a column for person-names we would expect
only names (or perhaps, alphabetic strings).” To formally
capture these ideas we establish a set of "basic types®
(or domain designators), along with a fixed domain of
possible values associated with each basic type:

Notation: Let B be a fixed countable set of bdsic

types.® Let the function Dom be defined on B such that

a. Dom(B), the domain of B, is a countably

infinite set of abstract symbols for each B €
B; and '

b. Dom(B) N Dom(C) = @ whenever B 3£ C.

The set DOM of all domain elements is the set
UgegDom(B).

In many cases, two or more columns of a relation
may have exactly the same domain (e.g., START-DATE
and END-DATE). For this reason, relations are
specified using (finite) sets of basic types, where each
basic type may occur more than once:

Definition: A non-keyed (relation) specifier is a° finite
multiset over B. The support of a non-keyed specifier R
is the set supp(R) = {B € B| R(B) > 0}.

"R. Fagin studied this notion using *domain dependencies® [16].
Also, R. Reiter bas studied this using the logic-based formalism of
*typed® databases [35, 36].

8We assume that there is a fixed, unspecified total order on B.

9A multiset over a set X is a total function MX — N (the
natural numbers). A multiset M is finite if {x € X | M(x) > 0} is

finite. If x € X then x is an element of M, denoted x € M, if M(x)
>0



While not all possible real-w‘orld relations can be
modeled within the framework that is being developed
here, the resuits obtained in this limited context are of
sufficient interest to warrant investigation; furthermore,
in this new area it is important to resolve simple
problems before tackling the more complicated ones.

We generally denote a non-keyed specifier by
listing its elements, with multiple occurrences where

For instance

AASVALLL,

annrnnnnfo
appropriate.

support {A,B,C} and R(A)=2, R(B)=1, and R(C)=3,
we denote R by AABCCC or A’BC3.

if R is a snecifier with
i X s 2 speciter with

Formally, (relational) instances are associated with
non-keyed specifiers as follows:

Definition: f R is a non-keyed specifier, an instance of
R is a finite subset of° XBEs“pp(R)(X?__(g)(Dom(B))). The
family of instances of R is denoted I(R).

We now extend our notation to include one key
_ dependency per relation. Key dependencies, especially

in the case of one key dependency per releation, are

fundamental to many semantic data models, including

the functional data model [23,37] and the entity-

relationship model [11]. Key dependencies are

incorporated into our notation in the following

convenient manner:

Definition: A keyed (relation) specifier is an ordered
pair (R,S) of multisets over B, usually written as R:S.
The support of R:S, supp(R:S), is!' supp(RS). An
instance of R:S is a total function from an instance I of
R to XBEs“pp(s)(Xl_l(Dom(B))) (We typically view such
instances as if they are members of I(RS), i.e., as finite
sets of ordered tuples.) The family of instances of a
keyed specifier R:S is denoted I(R:S).

Note that a non-keyed specifier R can be viewed as
the keyed specifier R:0.

0we view Cartesian products such -as this one as “flattened®,
that is, we view this product as a single product of subsets of DOM
rather than as a product of products of subsets of DOM.
Furthermore, we view the columns of this product to be ordered by
the context of the discussion. If no order is specified by that
context, then the underlying ordering on B is used.

nlf L and M are multisets over X then their union, LU M, is .

the multiset K such that K(x) = L(x) + M(x) for each x € X.
Following relational tradition, if R and S are non-keyed specifiers,

we denote their uniqn R U S by RS.
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Speaking informally, a relation scheme consists of
one or more relations, some of which may share the
same underlying (c(;lumn) structure. For this reason, we
formally define a relation schema to be a multiset of
relation specifiers:

Definition:'> A (relational) schema is a finite

multiset!® P = Pl,P2,...,Pn of relation specifiers. The

supporl of P is the set supp(P) = !'_lsupp(Pj).
instance of P is an element of ' I(P) = X;‘__II(Pj). It P;
is non-keyed for 1 < j € n, then P is a non-keyed

relational schema.

As an aside, we note that the collection of non-

arraennnde
\'vl a wy\lu o

precisely, in the termmology of the Format Model [20],
to the collection of formats which are constructed using

‘ra\vor‘ rola |
AUyTU JTiaul

a composition of one or more subformats, each of which
is a collection of a composition of one or more basic
types (except that here we do not associate "tokens®
with the various components of our relational schemata).

Finally, we (briefly) mention the version of the
relational calculus used here. (Further details are given
in [19].) We assume that the reader is familiar with the
calculus as described in [14, 29, 38]).

investigation we use, in the terminology of {38], the

In the current
domain relational calculus in the sense that the
variables and constants in our calculus range over
individual domain elements. In keeping with our
definition of basic types and the fact that their
associated domains are- disjoint, we assume that each
(domain-value) variable occurring in our calculus
expressions is associated with a given basic type.
P and Q
= Q-Qy 2 (relational) calculus expression from P
to Q is an n-tuple ¢ = (¢;,..,€) where § is a

Finally, given relational schemata P = P,,...,

12\e use the term ‘schema’ here to distinquish it from the usual
notion of a relational ‘scheme’, where a set of attributes as opposed -
to a multiset of basic types is specified for each relation |29, 38].

13When listing the occurrences of elements in a schema we

separate them by commas to avoid ambiguities. (For example,

A B2 denotes a schema with two specifiers, while AzB denotes a
single specifier (or a schema with one specifier in it).)

Mpiements of I(P) are n-tuples (thus, we do not view this
product as "flattened®); and as before the order of the coordinates
in this product are given by the context of the discussion, or if no
such order is determined, by some unspecified but fixed ordering.



(conventional) calculus expression which takes as input
an instance of P and yields as output an instance of Qi

(1 € j € n). In this case we write &P — Q.

3. Four Measures of Relative Information
Capacity

In this section the four measures of relative
information capacity are introduced and motivated. As
noted in the Introduction, the first of these, calculous
dominance, has its roots in the motion of *query
equivalence® as described in {13}, and a variant of it has
been formally studied in [2, 3]. As will be seen, this
notion is equivalent to the notion of query-dominance
described in the Introduction, but is easier to work with.
Two other measures of relative information capacity,
pamely absolute and generic dominance, were originally
introduced in the more general Format Model [20], and
generic dominance was also studied in [34]. Finally, the
notion of internal dominance is a new notion which is
based solely on the intuition that natural database
transformations do not *invent® or ®construct® new
domain elements from old ones. The section concludes

with a result stating that the four measures of
information capacity are progressively less restrictive.

To begin the formal discussion, we present a
notion fundamental to our approach:

Definition: Let P and Q be relational schemata. A
(schema) transformation from P to Q is a map o:I(P)
= I(Q). In this case we write P — Q.

Note that a caleculus expression &P — Q can be
viewed as a transformation.

) In the spirit of (2, 3, 13, 20), we define relative
information capacity using a pair of transformations, the
composition of which forms the identity on the
dominated family of instances:

Definition: Let P and Q be schemata, and let P —
Q and nQ — P. Then Q dominates P via (o,7),
denoted P < Q via (o,7), if 700 (i.e., the composition of ¢
followed by 7) is the identity on I(P).

Suppose that P < Q via (o,7). This means that

information structured according to P can be
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restructured (via o) to *fit* into Q, and restructured
again (via 7) to *fit" into P, in such a way that the
result is the same as the original. This suggests that Q
has at least as much capacity for storing information as

does P.

The first of our measures is based on restricting
the class of permissable database transformations to be
calculus expressions. We note that the notion in [2] of
one schema being tncluded in a second one is the same
as our notion here of calculous dominance, except that
in their formal investigation the query language used
includes only the operations of projection, selection, join
and union, which does not have the full power of the
relational calculus. (For example, set difference cannot
be realized using these operators).

Definition: Let P and Q be schemata. Then Q
dominates P calculously, denoted P < Q (calc), if
there is a pair of calculus expressions &P — Q and w:Q
— P such that P < Q via (¢w). P and Q are
caleulously equivalent, denoted P ~ Q (cale), H P < Q
(calc) and Q < P (cale).

It is easily verified that calculous dominance is
transitive and reflexive, and that calculous equivalence is
an equivalence relation.

To compare the notion of calculous dominance as
just defined with the notion of query-dominance
described in the Imtroduction, we present a formal
definition of query-dominance for the current setting:

Definition: Let P and Q be schemata. Then Q query-
dominates P if there is a calculus expression pP — Q
such that for each relation specifier R and each calculus
expression o:P — R, there is a calculus expression $:Q
— R such that a« = Bop.

The next result formally states the equivalence of
calculous dominance and query-dominance.

Proposition 3.1 [3,13]: Let P and Q be schemata.
Then Q query-dominates P iff P < Q (calc).

There are two advantages to the definition here of
calculous dominance over the definition of query-
dominance. First, calculous dominance is easier to work
with because it involves only two calculus expressions (as



- database

opposed to infinitely many). Second, as will be seen
the form of the
dominance is easily generalized to provide a variety of

shortly, definition of calculous

techniques for studying it.

The second measure of relative information
capacity, called *generic dominance,® is somewhat more
general than calculous dominance, and is useful in
showing that one schema does not calculously dominate
another (see Proposition 4.5 below). Generic dominance
formally captures an intuitively natural restriction on
that
treat data values as

. transformations,  namely any
transformation used should °...
essentially uninterpreted objects ...* [1, 20]. (However,
we do allow our transformations to use a bounded
number of domain elements as ®constants®, which
correspond intuitively to the cobstants occurring in
As in [20], to define generic

dominance we first formalize this property of genericity:

calculus expressions.)

Definition: Let Z C DOM. A Z-permutation (of
DOM) is a function mDOM — DOM such that

a. n(z) = z for each z € Z, and

b. the restriction of = to Dom(B) is a 1:1 onto

function from Dom(B) to Dom(B) for each B
€8

A transformation o:P — Q is Z-generic if for each Z-
permutation » and each!® instance I of P, xeo{I} = oox(])
(i.e., o and = commute on KP}).

Speaking informally, a Z-permutation = leaves Z
fixed, and the restriction of = to Dom(B) is a
permutation of Dom(B) for each basic type B. And,
. again speaking informally, a transformation is Z-generic
if for each B € B it treats all elements of Dom(B) - Z as
*equals®.

It is easily verified that

Lemma 3.2: Let P and Q be schemata, &P — Q be a
calculus expression, and let Z be the set of constants
occurring in §. Then ¢ is a Z-generic transformation.

Following [20), generic dominance is now defined -

15Permutations on DOM are extended to families of instances in
the patural manner.
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by requiring that the transformations ¢ and - which
restructure data be generic.

Definition:!® Let P and Q be schemata. Then Q
dominates P generically, denoted P < Q (gen), if there
is a finite Z C DOM and Z-generic transformations o:P
— Q and 2Q — P such that P X Q via (¢,7). P and
Q are generically equivalent, denoted P ~ Q (gen), if P
< Q (gen) snd Q < P (gen).

As with caleulous dominance and equivalence, it is
easily verified that generic dominance is reflexive and
transitive, and that generic equivalence is an equivalence
relation.

Generic dominance is of particular importance
because it is independent of any data-access language,
but captures a property of all such languages discussed
in the literature.l” (For example, each query in the
language consisting of the relational algebra plus the
least-fixed point operator is generic although this
language is strictly stronger than the relational algebra
or caleulus [1].) Thus, results stating that one schema is
not generically dominated by another can be used to
support an intuitive claim that the first schema is not
query-dominated by the other, where any natural query
language is being used. '

Our third measure of relative information capacity
is more general than generic dominance, and focuses on
the natural property that database transformations (at
least, those used for restructuring data sets) are not
typically based on numerical computations or string
manipulations, and thus do not typically ®invent® data
values. (For example, a mapping which encodes the pair
(i,j) of integers into the single integer 2137 is based on a
computation, and in essence *invents® the value 2i3j.)

Bwhile technically different than the original definition of
generic dominance given in [20], it can be verified that the notion
used bere and the original motion are equivalent in the current
context. :

'17As noted earlier, this investigation is concerned only with
*pure® database query or transformation languages which do mot
encompass numeric computation or string manipulation.



-To formally capture this property of not inventing
data elements, we first need:

Definition: Let I be an instance of a relation schema.
Then the set of symbols of I, denoted Sym(I), is the set
of elements of DOM which occur in L.

In the we allow each given
transformation to a (finite) set of data
elements, these corresponding intuitively to the set of

constants that might occur in a calculus expression.18

following
®invent®

Definition: Let Z C DOM. A transformation &P —
Q is Z-internal if Sym(o(I)) € Sym(I) U Z for each 1 €
I(P).

Note that if ¢ is Z-internal for some finite Z and
Sym(I) D Z, then Sym(oI)) C Sym(I). As implied by
the following result, each Z-generic transformation is Z-
internal. (And by Lemma 3.2, each calculus expression
is Z-internal for some finite Z.)

Lemma 3.3: Let P and Q be schemata, Z C DOM,
and o:P — Q be Z-generic. Then o is Z-internal.

We now have:

Definition: Let P and Q be schemata. Then Q
dominates P internally, denoted P < Q (int), if there
is a finite Z C DOM and Z-internal transformations o:P
~— Q and =Q — P such that P < Q via (0,7). P and
Q are inlernally equivalent, denoted P ~ Q (int), if P
< Q (int) and Q < P (int).

As Dbefore, internal dominance is reflexive and
transitive, and internal equivalence is an equivalence
relation.

Our final measure of relative information capacity
ddes not have the form of the other three, and is more
genera] than all of them. The primary advantage of this
" final measure is that it is easily characterized in terms of
the cardinalities of certain families of instances (see
Theorem 4.2), and is therefore relatively easy to work
with.

18,6 noted in Section 7, it would also be interesting to study
p-internal transformations, i.e., transformations which do not
*invent® any domain elements at all.
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To define this type of dominance we need:

Notation: Let P be a relation schema and Y C
DOM. Then I,(P) = {1€I(P)|Sym(l) C Y }.

~ Suppose now that o:P — Q is Zinternal and Y D
Z. Then for each 1 € I,(P), o) € I/(Q). In other
words,'? o[L (P)] C 1(Q). Finally, if P < Q via (0,7)
where o and r are Z-internal, then ¢ is 1-1 and so?°

[1y(P) | < |1,(Q) | for each Y D Z. This motivates:

Definition:?! Let P and Q be schemata. Then Q
dominales P absolutely, denoted P < Q (abs), if there
is a finite Z C DOM such that | I(P) | < | I(Q) | for

each (finite) Y D Z. P and Q are absolutely equivalent,
denoted P ~ Q (abs), f P < Q (abs) and Q < P
(abs).

We conclude the section by stating that each of
the formal measures .of relative information capacity
introduced above are indeed progressively less
restrictive, in the sense that if P is dominated by Q
according to one the the measures, then P is dominated

by Q according to each of the subsequent measures:

Theorem 3.4: Let P and Q be schemata. Then P <
Q (cale) implies P < Q (gen); P < Q (gen) implies P
=< Q (int); and P < Q (int) implies P < Q (abs).

As we shall see, the converse of each of these
implications is also true for non-keyed relational
schemata P and @ where Q consists of only one relation
specifier (Theorem 5.1), and for non-keyed relational
schemata involving only one basic type (Theorem 5.3).
However, if Q contains more that one specifier, or if key
dependencies are incorporated, then at least one of these.
converse implications fails (Proposition 4.5.)

199 .M — N and K C M, then f[K] denotes { f{k) |k €K }.
201 X is a set then |X| denotes the cardinality of X.

2lwhile technically different than the original definition of
absolute dominance given in [20], it is easily verified that the notion
used here and the original notion are equivalent in the current
context.



4. Some Basic Results

In this section we present several basic results
the
dominance defined above.

concerning notions of information capacity
The first result gives a
characterization of absolute dominance in terms of
certain functions. A simple application of this result is
given to indicate how it can be used to show that
calculous dominance does not hold, and this result is also
used as the basis for Theorem 6.1. The second major
of the
characterization of internal dominance. The third major
result (Proposition 4.5) shows that absolute and internal

dominance are different from generic and calculous

result section (Theorem 4.4) gives a

dominance, and illustrates a technique for showing that
generic dominance does not hold. The section concludes
with a number of results giving sufficient conditions for
' Most
important of these is Theorem 4.7, which concerns

dominance (of one sort or another) to hold.

schemata constructed from other schemata through “re-
pamings® of the basic types used.

The functions needed for the characterization of

absolute dominance are now presented.

Definition: Let R be a non-keyed relation specifier and
let B,,...B, be an enumeration of the basic types in
supp(R) (and possibly some other basic types). Then the
cardinality function of R (relative to this enumeration)
is the polynomial f:N® — N where

R(B.)
fR(ﬂ = nlSan(xj ¥).

Now suppose that R is the keyed specifier S:T and
supp(R) C {Bl""’Bn}' Then the cardinalily function
of R js

fR(;) = [1052((n15jsnx;r(85)) + l)]~[HlSan(x;5(Bj))].
Finally, let P = P,..,P_ be a relational schema with

supp(P) C {B,,...B,}. Then the cardinality function
of Pis

fp(’-a = EléiSW(fPi(ﬂ)' .

The - significance of the cardinality functions is
given by:

Il

Lemma 4.1: Let P be a relational schema with support
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contained in Bl""’Bn’ and let Y C DOM be a finite set
with [Y N Dom(Bj)I = X; 1< j<n Then

15 (%)
y(P) =2F""

The characterization of absolute

dominance is now immediate:

following

Theorem 4.2: Let P and Q be relational schemata.
Then P < Q (abs) iff there is some t > 0 such that

Ip(¥) < fQ(I) for each ¥ with x; > t (1 < j < n).

The above result provides an easy mechanism for
showing that calculous dominance does not hold in many
cases. For example, the following corollary yields the
intuitive conclusion that a relation with two NAME
columns and one NUMBER column is not query-
dominated by a relation with one NAME column and

two NUMBER columns.

Corollary 4.3: AAB £ ABB (abs), and hence AAB £
ABB (calc).

It is clear that the technique of the above proof
can be applied in many situations to infer that one
schema is not calculously dominated by another one.

We now turn to the second major result of the
characterization of
dominance. In particular, this result shows that internal

section, npamely a internal
dominance is equivalent to a cardinality condition which
is similar in spirit to the definition of absolute

dominance. To state the result we need:

Notation: Let P be a schema, and let Y and Z be finite
subsets of DOM. Then P(Y,Z) denotes { I € I(P) | Y
-ZCSym() CY}.

Thus, instances in P(Y,Z) involve all the symbols
of Y ~ Z, and no symbols outside of Y. Note that for
each P and Y, P(Y,Y) = 1,(P).

We now have:

Theorem 4.4: Let P and Q be schemata. Then P <
Q (int) iff there is. some finite Z C DOM such that
|P(Y,Z)] < |Q(Y,Z)] for each finite Y D Z.

We pow turn to the third major result of the
section, which shows that there are examples where



absolute and internal dominance bold, but generic and

hence calculous dominance do not. The general proof

technique used to show that generic dominance does not

hold is of interest, because it provides one of the few .

known methods for demonstrating that one schema is
not calculously dominated by another one, even though
absolute dominance holds.

Proposition 4.5:

a.AB < AABB (absint) but?? AB
[AA]",[BB]" (gen,calc) for each n > 0; and

b. A:BB < AB (abs, int) but A:BB £ AB (gen,

cale). :

It remains open whether absolute and internal
dominance can be distinquished in the present context,
or whether generic and calculous dominance can be
distinquished in the present context. With regard to the
latter question, it is interesting to recall the result of [1]
which states that the generic query operation of
transitive closure (of a binary relation) is not realizable

by any calculus expression. In other words, the notions
of generic and calculous can be distinquished in the

context of query operations.

Returning to general results, we now present
several sufficient conditions for inferring dominance of
one sort or another. The first result presents cases
where the existence of one transformation {from P to Q)
rather than two (both from P to Q and back) are
needed. The techniques used to prove this theorem are
quite general, and so it appears that these results also
hold in more general database models. In particular,
both parts of this theorem hold in the Format Model [20]
(assuming that the definition of family of instances used
there is modified in analogy to the definition used here).
It remains open whether the theorem also holds for
calculous dominance.

Theorem 4.6: Let P and Q be schemata. Then

a. P < Q (gen) iff there is a finite set Z C
" DOM and a 1-1 Z-generic transformation

oP — Q.

¥ Risa specifier and k > 0, then IR]k denotes the schema
with k occurrences of R.

b.P < Q (int) iff there is a finite set Z C
DOM and a 1-1 Z-internal transformation

P — Q.

The next result examines the impact of changing
the basic types occurring in schemata. Speaking
informally, the result states that dominance is preserved
by re-namings of basic types (even if different basic
types are identified by the re-naming.) For this result

we use:

Definition: A homomorphism {on B) is a function h:B
— B. Ifhisa homomorphism and R is a non-keyed
specifier, then h(R) denotes the non-keyed specifier U
where U(A) = Eh(B)= AR(B) for each basic type A IIR
and S are non-keyed specifiers then h(R:S} = h(R):h(S},
and if P = P,,.,P  is a schema then h(P) =
h(P,),....h(Py).

Theorem 4.7: Let P and Q be schemata, and h a
homomorphism on B. If P < Q (xxx) then h(P) <
h(Q) (xxx), where ‘xxx’ ranges over ‘calc’, ‘gen’, ‘int’,

and ‘abs’.

The converse of this result does not hold for any of
the types of dominance, since ABB £ AAB (xxx) (by
Corollary 4.3) but AAA =< AAA (xxx), where ‘xxx’
ranges over each of the four types of dominance.

We conclude the section with three relatively
simple results for inferring dominance between two
schemata, given dominance by two other schemata.
Each demonstrates the preservation of dominance under

a kind of *additivity".
Proposition 4.8: Let P, Q, and R be schemata.
Then

a.P < Q (xxx) = RP < RQ (xxx), where

‘xxx' ranges over ‘calc’, ‘gen’, and ‘int’; and
b. P < Q (abs) & RP < RQ (abs).

Corollary 4.9: Let P, Q,R,and 8 be schemata, with
P < Q(xxx) and R X S (xxx). Then PR < QS (xxx),
where ‘xxx’ ranges over ‘calc’, ‘gen’, ‘int’, and ‘abs’.

Proposition 4.10: LetR, S, U, V and T be non-keyed
specifiers. Then



a. RS < UV (xxx) = TR:S < TU:V (xxx),
where ‘xxx' ranges over ‘calc’, ‘gen’, and

‘int’; and
b. R:S < U:V (abs) & TR:S <X TU:V (abs).

It remains open whether the converse of part (a) of
either of Propositions 4.8 or 4.10 holds for any of
calculous, generic or internal dominance.

5. Calculous Dominance vs. Semantic
Correspondence

In this section we present results which indicate
that the notion of calculous dominance (and hence,
query-dominance) does not accurately reflect or measure
the presence of ®semantic correspondence® between
schemata. Our first result, Theorem 5.1, characterizes
calculous dominance between nobn-keyed relational
schemata, where the dominating schema consists of a
single specifier. This result implies that calculous
dominance holds in a variety of counter-intuitive
situations (see Example 5.2). The section concludes with

a result which implies that each of the types of
dominance is the same in the context of non-keyed
relational schemata which involv_e only one basic type.

For the first result, we use the natural partial
ordering of non-keyed specifiers, considered simply as
multisets:

Notation: For non-keyed specifiers R and S, write R C
S if R(B) < S(B) for each B€ B. WriteR C SifR C
S and R(B) < S(B) for some B € 8.

We can now state:

Theorem 5.1: Let P = Rl""’Rn be a non-keyed
schems and S a non-keyed specifier. Then the following

are equivalent:
a P < § (cale);
b. P < S (gen);
c¢. P < S (int);
4. P < S (abs); and
e.eithern =1and R, C S,orn > 1and R,
C S for each j, 1 _<_'j <n
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The following example illustrates the significance
of this result,

Example 5.2: Assume that a (large) set of NAME-
values and a (large) set of NUMBER-values is fixed
(where there is no ordering or other predicate on either
of these sets). Suppose further that a relation scheme R
consists of 50 relations Ri’ each of which has one column
with NAME-values and two columps with NUMBER-
values; and also 50 relations Sj, each of which has two
columns with NAME-values and one column with
NUMBER-values. Also, let T be a relation scheme with -
a single relation in it, where that relation has two
columns for NAME-values and two columns for
NUMBER-values.. By Theorem 5.1, R < T (calc) and
so R is query-dominated by T. Since it appears that
there is no intuitively appealing, semantically
meaningful 1-1 mapping of instances of R to instances of
T, this indicates that query-dominance does not
accyrately measure whether there is a ®semantic®

]

conpection between pairs of schemata.

We briefly consider a natural analog of Theorem
5.1 for keyed specifiers. Specifically, suppose that the
statement of the theorem were changed to allow keyed
specifiers, and that condition {e) were changed to read
*either n = 1 and P; < R (xxx), or n > 1 and both P,
< R (xxx) and P, R for each i, 1 < i < n* (where
‘xxx' ranges over one (or more) of the four types of
dominance). A counterexample to this modified versioni
of the theorem is easily obtained. For example, it is
easily verified that A:B < A'BB (calc) (and hence for

each of the types of dominance) but [A:B]> £ A:BB
(abs) (and hence for none of them).

The ﬁna{ result of this section concerns dominance
between non-keyed schemata which involve only one
basic type. (Note that many of the early investigations
of the relational calculus were essentially based on
relational schemata of this type.)

Theorem 5.3: Let P and Q be non-keyed relational
schemata over a single basic type B. Then the following
are equivalent: o

a. P < Q(cale);

b. P < Q (gen);



c. P < Q (int);
d. P < Q (abs); and

e. the?® leading coefficient (as a polynomial) of
fq(x) - fp(x) is 2 non-negative integer.

It remains open whether the above result can be
generalized to apply to pairs of relational schemata
involving keyed specifiers. More specifically, while it is
clear that A:A < A? {calc) and it can be shown that
A:A% < A? (cale), it is unknown whether A:A® < A2
(calc) for eachn > 0.

6. Equivalence implies Equality

This section presents the result that if P and Q
are non-keyed schemata and they are equivalent under
any of the notions of dominance, then P = Q (up to re-
ordering). A corollary of this result (presented at the
end of the section) implies that for any "natural* notion
of information capacity equiva]encé, a pair of non-keyed
relational schemata are equivalent if and only if they are
equal. This supports the intuition that in the relational
model (with no dependencies) there is essentially at most
one way to represent a given data set. It is interesting
to note that a result of {20] concerning the Format
Model providés contrast with the results mentioned here.
In particular, it is shown there that two formats may be
generically equivalent and yet be unequal.z4

We now have:

Theorem 6.1: Let P and Q be non-keyed relational
schemata. Then the following are equivalent:

a. P~ Q (cale);

b. P ~ Q (gen);
c. P ~ Q (int);

d. P ~ Q:(abs); and
e.P=Q.

23The leading coef[icient of a polynomial of one variable is the
coefficient of the term having the highest exponent.

24Funhermore, in [20], it is shown that two formats are
geoerically equivalent if and only if one can be formed from the
other using 2 set of six natural, local, structural transformations
(called ®reductions®) and their inverses.
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While it appears that the above theorem can be
generalized to keyed relational schemata, no proof is
currently known.

The following corollary of Theorem 6.1 can be
interpreted as a result concerning any "natural® notion
of relative information capacity dominance in the
following sense: The corollary considers all measures &
which lie in the ®region®* between equality (i.e.,
isomorphism) and absolute dominance. Since we would
expect any ®natural® measure of information capacity
(which does not involve computation) to lie in this

region, the corollary applies to all such “natural®

measures.

Corollary 6.2: Let < be any binary relation on non-
keyed relational schemata such that for each pair P, Q
of schemata,

a. P Q=P < Q(abs); and

bP=Q=P<KQ.
Also, let <X be defined sothat P < Q Hf P € Q and Q
& P. Then for each pair P, Q of schemata, P =< Q iff
P = Q.

7. Concluding remarks

The model of relative information capacity
introduced here can serve as-part of the foundation for
the theoretical study of data relativism as it arises in a
variety of database areas. While several interesting
results have been reported above, the investigatidn also
raises a number of important questions. In this section
some of these are briefly mentioned.

A major area demanding further investigation is to
seek measures of .relative information capacity other
than the ones presented here. For example, the results
of Section 5 indicate that none of the types of
dominance studied here correspond closely to the
intuitive notion of ®semantic correspondence®. A more
*natural® measure might be obtained by modifying
calculous dominance (and the other types as well) so
that constants are not allowed. Alternatively, other
‘natural database

transformations (such as being generic or internal) might

*abstract® properties of

be formalized and investigated. For example, a

transformation o:P — Q can be called additive if for

T}
Y



each I and I, we have®® o1 U T) = o{I) U ofI).

Another direction is to consider a broader notion
of information capacity which incorporates update
capabilities. For example, suppose that some update
language UL is fixed (e.g;, ome consisting of all
compositions of the primitive operations of delete oné
tuple, insert one tuple, and update one tuple). Define P
< Q (UL)if (i) P < Q (calc) via calculus expressions ¢
and w, and if (ii) whenever I € I(P) and p is an update in
UL of I then there is an update 4’ in UL of ¢(I) such that
£(¢(1)) = ¢(p(1)). This approach may give insight into
the "view-update® problem.

A third general area is to consider the various
For
example, what is the complexity of deciding whether P
=< Q (xxx)? If it is known, say, that P < Q (cale), then
bow hard is it to find a pair ¢w of calculus expressions
such that P < Q via (¢w)? Finally, it is also important
tb examine the complexity of actually performing ¢ and
w on instances of P and Q, that is, to examine the ease

complexity issues raised by this investigation.

of translating between these two schemata.

A variety of other issues can be studied using the
For

example, it would be interesting to examine relative

model of information capacity presented here.

information capacity between schemata taken from
database models besides the relational onme; and to
examine relative information capacity between schemata
P and Q, where P is taken from one model and Q from
another (similar to [27]). Within the relational model, it
would be useful to examine the impact of null values and
new dependencies.

Finally, a number of specific open questions are
raised in this report. Most provacative, perhaps, is the
question of whether the notions of calculous and generic

" dominance are actually co-extensive in the context of

relational schemata as defined here, or at least in the
context of non-keyed relational schemata. The
analogous questions for internal and absolute dominance
are also of interest. As noted in Section 6, it remains

open whether the result on equivalence (Theorem 6.1)

25 ; . .
By U we mean coordinate-wise union. Speaking intuitively, we

also view 1 U I’ as undefined if any of the coordinates violate one of
the key dependencies built into the corresponding specifier.
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can be extended to relational schematz with keys.
Finally, simple characterizations of calculous, generic
and internal dominance remain unknown. Indeed, there
are simple questions about these types of dominance that
remain unresolved. For example, if A is a basic type,
what is the greatest value of n > 0 for which A:A" <
AA (gen)?
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