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Abstract

Different notions of provenance for database queries have been pro-
posed and studied in the past few years. In this article, we detail three
main notions of database provenance, some of their applications, and
compare and contrast amongst them. Specifically, we review why, how,
and where provenance, describe the relationships among these notions
of provenance, and describe some of their applications in confidence
computation, view maintenance and update, debugging, and annota-
tion propagation.



1
Introduction

Provenance information describes the origins and the history of data
in its life cycle. Such information (also called lineage) is important to
many data management tasks. Historically, databases and other elec-
tronic information sources were trusted because they were under cen-
tralized control: it was assumed that trustworthy and knowledgeable
people were responsible for the integrity of data in databases or repos-
itories. As argued by Lynch [49], this assumption is no longer valid for
online data. Today, data is often made available on the Internet with
no centralized control over its integrity: data is constantly being cre-
ated, copied, moved around, and combined indiscriminately. Because
information sources (or different parts of a single large source) may
vary widely in terms of quality, it is essential to provide provenance
and other context information which can help end users judge whether
query results are trustworthy.

Data warehouses [17] and curated databases [10] are typical exam-
ples where provenance information is essential. In both data warehouses
and curated databases, tremendous (and often manual) effort is usually
expended in the construction of the resulting database — in the for-
mer, in specifying the extract-transform-load (ETL) process and in the
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latter, in incrementally adding and updating the database. In a sense,
provenance adds value to the data by explaining how it was obtained.
Hence, it is of utmost importance to understand the provenance of data
in the resulting database, in order to check the correctness of an ETL
specification or assess the quality and trustworthiness of curated data.

Provenance has been studied in several different areas of data man-
agement, such as scientific data processing [8, 29, 53] and database
management systems [15, 57]. We focus on provenance for data residing
in a database management system. A number of notions of provenance
in databases have been proposed in the literature. The most common
forms of database provenance describe relationships between data in
the source and in the output, for example, by explaining where output
data came from in the input [58, 13], showing inputs that explain why
an output record was produced [27, 13] or describing in detail how an
output record was produced [43]. Besides being interesting in their own
right for understanding the behavior of queries, these forms of prove-
nance have been used in the study of classical database problems, such
as view update [14] and the expressiveness of update languages [11].
More recently, they have also been used in the study of annotation
propagation [7, 11, 58] and updates across peer-to-peer systems [42].

In this article, we focus on these three existing notions of why-, how-
and where-provenance in databases. We shall describe them, discuss
their applications, and compare and contrast these different notions in
the subsequent sections. In the rest of this introductory section, we pro-
vide a high-level overview of these different notions of provenance, and
introduce notation that will be used throughout the rest of the article.
Sections 2, 3 and 4 focus on why-, how- and where-provenance, respec-
tively, including formal details and applications. Section 5 discusses
the relationships among the approaches, including proofs or disproofs
of some “folklore” properties which have been stated in the literature
but not (to our knowledge) carefully formalized and proved. Finally,
Section 6 concludes with a brief discussion of additional related work
and research challenges.

We emphasize that there are numerous other notions of provenance
that are not described in this article. For example, provenance is also
an active topic of research in scientific workflow management system
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community and in the file and storage systems community. This article
focuses on provenance within databases, and we refer the interested
reader to the surveys [8, 53], and a recent tutorial [29] for a discussion on
provenance research in general, as well as in the workflow community.
Recent workshops [33, 35] also provide insight into the different views
of provenance by diverse research communities.

Even in database settings, there is work that does not fit neatly
into the why-, where- and how-provenance framework we focus on here,
including early work such as Wang and Madnick’s Polygen model [58]
and Woodruff and Stonebraker’s work on lineage [61], as well as Cui
et al.’s lineage model [27] and more recent work on the Trio system [6].
We have chosen to focus on the why-, where-, and how-provenance
framework because there is now enough related research on these
models area to justify a critical review and comparison. We have recast
lineage and a simplification of the Trio model as instances of our frame-
work, but the Polygen, Woodruff–Stonebraker, and full Trio models
seem to resist this categorization. Our classification should therefore
be viewed as a preliminary attempt towards a full understanding of
provenance in databases. We return to this issue in Section 6.

1.1 Why, How and Where: An Overview

1.1.1 Why-Provenance

Cui et al. [27] were among the first to formalize a notion of provenance,
of data in the context of relational databases, called lineage. They asso-
ciated each tuple t present in the output of a query with a set of tuples
present in the input, called the lineage of t. Intuitively, the lineage of
t is meant to collect all of the input data that “contributed to” t or
helped to “produce” t. To illustrate, we use a simple example database
of an online travel portal shown in Figure 1.1, where the labels t1, . . . , t8
are used to identify the tuples. Consider the query Q1

1 shown below,
which asks for all travel agencies that offer external boat tours and their
corresponding phone numbers by joining Agencies with ExternalTours

1 Throughout the paper, we use SQL, relational algebra, and Datalog notation interchange-
ably, as convenient.
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Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 1.1 Our example database: an online travel portal.

on the name attribute, selecting tours by boat, and projecting on the
name and phone attributes:

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone

BayTours 415-1200
HarborCruz 831-3000

The result of Q1 executed on our example database in Figure 1.1 is
shown above on the right. According to Cui et al., the lineage of the out-
put tuple (HarborCruz, 831-3000) is {Agencies(t2), ExternalTours(t7)},
where Agencies(t2) and ExternalTours(t7) denote the subinstances of
Agencies and ExternalTours consisting of tuples t2 and t7, respectively.
Intuitively, the two source tuples witness the existence of the tuple of
interest, (HarborCruz, 831-3000), according to Q1. Furthermore, each
of the two source tuples justify the existence of the HarborCruz tuple.
In other words, the source tuples t2 and t7 form a “proof” or “witness”
for the HarborCruz output tuple according to Q1, and no other source
tuples are part of the witness since they do not contribute to the Har-
borCruz output tuple. Technically speaking, by “witness” we mean a
subset of the input database records that is sufficient to ensure that a
given output tuple appears in the result of a query.

As another example, the lineage of the output tuple (Bay-
Tours, 415-1200) is the union of the lineage of the intermediate
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tuples — (BayTours, San Francisco, 415-2000, Santa Cruz, boat, $100)
and (BayTours, San Francisco, 415-2000, Monterey, boat, $250) —
before the projection operator is applied on name and phone. The union
of the lineage of these two intermediate tuples gives {Agencies(t1),
ExternalTours(t5,t6)}. Observe that this lineage representation is not
as precise as one may like as it does not specify that t5 and t6 do not
need to coexist together in order to witness the BayTours output tuple.
Indeed, {t1, t5} and respectively, {t1, t6} are two different witnesses for
the BayTours tuple. This illustrates that not every tuple in the lineage
is “necessary” for the output (BayTours, 415-1200) to be produced.

This intuition was formalized by Buneman et al. [13] who intro-
duced the notion of why-provenance that captures the different wit-
nesses. Their work is in the context of a semi-structured data model
with a query language that is appropriate for that data model, but we
shall restrict our discussion to the relational model with select–project–
join queries here.

Like lineage, why-provenance is based on the idea of providing infor-
mation about the witnesses to a query. Recall that a witness is a subset
of the database records that is sufficient to ensure that a given record is
in the output. There may be a large number of such witnesses because
many records are “irrelevant” to the presence of an output record of
interest. In fact, the number of witnesses can easily be exponential in
the size of the input database. To avoid this problem, the definition of
why-provenance restricts attention to a smaller number of witnesses.
According to [13], the why-provenance of an output tuple t in the result
of a query Q applied to a database D is defined as the witness basis of t
according to Q. The witness basis is a particular set of witnesses which
can be calculated efficiently from Q and D. This is generally much
smaller than the full witness set. However, every witness contains an
element of the witness basis, so the witness basis can be viewed as a
compact representation of the set of all witnesses.

Going back to our example, the why-provenance of (BayTours, 415-
1200) in the result of Q1 is the set {{t1, t5}, {t1, t6}}. There are two
witnesses, corresponding to {t1, t5} and {t1, t6}, respectively. Intu-
itively, this tells us that the output tuple is witnessed by source tuples
in two different ways according to Q1: the first uses the tuples t1 and



1.1 Why, How and Where: An Overview 385

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Two equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).

Output of
Q(I), Q′(I):

A B

1 2
1 3
4 2

Fig. 1.2 Example queries, input and output.

Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B why
1 2 {{t}}
1 3 {{t′}}
4 2 {{t′′}}

Output of
Q′(I)

A B why
1 2 {{t},{t, t′}}
1 3 {{t′},{t, t′}}
4 2 {{t′′}}

Fig. 1.3 Example showing that why-provenance is sensitive to query rewriting.

t5, while the second uses the tuples t1 and t6. Observe that {t1, t5, t6} is
not a minimal witness, since the query Q1 requires witnesses to consist
of exactly one tuple from Agencies, and one tuple from ExternalTours
according to the FROM clause of Q1.

The preceding discussion suggests that the witness basis may be
tied to the structure of the query and it is therefore sensitive to how
a query is formulated. To illustrate, consider the instance I and two
equivalent queries Q and Q′ shown in Figure 1.2. For conciseness, we
use the Datalog conjunctive query notation to express Q and Q′ here
and throughout the paper as convenient. Consider the output tuple
(1,2) in the result of Q (and Q′) applied to I shown in Figure 1.3.
The witness basis of this output tuple is {{t}}, according to Q and I.
However, even though Q′ is equivalent to Q, the witness basis of the
output tuple (1,2) according to Q′ and I is {{t},{t, t′}}.

Although equivalent queries may have different witness bases,
Buneman et al. [13] showed that a subset of the witness basis, called
the minimal witness basis, is invariant under equivalent queries. The
minimal witness basis consists of all the minimal witnesses in the wit-
ness basis, where a witness is minimal if none of its proper subinstances
is also a witness in the witness basis. For example, {t} is a minimal wit-
ness for the output tuple (1,2) in Figure 1.2. However, {t, t′} is not a
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minimal witness since {t} is a subinstance of it and it is a witness to
(1,2). Hence, the minimal witness basis is {{t}} for this example. In a
subsequent work by [14], minimal witnesses were used in the study of
variants of the view deletion problem, which is that of finding source
tuples to remove in order to delete a tuple from the view for select-
project–join–union queries.

1.1.2 How-Provenance

Why-provenance describes the source tuples that witness the existence
of an output tuple in the result of the query. However, it leaves out
some information about how an output tuple is derived according to
the query. To illustrate, consider the query Q2 of Figure 1.4 which asks
for all cities where tours are offered (assuming all agencies offer tours
in the city they are headquartered). The result of Q2 on the example
database in Figure 1.1 is shown in the right of Figure 1.4. (Ignore the
additional tags on the output tuples for now.) For the output tuple
(San Francisco, 415-1200) in the result of Q2, its why-provenance is
{{t1}, {t1,t3}}. This description tells us that t1 alone, and t1 with t3 are
each sufficient to witness the existence of the output tuple according to
Q2. However, it does not tell us about the structure of the proof that
t1 (as well as t1 and t3) help witness the output tuple according to Q2.
Although arguably obvious from the description of the query Q2, the
why-provenance does not tell us that the source tuple t1 contributes
twice to the output tuple: (1) t1 contributes to the intermediary result
of the inner query, and (2) it combines with that intermediary result
to witness the output tuple. This intuition is formalized in [43] using

Q2:
SELECT e.destination, a.phone
FROM Agencies a,

(SELECT name,
based in AS destination

FROM Agencies a
UNION
SELECT name, destination
FROM ExternalTours ) e

WHERE a.name = e.name

Result of Q2:
destination phone
San Francisco 415-1200 t1 · (t1 + t3)
Santa Cruz 831-3000 t22
Santa Cruz 415-1200 t1 · (t4 + t5)
Monterey 415-1200 t1 · t6
Monterey 831-3000 t1 · t7
Carmel 831-3000 t1 · t8

Fig. 1.4 A query and its output tagged with semiring provenance.
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Instance I:
R

A B
t: 1 2
t′: 1 3
t′′: 4 2

Output of
Q(I)

A B how
1 2 t
1 3 t′

4 2 t′′

Output of
Q′(I)

A B how
1 2 t2 + t · t′

1 3 (t′)2 + t · t′

4 2 (t′′)2

Fig. 1.5 Example showing that how-provenance is sensitive to query rewriting.

provenance semirings. Intuitively, the provenance of the output tuple
(San Francisco, 415-1200) is represented as a polynomial, which for
this example is t21 + t1 × t3. The polynomials for each output tuple are
shown on the right of the result of Q2. The polynomial hints at the
structure of the proofs by which the output tuple is derived. In this
example, the polynomial describes that the output tuple is witnessed
in two distinct ways: once using t1 twice, and the other using t1 and t3.
As we shall show, one can derive the why-provenance of an output tuple
from its how-provenance polynomial. However, this example shows that
the converse is not always possible.

It is easy to see that how-provenance is also sensitive to query for-
mulations, since how-provenance is more general than why-provenance.
Going back to our example queries shown on the top of Figure 1.2,
Figure 1.5 illustrates that the how-provenance of the tuple (1,2) in
the output of Q(I) is t according to Q, and respectively, t2 + t × t′

according to Q′.
Green et al. [43] formalize a notion of how-provenance for relational

algebra in terms of an appropriate “provenance semiring”, and extend
their approach to handle recursive datalog. Subsequently, an interest-
ing application of how-provenance appears in the context of ORCHES-
TRA [42, 44], a collaborative data sharing system in a network of peers
interconnected through schema mappings. An extension of the semiring
model of Green et al. [43] to schema mappings is used in ORCHESTRA
to efficiently support trust-based filtering of updates, and incremental
maintenance of peers’ databases with updates in the system.

Earlier, Chiticariu and Tan proposed a notion of provenance over
schema mappings called routes [21], and used it as a basis for SPIDER,
a system for debugging schema mappings [3]. Given a schema mapping
that relates a source and a target schema, routes describe how data in
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the source instance is related to data in the target instance through
the schema mapping. Hence, in retrospect, routes can be classified as
a form of how-provenance over schema mappings.

1.1.3 Where-Provenance

Why-provenance describes all combinations of source tuples that wit-
ness the existence of an output tuple in the result of a query. In turn,
how-provenance describes how the source tuples witness the output
tuple. Buneman et al. also introduced a different notion of provenance,
called where-provenance [13]. Intuitively, where-provenance describes
where a piece of data is copied from. While why-provenance is about
the relationship between source and output tuples, where-provenance
describes the relationship between source and output locations. In the
relational setting, a location is simply a column of a tuple in a relation,
which precisely refers to a “cell” in a relation. The where-provenance
of a value that resides in some location l in Q(D) consists of locations
of D from which the value in l was copied according to Q. Naturally,
this requires that all the values that reside in the source locations of
the where-provenance of l are equal to the value that resides at l. For
example, the where-provenance of the value “HarborCruz” in the sec-
ond output tuple in the result of Q1 is the location (Agencies, t2, name)
(or simply, (t2, name)) in our example database, since “HarborCruz”
was copied from the name attribute of the tuple t2 in the Agencies
relation, according to Q1.

Where-provenance is also not invariant under equivalent queries.
To illustrate, consider the queries Q1 (repeated from earlier) and Q′

1.
The only difference between Q1 and Q′

1 is in the select clause. The first
attribute of the select clause of Q1 is a.name, whereas the first attribute
of the select clause of Q′

1 is e.name.

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’

Q′
1:

SELECT e.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name

AND e.type=‘boat’
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Clearly, the queries Q1 and Q′
1 are equivalent in that they pro-

duce the same resulting tuples for any given input database. However,
the where-provenance of the output value “HarborCruz” is different
under the two queries. As explained earlier, the where-provenance of
“HarborCruz” in the output according to Q1 is the location (t2, name),
since “HarborCruz” is copied from the name attribute of the tuple t2 in
Agencies. With Q′

1, however, the where-provenance of “HarborCruz”
is (t7, name), since “HarborCruz” is copied from the name attribute
of t7 in ExternalTours. Arguably, the where-provenance of “Harbor-
Cruz” according to Q1 and Q′

1 is identical once we take the equality
“a.name = e.name” into consideration in Q1. However, as we shall dis-
cuss later with DBNotes, where-provenance is still not invariant under
equivalent queries even after such “equality checks” are incorporated.

According to Buneman et al.’s definition of why and where-
provenance [13], if a value v of a location of an output tuple t is not
constructed by a query Q, then it must have been copied from values
that reside in some source locations of a witness of t according to Q.
As a consequence, the where-provenance of v consists of locations that
can be found in tuples of the why-provenance of t. (We prove this more
carefully in Section 5, Proposition 5.11.) For example, consider Q′

1 that
was described earlier and the output tuple (BayTours, 415-1200), which
we denote as t. The why-provenance of t according to Q′

1 is {{t1, t5},
{t1, t6}}. The where-provenance of the value “BayTours” at location
(t, name) consists of two locations (t5, name) and (t6, name). Indeed,
these two locations are among the locations of tuples in the witnesses
of t. Observe that although t1 is part of every witness for t according
to Q′

1, the locations of t1 are not among the locations in the where-
provenance of (t, name). On the other hand, the where-provenance of
(t1, phone) is (t, phone). But in general, it is possible for the why-
provenance to contain tuples whose locations contribute nothing to the
where-provenance of any part of the output.

One interesting application of where-provenance has been in the
study of annotation–propagation and update languages [7, 14, 58].
Annotation–propagation is closely related to provenance: a given notion
of provenance can be viewed as a method for propagating annotations
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from the input to the output, whereas a given annotation–propagation
semantics can be viewed as a form of provenance by placing distinct
annotations on each part of the input and observing where they end
up in the output.

The idea of forwarding provenance information during query exe-
cution was first explored in the Polygen system [58]. In Polygen, oper-
ational rules for forwarding information about the source databases,
as well as the intermediate databases that contributed to the creation
of an output piece of data, are defined for basic relational operators.
The where-provenance propagation rules are similar to the rules that
propagate origin source tags (i.e., references to original sources) in
Polygen [58].

In Buneman et al.’s work on annotation propagation [14], as imple-
mented in DBNotes [7], the where-provenance of a location in the result
of a query determines the set of all annotations in the source database to
be associated with that output location. This approach assumes queries
involve select, project, join, and union only; the where-provenance of
an output location is described through a set of propagation rules,
one for each relational operator (i.e., select, project, join, union). In
contrast to Polygen, these approaches propagate arbitrary annotations
through a query, and not only information about source and interme-
diary databases.

DBNotes [7, 22] is an annotation management system for relational
databases which builds upon previous ideas in where-provenance and
Polygen. DBNotes propagates annotations from source locations to
output locations based on where-provenance. Queries in DBNotes are
also select–project–join–union queries except that they are expressed in
declarative SQL-like expressions, and not relational operators as in [14].
Like [14], every location can be associated with zero or more annota-
tions and these annotations are propagated to the output when a query
is executed. The default annotation–propagation behavior of queries
in DBNotes forwards annotations to an output location based on the
where-provenance of that output location. For a simple example, con-
sider the annotated relation Ia shown in Figure 1.6 and the queries Q
and Q′ from Figure 1.2. Each of the six locations of Ia is associated
with one annotation, denoted as ai, where 1 ≤ i ≤ 6. The execution of
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Annotated
instance Ia:
R

A B
t: 1a1 2a2

t′: 1a3 3a4

t′′: 4a5 2a6

Output of Q(Ia)
(DEFAULT
propagation):

A B

1a1 2a2

1a3 3a4

4a5 2a6

Output of Q′(Ia)
(DEFAULT
propagation):

A B

1a1,a3 2a2

1a1,a3 3a4

4a5 2a6

Output of Q(Ia), Q′(Ia)
(DEFAULT-ALL
propagation):

A B

1a1,a3 2a2,a6

1a1,a3 3a4

4a5 2a2,a6

Fig. 1.6 Example showing that where-provenance is sensitive to query rewriting.

Q and respectively, Q′ on Ia under the default propagation scheme pro-
duces the two annotated instances shown in Figure 1.6. In the output
of Q, the annotation a1 propagates from the value “1” of the source
tuple t to the output value “1” of (1, 2) in Q(Ia). This is because the
value “1” of (1, 2) in Q(Ia) is copied from the value “1” of t according
to Q. In the case of Q′, however, the value “1” of (1, 2) in Q′(Ia) is
copied from “1” of t or “1” of t′ in Ia. Hence, two annotations, a1 and
a3, appear with the value “1” of (1, 2) in Q′(Ia). This simple example
illustrates once more that where-provenance is sensitive under equiva-
lent query formulations: while Q and Q′ are equivalent, they produce
different annotated results. In fact, the query Q′′: Ans(x,y) :− R(x,y),
R(z,y) is also equivalent to Q and it propagates both a2 and a6 to the
values “2” in the output, whereas the two copies of value “1” in the
output is annotated with a1 and respectively, a3.

If a query Q propagates annotations under the default-all propaga-
tion scheme in DBNotes, then equivalent formulations of Q are guaran-
teed to produce identical annotated results. In the default-all scheme,
annotations are propagated based on where data is copied from accord-
ing to all equivalent queries ofQ. Hence, this propagation scheme can be
perceived as a “better” method for propagating annotations for Q. The
result of executing Q (or Q′ or Q′′) on Ia under the default-all scheme is
shown in Figure 1.6. Observe that all annotations relevant for an out-
put value are associated under the same output value in the default-all
behavior, regardless of how the query is formulated. For this exam-
ple, both “1”s in the default-all output are associated with a1 and a3.
This is because Q′, which is an equivalent query of Q, associates both
annotations with the value “1”. Similarly, both “2”s in the default-all
output are associated with a2 and a6. This is because Q′′ associates
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both annotations with the value “2”. In fact, given Q, DBNotes gen-
erates a finite set of equivalent queries (in this case, {Q,Q′,Q′′}) that
captures all the relevant annotations that would be propagated by any
equivalent query of Q.

1.2 Approaches in Computing Provenance: Eager vs Lazy

Along with our discussion of the three notions of provenance, we shall
also give an overview of a few recent systems where provenance is an
integral component, and describe the algorithms for computing prove-
nance implemented in these systems. Figure 1.7(c) illustrates a classi-
fication of the systems we shall discuss in some detail in this paper,
based on the approach each takes in computing provenance. There are
two approaches for computing provenance: the eager approach and the
lazy approach. In this article, we describe the basic ideas behind the two
approaches, and defer the discussion of system implementation details
to Sections 2–4.

Q

Source
database

Output
database

Extra
information

Tracing
Provenance

Q’

Tracing
Provenance

Source
database

Output
database

Q

(a) (b)

Eager Approach Lazy Approach

Why-provenance WHIPS (i.e., lineage) [25, 27]
How-provenance ORCHESTRA [42, 44] SPIDER [3, 21]

Trio [2, 5, 52]
Where-provenance DBNotes [7, 22]

(c)

Fig. 1.7 Approaches in computing data provenance: (a) the eager approach; (b) the lazy
approach. (c) A classification of recent systems for computing data provenance.
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Figures 1.7(a) and 1.7(b) illustrate the two possible approaches
for computing provenance. In the eager approach (also known as the
bookkeeping or annotation approach), the query is re-engineered so
that extra annotations are carried over to the output database dur-
ing the transformation, to help answer provenance. As a consequence,
the provenance of a piece of output data can usually be derived by
examining the output database and the extra information. In the
lazy approach (also known as non-annotation approach), provenance
is computed when needed — by examining the source data, the output
data, and the transformation. In contrast to the eager approach, the
lazy approach does not require the re-engineering of the transforma-
tion for the purpose of carrying additional information to the output
database.

Both approaches have advantages, as well as disadvantages, and
they are appropriate in different scenarios. Since additional informa-
tion is carried over and stored along with actual data in the output
database, an eager approach involves a performance overhead during
the execution of the transformation, as well as a space overhead for
storing the extra information in the output. Recently, various schemes
aimed at reducing the amount of extra information stored have been
investigated in [31, 38, 54], and the problem of compressing or approxi-
mating provenance has been explored in [9, 16, 50]. However, the eager
approach has the advantage that if the right additional information
is propagated, provenance may be derived directly from the output
database and the extra information, without examining the source
database. Hence, an eager approach is useful in scenarios where the
source data may become unavailable after the transformation. The
lazy approach does not require the re-engineering of the transforma-
tion. Hence, it has the advantage that it can be readily deployed on an
existing system without changes to the system, and furthermore, it does
not incur any performance or storage overhead during the execution of
the transformation. Thus, a lazy approach is useful when storage space
is an issue, or, when it is not possible to modify the implementation
of the query execution system. A disadvantage of the lazy approach
is that deriving provenance usually involves sophisticated techniques
for reasoning about the source database, the output database, and the
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transformation. Hence, the lazy approach cannot be used if the source
data becomes unavailable.

Although most existing work takes a distinctively eager or lazy
approach, it might be interesting to consider hybrid approaches that
take advantage of the best characteristics of both the approaches. In
fact, the WHIPS lineage-tracking system [25, 27] combines eager and
lazy ideas in its handling of queries involving negation and aggregation.

1.3 Notational Preliminaries

In this section, we introduce (largely standard) notation we shall use
in the rest of the paper.

Let D be a finite domain of data values {d1, . . . ,dn} and U a collec-
tion of field names (or attribute names). We will use the symbols U,V
for (finite) subsets of U . A record (or tuple) t, t1, t2, t′,u, . . . is a func-
tion U → D, written as (A1:d1, . . . ,An:dn). A tuple assigning values
to each field name in U is called U -tuple; e.g. (A1:d1, . . . ,An:dn) is a
{A1, . . . ,An}-tuple. We write Tuple for the set of all tuples and U -Tuple
for the set of all U -tuples. We write t •A for the value of the A-field of
t, t[U ] for the restriction of tuple t over V ⊇ U to field names in U , and
t[A �→ B] for the result of renaming field A to B in t (assuming B is
not already present in t). We sometimes write (A:e(A))A∈U to define
a tuple t:U such that t •A = e(A) for each A ∈ U .2 Here, e(A) is an
expression parameterized by an unknown field name A. For example,
if t:V then we can express the projection t[U ] using this notation as
(A: t •A)A∈U .

A relation or table r:U is a finite set of tuples over U . Let R
be a finite collection of relation names. A schema R is a mapping
(R1:U1, . . . ,Rn:Un) from R to finite subsets of U . A database (or
instance) I: (R1:U1, . . . ,Rn:Un) is a function mapping each Ri:Ui ∈ R
to a relation ri over Ui.

We also define tuple locations as tuples tagged with relation names,
written (R,t). We write TupleLoc = R × Tuple for the set of all tagged
tuples. We can view a database instance I equivalently as a finite set

2 For readers familiar with lambda-calculus notation for function definition, note that
(A:e(A))A∈U is equivalent to λA ∈ U · e(A).
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{(R,t) | t ∈ I(R)} ⊆ TupleLoc of such tagged tuples according to a stan-
dard translation. We will also sometimes consider field locations that
refer to a particular field of a tagged tuple. Formally, such a location is
just a triple (R,t,A) ∈ R × Tuple × U . We write FieldLoc for the set
of all locations.

We will use the following notation for (monotone) relational algebra
queries:

Q ::= R | {t} | σθ(Q) | πU (Q) | Q1 � Q2 | Q1 ∪ Q2 | ρA�→B(Q)

Here, {t} is a singleton constant {t}. Selections σθ filter a relation
by retaining tuples satisfying some predicate θ. We leave the form of
predicates unspecified (but typically include field equality tests A = B

and A = d). Projections πU (Q) replace each tuple t in a relation with
t[U ], discarding any other fields. Join (or natural join) and union are
standard; renaming is written ρA�→B(Q).

The precise semantics Q(I) of a query Q evaluated against an
instance I is described below. We review this standard definition only
because we will be considering a number of variations on it later.

({t})(I) = {t}
R(I) = I(R)

(σθ(Q))(I) = {t ∈ Q(I) | θ(t)}
(πU (Q))(I) = {t[U ] | t ∈ Q(I)}

(Q1 � Q2)(I) = {t | t[U1] ∈ Q1(I), t[U2] ∈ Q2(I)}
(Q1 ∪ Q2)(I) = Q1(I) ∪ Q2(I)

(ρA�→B(Q))(I) = {t[A �→ B] | t ∈ Q(I)}
Here, we assume that Q has the set of attributes V , denoted as Q:V ,
that U ⊆ V in the case of projection, and that Q1:U1,Q2:U2 in the case
of join.

As mentioned earlier, when convenient we also employ Datalog
notation using nameless tuples, and assume familiarity with the
standard translation between SPJRU queries and unions of conjunc-
tive Datalog queries. For example, the query {(A(x,y) :− R(x,y),
S(x,z)),(A(x,x) :− R(x,x))} is equivalent to (R � S) ∪ σA=B(R),
where we assume schema R(A,B) and S(A,C).
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We also employ the following convention regarding partial functions
(which is standard in, for example, programming language semantics).
Formally, we can view a partial function f :X → Y as a total func-
tion f :X → Y ∪ {⊥}, where ⊥ is a special, fresh constant not already
present in Y , called “undefined”. We write Y⊥ to abbreviate Y ∪ {⊥},
and we define dom(f) = {x ∈ X |f(x) 	= ⊥}.

One advantage of this convention is that it permits unambiguous
definitions of operations with different behavior regarding undefined-
ness. For example, we will later make use of strict and lazy union
operations. Strict union ∪S is defined as the union of two sets if both
are defined, and undefined otherwise (that is, X ∪S ⊥ = ⊥), whereas
lazy union ∪L differs from strict union in that it is undefined only if
both sets are undefined (that is, X ∪L ⊥ = X). We will define these
operations more carefully later.

The various provenance semantics we shall consider will be defined
by interpreting the language of relational queries over other classes
of structures besides relations. A familiar example of this technique
is interpreting queries over bags (multisets) instead of set relations.
The semiring provenance semantics discussed earlier directly general-
izes both relation and multiset semantics, and several other provenance
semantics are instances of the semiring semantics.



2
Why-Provenance

In this section, we start by discussing lineage, a notion of provenance
for relational databases formalized by Cui et al. [27]. We also give
an overview of their algorithms for computing lineage implemented
in the WHIPS data warehouse system [25]. After this, we describe
the why-provenance model of Buneman et al. [13], which is a refine-
ment of the lineage model. Why-provenance is characterized by witness
bases. Intuitively, every witness in the witness basis is a proof for why
an output tuple exists. Naturally, the elimination of all such proofs
will cause the output tuple to disappear. A variant of the notion of
witness basis is subsequently used in the study of the view deletion
problem by Buneman et al. [14], which we shall also describe in this
section.

2.1 Lineage

In the work of Cui et al. [27], the lineage of an output record is based on
identifying a subset of input records relevant to the output record. Intu-
itively, an input record is relevant to an output record if it contributed
to the existence of that output record. The following definition, which

397
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makes precise what relevant means, is paraphrased from Definition 4.1
of [27]:

Definition 2.1 (Lineage for a relational operator [27, Defini-
tion 4.1]). Let Op be any relational operator over relations R1, . . . ,Rn,
The lineage of a record t ∈ Op(R1, . . . ,Rn) is a sequence 〈R′

1, . . . ,R
′
n〉 of

subsets R′
i ⊆ Ri, such that:

(1) Op(R′
1, . . . ,R

′
n) = {t}.

(2) For each 1 ≤ i ≤ n and for each ti ∈ R′
i, we have

Op(R′
1, . . . ,R

′
i−1,{ti}, . . . ,R′

n) 	= ∅.
(3) 〈R′

1, . . . ,R
′
n〉 is maximal among subsets of R1, . . . ,Rn satisfy-

ing (1) and (2).

Intuitively, (1) ensures that the lineage is “relevant” to t, (2) ensures
that no “irrelevant” records are included in the lineage, and (3) ensures
that the lineage is “complete”. In addition, Cui et al. provided opera-
tional definitions of the lineage of a tuple for each basic relational oper-
ator (i.e., selection, projection, join, union, renaming, difference, and
aggregation operators). The operational definitions are shown below.
Cui et al. proved that the operational definitions below coincide with
Definition 2.1 for queries consisting of individual operators.

Theorem 2.1 ([27, Theorem 4.4], paraphrased).

(1) If t ∈ σθ(R) then the lineage of t is 〈{t}〉.
(2) If t ∈ πU (R) then the lineage of t is 〈{t′ ∈ R | t′[U ] = t}〉.
(3) If t ∈ R1 � · · · � Rn then the lineage of t is 〈{t1 ∈ R1 | t1 =

t[U1]}, . . . ,{tn ∈ Rn | tn = t[Un]}〉, where U1, . . . ,Un are the
attributes of R1, . . . ,Rn, respectively.

(4) If t ∈ R1 ∪ ·· · ∪ Rn then the lineage of t is 〈{t1 ∈ R1 | t1 =
t}, . . . ,{tn ∈ Rn | tn = t}〉.

(5) If t ∈ R1\R2 then the lineage of t is 〈{t},R2〉.
(6) If t ∈ αG,aggr(B)(R) (where αG,aggr(B)(R) denotes grouping by

fieldsG and aggregating theB fields by aggr) then the lineage
of t is 〈{t′ ∈ R | t′[G] = t[G]}〉.
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It is worth pointing out that in Cui et al.’s definition, it is assumed
that queries have no repeated relation names (and thus, no self-joins).
Queries involving the same relation more than once are treated by
considering each occurrence of the relation as a separate “copy”. For
example, a self-join R � R is rewritten into (R AS R1) � (R AS R2)
and is considered to operate on two separate copies of the instance R,
corresponding to R1 and R2, respectively.

For complex queries that are composed of a sequence of
more than one relational operator, lineage is defined inductively.
Let Op1 ◦ · · ·◦ Opn be a relational algebra query where Opi, 1 ≤ i ≤ n,
denotes a relational operator. Let I be a database instance, let V be
the resulting output of applying Op2 ◦ · · · ◦ Opn to I, and let t be a
tuple in V . Roughly speaking, the lineage of t in I with respect to
Op1 ◦ · · · ◦ Opn is a subinstance I∗ of I such that (1) I∗ is the lineage
of a subinstance V ∗ of V in I according to Op2 ◦ · · · ◦ Opn, and (2) V ∗

is the lineage of t in V according to Op1. The definition shown below
is paraphrased from Definition 4.5 of [27].

Definition 2.2 (Lineage for a view [27, Definition 4.5]). Let Q
be a (complex) SPJRU query over R1, . . . ,Rn.

• If Q = Ri, then the lineage of t ∈ Ri is Ri(t).
• If Q = Op(Q1, . . . ,Qk) where each Qi is an SPJRU query over
R1, . . . ,Rn, then let S1 = Q1(I), . . . ,Sk = Qk(I), and suppose
the lineage of t in Op(S1, . . . ,Sk) is L. For each Si(t′) ∈ L, let
LSi(t′) be the lineage of t′ in Qi with respect to Qi(I). Then
the lineage of t in Q(I) is the union of all such sets LSi(t′).

To illustrate, consider the example database from Figure 1.1. The
query Q1 from Section 1.1.1 asking for travel agencies that offer
external boat tours and their corresponding phone numbers can be
expressed in relational algebra as πname,phone(σtype=‘boat’(Agencies �

ExternalTours)). The query, together with its result when applied to
the travel portal database, is reproduced.
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Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name
AND e.type=‘boat’

Result of Q1:
name phone

BayTours 415-1200
HarborCruz 831-3000

The lineage of the tuple (BayTours, 415-1200) is the union of the
lineages of intermediary tuples (BayTours, San Francisco, 415-2000,
Santa Cruz, boat, $250) and (BayTours, San Francisco, 415-2000, Mon-
terey, boat, $400) according to σtype=‘boat’(Agencies � ExternalTours)
obtained before the projection operator is applied. In turn, the lineage
of the first intermediary tuple is the lineage of the tuple (BayTours,
San Francisco, 415-2000, Santa Cruz, boat, $250) in the interme-
diary result of Agencies � ExternalTours whose lineage is in turn
〈{Agencies(t1)}, {ExternalTours(t5)}〉. Similarly, the lineage of the
second intermediary tuple is the lineage of the tuple (BayTours,
San Francisco, 415-2000, Monterey, boat, $400) in the intermedi-
ary result of Agencies � ExternalTours whose lineage is in turn
〈{Agencies(t1)}, {ExternalTours(t6)}〉. Thus, by unioning the lineages
of the two intermediary tuples we obtain the lineage of (BayTours, 415-
1200) in the result of Q1 as 〈{Agencies(t1)}, {ExternalTours(t5, t6)}〉.

2.1.1 A Compositional Definition

The original definition of lineage is somewhat difficult to work with
or to relate to other forms of provenance, and it omits some common
features such as renaming and constant queries. In this section, we
develop an equivalent definition that defines lineage directly in terms of
propagating annotations from the input to the output. The definition
is compositional in the sense that we define lineage via annotation–
propagation behavior of each relational operator independently.

We define lineage as a partial function mapping a query Q : R → U ,
an R-instance I and a U -tuple t to either an R-instance Lin(Q,I,t), or
a special constant ⊥ (meaning “undefined”). We will prove that this
definition is equivalent to that of Cui et al. for SPJU queries without
renaming or constants, and we will use it later in the paper in Section 5
to compare lineage with other forms of provenance.



2.1 Lineage 401

Cui et al. also considered queries without constants, and so the lin-
eage of an output tuple is always a nonempty set. Also, lineage was
defined only for tuples actually present in the output. In what fol-
lows, we generalize the definitions of [27] to distinguish between two
scenarios, where,

(1) A tuple has “empty” lineage provided it is present in the out-
put but it was constructed by the query, e.g. using a constant
expression.

(2) A tuple has “no” lineage provided it is not present in the
output.

The function Lin(Q,I,t) is partial because we want to distinguish
between these two cases, rather than using the empty set to ambigu-
ously handle both cases. We will use the symbol ∅ for “empty lineage”
and ⊥ for “no lineage”; alternatively we say that the lineage is unde-
fined if Lin(Q,I,t) = ⊥.

Once we take into account the possibility of no lineage, some care
is needed in how we combine lineages of intermediate tuples in join,
union, and projection operations. First, consider a join query such as
Q1 � Q2. The lineage of a tuple t in Q1 � Q2 is the union of the lineages
of t[U1] and t[U2] provided t[U1] ∈ Q1 and t[U2] ∈ Q2; however, if either
t[U1] or t[U2] is undefined, then t cannot be in the result so its lineage
should also be undefined. Thus, we will handle joins using a strict union
operation, defined as follows:

⊥ ∪S X = X ∪S ⊥ = ⊥
X ∪S Y = X ∪ Y (X 	= ⊥ 	= Y )

For the union operation, consider a query Q1 ∪ Q2. If t is in both
Q1 and Q2, then the lineage of t is the union of its lineages in the
subqueries. However, if t is in only one subquery, then its lineage should
be the lineage of the subquery in which it is defined. The lineage of t
in Q1 ∪ Q2 is only undefined if it is undefined in both subqueries. To
handle this behavior, we use a lazy union operation:

⊥ ∪L X = X ∪L ⊥ = X

X ∪L Y = X ∪ Y (X 	= ⊥ 	= Y )
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Finally, for projection, if t is not in the query result, then there can
be no tuples in the subquery that project down to the given tuple. In
this case we want the result to be ⊥. On the other hand, if multiple
tuples t project to t[U ], then we want to combine their lineage annota-
tions lazily. Thus, we define a lazy flattening operation as follows:⋃

L ∅ = ⊥⋃
L{X} = X⋃

L(X ∪ Y ) =
⋃

LX ∪L
⋃

LY

Having made these auxiliary definitions we are now ready to define
lineage for arbitrary queries as follows.

Lin({u}, I, t) =
{∅, if t = u

⊥, otherwise

Lin(R,I, t) =
{{R(t)}, if t ∈ I(R)

⊥, otherwise

Lin(σθ(Q), I, t) =
{

Lin(Q,I,t), if θ(t)
⊥, otherwise

Lin(πU (Q), I, t) =
⋃

L{Lin(Q,I,u) | u ∈ Q(I),u[U ] = t}
Lin(ρA�→B(Q), I, t) = Lin(Q,I,t[B �→ A])

Lin(Q1 � Q2, I, t) = Lin(Q1, I, t[U1]) ∪S Lin(Q1, I, t[U2])

Lin(Q1 ∪ Q2, I, t) = Lin(Q1, I, t) ∪L Lin(Q2, I, t)

Again, we assume Q1:U1 and Q2:U2 in the case for join, Q:V ⊇ U

for projection and Q1,Q2:U for union.
Our definition of lineage for queries consisting of Selection–

Projection–Join–Union (SPJU) operations without constants or renam-
ing is, essentially, equivalent to that of Cui et al.’s. We define lineage
as a subinstance of the input, whereas they defined lineage as a vector
of subsets of the input tables; this is a minor difference in presentation.

Proposition 2.2 Let Q be a constant-free SPJU query, I be an
instance and t be a tuple with t ∈ Q(I). Then

(1) If Q = σθ(R) then Lin(σθ(R), I, t) = {R(t)}.
(2) If Q = πU (R) then Lin(πU (R), I, t) = {R(u) ∈ I | u[U ] = t}.
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(3) If Q = R � S then Lin(R � S,I, t) = {R(t[U ]),S(t[V ])},
where R:U,S:V .

(4) If Q = R ∪ S then Lin(R ∪ S,I, t) = {R(t) | R(t) ∈ I} ∪
{S(t) | S(t) ∈ I}.

Proof. For each part, the proof is straightforward by unwinding
definitions.

Moreover, it seems clear that our compositional definition of lin-
eage is equivalent (modulo the representations of lineages) to the
transitive definition of lineage for composite views given by Cui
et al. We omit a detailed proof. Hence, our definition of lineage
(for constant-free queries) is equivalent to their characterization
[27, Theorem 4.4].

We next establish a basic property relating our definition of lineage
to ordinary evaluation. The following proposition says that the lineage
of a tuple t with respect to an SPJRU query Q and instance I is defined
if and only if t is in the result of Q(I); moreover, if it exists, the lineage
is a “witness” to t ∈ Q(I).

Proposition 2.3 Let Q be an SPJRU query, I be a database instance,
and t be a tuple.

(1) If Lin(Q,I,t) = ⊥ then t /∈ Q(I).
(2) If Lin(Q,I,t) = J 	= ⊥ then J ⊆ I and t ∈ Q(J).

Proof. Both parts are straightforward by induction on the structure
of Q.

2.1.2 An Application: Tracing Lineage in Data Warehouses

Cui et al. propose and implement a lazy approach for computing lineage
over SPJU queries with set difference and aggregates in the context of
the WHIPS data warehouse system [25, 60]. Every time the lineage of
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a tuple t in the result of a query Q is sought, their approach generates
one or multiple “reverse” queries that when applied to the database I
return the lineage of t in I according to Q.

For an SPJ queryQ, a single reverse queryQr is sufficient for obtain-
ing the lineage of any tuple t in Q(I). The idea behind the algorithm
for constructing Qr is as follows. First, Q is rewritten into an equivalent
canonical expression of the PSJ form πA(σC(R1 � · · · � Rn)). Then, the
reverse query Qr is obtained as σC∧(

∧
Ai∈A t•Ai=Rj ·Ai)(R1 � · · · � Rn),

where the condition
∧

Ai∈A t •Ai = Rj · Ai specifies that the value of
attribute Ai in some relation Rj among R1, . . . ,Rn must equal the value
of t •Ai, for every attribute Ai ∈ A projected by Q. Finally, the lineage
of t is obtained via an additional postprocessing step that splits the
result of Qr(I) into a set of relation instances I ′

i of Ri by projecting on
the attributes of Ri, for 1 ≤ i ≤ n.

To exemplify, consider again the SPJ query Q1 above and sup-
pose the lineage of the tuple (BayTours, 415-1200) in the result
of Q1 is sought. The relational algebra expression πname,phone

(σtype=‘boat’(Agencies � ExternalTours)) given earlier is in fact the
SPJ canonical form of Q1. Hence, the reverse query Qr is obtained as
σtype=‘boat’∧name=‘BayTours’∧phone=‘415−1200’(Agencies � ExternalTours).
Applying Qr to the database instance in Figure 1.1 results in tuples
(BayTours, San Francisco, 415-2000, Santa Cruz, boat, $250) and
(BayTours, San Francisco, 415-2000, Monterey, boat, $400). The
lineage of (BayTours, 415-1200) is finally obtained by projecting
the output of Qr on the attributes of Agencies and respectively,
ExternalTours relations, resulting in instances Agencies(t1) and
ExternalTours(t5, t6), respectively.

The correctness of the algorithm for computing lineage outlined
above is justified by the fact that lineage is invariant for equivalent
formulations of an SPJ query without repeated relation names (The-
orem 4.8 in [27]). Hence, it is safe to transform the original query
into its canonical form and use it to construct the reverse query that
retrieves the lineage, since lineage is not affected by this transformation.
However, as the next proposition shows, the invariance no longer holds
for certain queries that involve self-joins.
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Proposition 2.4 There exist two equivalent PJR queries Q and Q′,
an instance I, and a tuple t ∈ Q(I), where Lin(Q,I,t) 	= Lin(Q′, I, t).

Proof. LetR be a binary relationR(A,B) andQ = πAB(R � ρB �→C(R))
and Q′ = R. Obviously, Q ≡ Q′. Let I be the instance {R(1,2),R(1,3)}
and hence, Q(I) consists of the tuples {R(1,2),R(1,3)}. Then,
we have Lin(Q,I,(1,2)) = {R(1,2),R(1,3)}, whereas Lin(Q′, I,(1,2)) =
{R(1,2)}.

The proposition holds in general even when there are no self-joins
but when repeated relations are allowed. In particular, the above propo-
sition also holds for certain JU queries where a relation name occurs
multiple times in the query.

Proposition 2.5 There exist two equivalent JU queries Q and Q′, an
instance I, and a tuple t ∈ Q(I), where Lin(Q,I,t) 	= Lin(Q′, I, t).

Proof. Let R be a binary relation R(A,B) and S be a
binary relation S(A,B). Let Q = R ∪ (R � S) and Q′ = R. Sup-
pose I is {R(1,2),R(1,3),S(1,2)}, then we have Lin(Q,I,(1,2)) =
{R(1,2),S(1,2)}, whereas Lin(Q′, I,(1,2)) = {R(1,2)}.

Cui et al. generalize the reverse-query algorithm to handle the gen-
eral class of queries they consider, where aggregates and the set union
and difference operators are also allowed. In this general case, how-
ever, it may not be possible to trace lineage by using a single query. To
illustrate, consider the (rather contrived) query Q2 below that asks for
average boat ticket prices above $250 per destination.

Q2: SELECT AVG(price) AS avg price
FROM ExternalTours
WHERE type=‘boat’
GROUP BY destination
HAVING avg price > $250
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The result of Q2 consists of a single tuple t = ($300) (i.e., the
average ticket price for boat trips to Monterey). Note that $300
is a newly computed value and it does not appear in the input
database. Hence, we cannot trace t’s lineage by only examining the
input database. Intuitively, we need to know that t has been obtained
from the tuple (Monterey, $300) in the intermediate result of the
aggregation. The algorithm for tracing lineage over SPJU queries with
aggregates and set difference is based on this very idea. First, the orig-
inal query is rewritten into a canonical form consisting of alternating
D-segments and AUSPJ-segments. Here D stands for Difference, so a
D-segment consists of the application of a difference operator. Similarly,
AUSPJ stands for Aggregation–Union–Selection–Projection–Join, and
an AUSPJ-segment consists of a sequence of these operators in this
order. As before, the rewriting rules ensure lineage preservation for
every output tuple. Then, an intermediate view is defined for each
segment. Each intermediate view can be computed eagerly and stored
at view materialization time, or it can be computed lazily, only when
needed for tracing purposes. Finally, lineage is recursively traced over
each segment and corresponding intermediate view until the input
database is reached.

As an example, the canonical form of Q2 above is πavg price

(σavg price>$250(αdestination,AVG(price)(σtype=‘boat’(ExternalTours)))). It
consists of two AUSPJ segments corresponding to sequences πavg price −
σavg price>$250 and αdestination,AVG(price) − σtype=‘boat’ , respectively.
Any of the SPJU operators may be missing from a segment, but note
that the aggregate operator specifies the cut-off point between the seg-
ments. The result of the second segment, consisting of tuples (Santa
Cruz, $250) and (Monterey, $300), is stored as an intermediate view
AllDestinations. Intuitively, this intermediate view provides the miss-
ing clues in determining the lineage of output tuples, being eliminated
from the final output due to projecting on avg price. Lineage trac-
ing for the output tuple t = ($300) proceeds as follows. First, t’s
lineage is traced across the first segment, back to the intermediate
view, by executing the reverse query σavg price=$300(AllDestinations).
This leads to the intermediate tuple (Monterey, $300). We now
recursively trace the lineage of this intermediate tuple through the
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second segment, back to the input database, by executing the query
σtype=‘boat’∧destination=‘Monterey’(ExternalTours). This leads to source
tuples t6 and t7, which together constitute the lineage of t.

2.2 Why-Provenance

As discussed in Section 1, while the notion of lineage defined by Cui
et al. exposes a (small) collection of input tuples which contribute to the
creation of an output tuple t, it is not as precise as one might like as it
does not capture the notion of individual witnesses for the output tuple.
For instance, the lineage of the output tuple (BayTours, 415-1200) con-
sisting of {Agencies(t1), ExternalTours(t5, t6)} does not specify that t5
and t6 need not coexist in order to witness the BayTours output tuple.
In fact, proper subinstances of {Agencies(t1), ExternalTours(t5, t6)} are
sufficient to prove the output tuple. Indeed, {t1, t5} and respectively,
{t1, t6} are two different witnesses for the BayTours tuple.

Buneman et al. [13] defined the notion of why-provenance in terms
of a deterministic semistructured data model and query language.
Why-provenance is based on identifying subinstances of the input that
“witness” a part of the output. In this article, we will reformulate
why-provenance in terms of the relational model and relational alge-
bra (SPJU) query language. Formally, given a database instance I, a
query Q and a tuple t ∈ Q(I), a witness for t with respect to Q is a
subinstance I ′ of I such that t ∈ Q(I ′).

Definition 2.3(Witness [13]). Let I be a database instance, Q be a
query over I, and t be a tuple in Q(I). An instance I ′ ⊆ I is a witness
for t with respect to Q if t ∈ Q(I ′).

Note that the notion of witness from Definition 2.3 above is not
tied to the structure of the query Q. Intuitively, any subinstance of the
database that produces t is a witness for t, and in particular, both the
lineage of t, and the entire database I are witnesses for t. The set of wit-
nesses for t with respect to a database instance I and a query Q is thus:

Wit(Q,I,t) = {J ⊆ I | t ∈ Q(J)}.
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Observe that if Q is a monotone query, then Wit(Q,I,t) is closed under
upwards inclusion. It is finite (provided I is finite), but potentially
exponentially large due to the possibility of witnesses containing
“irrelevant” tuples. Since we only consider monotone queries, it follows
immediately that Wit(Q,I,t) = ∅ if and only if t 	∈ Q(I), whereas
∅ ∈ Wit(Q,I,t) holds if and only if ∀J ⊆ I · t ∈ Q(J).

Buneman et al. defined the why-provenance of an output tuple t in
the result of a query Q applied to a database instance I as a particular
subset of Wit(Q,I,t) called the witness basis. For a Datalog-style query,
each witness in the witness basis corresponds intuitively to the leaves
of a “proof tree”. Hence, we shall sometimes call them proof-witnesses1

in this paper since an instantiation of the operator tree of a relational
algebra query can be seen as a proof tree. We write P(P(TupleLoc)) for
the set of sets of tuples; recall that normally TupleLoc is a finite set so
P(P(TupleLoc)) is also finite. We define proof-witnesses for relational
algebra queries as follows, adapting Buneman et al.’s definition to the
relational model and relational algebra.

Definition 2.4 (Why-Provenance, i.e., Witness Basis [13,
Definition 6]). Let Q be an SPJU query. Let I be a database instance
and t be a tuple in Q(I). Then, the why-provenance (or witness basis)
of t according to Q and I, denoted as Why(Q,I,t), is a subset of
P(P(TupleLoc)) defined as follows:

Why({t}, I,{u}) =
{{∅}, if (t = u),

∅, otherwise.

Why(R,I, t) =
{{{(R,t)}}, if (t ∈ R(I)),

∅, otherwise.

Why(σθ(Q), I, t) =
{

Why(Q,I,t), if θ(t),
∅, otherwise.

Why(πU (Q), I, t) =
⋃{Why(Q,I,u) | u ∈ Q(I), t = u[U ]}

Why(ρA�→B(Q), I, t) = Why(Q,I,t[B �→ A])

Why(Q1 � Q2, I, t) = Why(Q1, I, t[U1]) � Why(Q2, I, t[U2])

Why(Q1 ∪ Q2, I, t) = Why(Q1, I, t) ∪ Why(Q2, I, t))

1 Following Val Tannen’s suggestion.
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Here, � takes all the pairwise unions of two collections, playing a
role similar to strict union in our definition of lineage. That is, S � ⊥ =
⊥ � S = ⊥, and S � T = {s ∪ t | s ∈ S,t ∈ T} otherwise.

The proof-witnesses are derived from the syntax of Q and so the
size of each proof-witness is bounded by the size of Q. In particular,
the proof-witnesses exclude tuples that plainly have nothing to do with
t being produced by Q. For this reason, the witness basis itself tends to
be small as well, compared to the set of all witnesses. Nevertheless, the
witness basis “represents” the set of all witnesses in a suitable sense,
as we shall show (Theorem 2.7).

Going back to our example, the why-provenance (i.e., witness basis)
of (BayTours, 415-1200) in the result of Q1 is the set {{t1, t5}, {t1, t6}}.
There are two witnesses in the basis, corresponding to {t1, t5} and
{t1, t6}, respectively. This indicates that the output tuple is witnessed
by input tuples in two different ways according to Q1: once using t1 and
t5, and once with t1 and t6. Note that the definition requires witnesses
in the basis to consist of exactly one tuple from Agencies, and one tuple
from ExternalTours according to the FROM clause of Q1. Hence, the set
{t1, t5, t6}, which is essentially the lineage of the BayTours tuple, is not
in the witness basis.

Similar to lineage, it is easy to establish the following property about
why-provenance. The following proposition states that every tuple t in
the result of an SPJRU query Q on an instance I has a non-empty
witness basis. Furthermore, every proof witness for t according to Q

and I is a witness for t according to Q.

Proposition 2.6 Suppose Q is an SPJRU query, I is a database
instance, and t is a tuple.

(1) If Why(Q,I,t) = ∅ then t /∈ Q(I).
(2) If J ∈ Why(Q,I,t) then J ⊆ I and t ∈ Q(J).

Proof. Both parts can be proved easily by induction on the structure
of Q.
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In fact, we can also show that every witness contains a proof-witness:

Theorem 2.7 Let Q be an SPJRU query, I an instance and t a tuple.
If J ∈ Wit(Q,I,t), then there exists J ′ such that J ⊇ J ′ ∈ Why(Q,I,t).

Proof. By induction on Q.

Case 1. Suppose Q = {u}. If J ∈ Wit({u}, I, t) then t = u and J = ∅,
and J = J ′ = ∅ ∈ Why({u}, I, t) works.

Case 2. Suppose Q = R. If J ∈ Wit(R,I, t) then J must contain
{(R,t)}, the unique proof witness for t.

Case 3. Suppose Q = σθ(Q′). Let J ∈ Wit(σθ(Q′), I, t) be given. Then
by definition, we have J ⊆ I and t ∈ (σθ(Q′))(J). Hence θ(t)
holds and t ∈ Q′(J), so J ∈ Wit(Q′, I, t) also. By induction
we can obtain J ′ such that J ⊇ J ′ ∈ Why(Q′, I, t). By defini-
tion, since θ(t) holds we have Why(Q′, I, t) = Why(σθ(Q′), I, t).
Hence, J ′ ∈ Why(σθ(Q′), I, t), as desired.

Case 4. Suppose Q = πU (Q′). Let J ∈ Wit(πU (Q′), I, t) be given. By
definition, we have J ⊆ I and t ∈ (πU (Q′))(J). So for some
u ∈ Q′(J), we have t = u[U ]. Hence J ∈ Wit(Q′, I,u), so by
induction, we can obtain J ′ with J ⊇ J ′ ∈ Why(Q′, I,u). Note
that by monotonicity we have u ∈ Q′(J) ⊆ Q′(I). Since t =
u[U ] and u ∈ Q′(I), by definition we have that

Why(Q′, I,u) ⊆
⋃

{Why(Q′, I,u) | u ∈ Q(I), t = u[U ]}
= Why(πU (Q′), I, t) .

This implies that J ′ ∈ Why(πU (Q′), I, t), as desired.
Case 5. Suppose Q = Q1 � Q2, and Q1:U1 and Q2 : U2. Let J ∈

Wit(Q1 � Q2, I, t) be given. By definition, J ⊆ I and t ∈
(Q1 � Q2)(J), so we must have t[U1] ∈ Q1(J) and t[U2] ∈
Q2(J). Let t1 = t[U1] and t2 = t[U2]. Thus J ∈ Wit(Q1, I, t1)
and J ∈ Wit(Q2, I, t2), so by induction we have J ′

1,J
′
2 with

J ⊇ J ′
i ∈ Why(Qi, I, ti) for i ∈ {1,2}. Observe that by mono-

tonicity ti ∈ Qi(J) ⊆ Qi(I) for i ∈ {1,2}. By definition, we
have J ′ = J ′

1 ∪ J ′
2 ∈ Why(Q1 � Q2, I, t). Clearly J ′ ⊆ J so we

are done.
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Case 6. Suppose Q = Q1 ∪ Q2. Let J ∈ Wit(Q1 ∪ Q2, I, t) be given.
By definition, J ⊆ I and t ∈ (Q1 ∪ Q2)(J), so we must
have t ∈ Q1(J) or t ∈ Q2(J). Without loss of gener-
ality consider the former case; the latter is symmet-
ric. Then J ∈ Wit(Q1, I, t) so there exists J ′ such that
J ⊇ J ′ ∈ Why(Q1, I, t) ⊆ Why(Q1 ∪ Q2, I, t).

This is a key property, and has not, to our knowledge, been estab-
lished previously. Together with monotonicity, it implies that the
witness basis “represents” the (often much larger) witness set:

Corollary 2.8. Let Q be a query, I an instance and t a tuple.

Wit(Q,I,t) = {J ⊆ I | ∃J ′ ∈ Why(Q,I,t). J ′ ⊆ J}

Proof. The ⊆ direction is Theorem 2.7. For the ⊇ direction, if J con-
tains an element of the witness basis, then J contains a witness, and
by monotonicity J is itself a witness.

Since the witness basis is tied to the structure of the query, it is
unsurprising that why-provenance is sensitive to how a query is writ-
ten. An example illustrating this issue was given in Section 1.1. Recall
the equivalent queries Q and Q′ shown in Figure 1.3 and consider the
tuple (1, 2) in the result of Q (or Q′) applied to the database instance
I (also shown in the figure). According to Q, the why-provenance of
the output tuple (1, 2) consists of the witness {(1, 2)}. According to
Q′, however, the why-provenance for the output tuple consists of the
witness {(1, 2), (1,3)}. Buneman et al. also considered a minimal wit-
ness basis variant of why-provenance, which, unlike the witness basis,
is invariant under query equivalence. A minimal witness basis consists
of minimal witnesses, which are defined next.

We say that a set s ∈ S is a minimal element of a collection S if for
any s′ ∈ S with s′ ⊆ s, we have s′ = s. Equivalently, an element of S is
minimal if there exists no element s ∈ S such that s′ � s.

Definition 2.5. Let Q be a query, I be a database instance, and t be
a tuple in Q(I). A minimal witness is a minimal element of Wit(Q,I,t).
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We write MWit(Q,I,t) for the set of all minimal witnesses, that is,

MWit(Q,I,t) = {J ∈ Wit(Q,I,t) |J minimal in Wit(Q,I,t)}

Definition 2.6. Let Q be a query, I be a database instance, and t be
a tuple in Q(I). The minimal witness basis for t with respect to the
(SPJRU) query Q and I, denoted as MWhy(Q,I,t), is the set of all
minimal elements of Why(Q,I,t), that is,

MWhy(Q,I,t) = {J ∈ Why(Q,I,t) | J minimal in Why(Q,I,t)}

Going back to the example shown in Figure 1.3, the witness {(1,
2)} for the output tuple (1, 2) in the result of Q′ is a minimal witness,
whereas {(1, 2), (1, 3)} is not. In fact, the minimal witness basis for
(1, 2) according to Q′ (and also Q) is the singleton set {{(1, 2)}}. In
contrast to the witness basis, which is tied to the structure of the
query, the set of minimal witnesses is based on the semantics of the
query. On the other hand, the minimal witness basis is defined in terms
of the witness basis, which is not invariant up to query equivalence.
Nevertheless, the minimal witness basis is invariant under equivalent
rewritings of a query [13, Theorem 3]. In fact, the minimal witness basis
coincides with the set of minimal witnesses, as we shall now show.

First, observe that every minimal witness is in fact a proof-witness
(and is therefore in the why-provenance):

Corollary 2.9 (cf. [55, Proposition 4.2.3]). Let Q be a query,
I an instance and t a tuple. Then MWit(Q,I,t) ⊆ Why(Q,I,t).

Proof. Let J ∈ MWit(Q,I,t) be given. Then by Theorem 2.7 we
can choose J ′ such that J ⊇ J ′ ∈ Why(Q,I,t). Since Why(Q,I,t) ⊆
Wit(Q,I,t), we have J ′ ∈ Wit(Q,I,t). By minimality, J = J ′.

Having established that all minimal witnesses are included in the why-
provenance, it is natural to ask if the minimal witnesses coincide with
the minimal elements of the why-provenance. This is the case; indeed,
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we can calculate the minimal witnesses for t with respect to Q and I

just by considering minimal witnesses in the witness basis of t with
respect to Q and I.

Theorem 2.10. Let Q be an SPJRU query, I an instance, and t a
tuple. Then MWit(Q,I,t) = MWhy(Q,I,t).

Proof. To show MWit(Q,I,t) ⊆ MWhy(Q,I,t), suppose J ∈
MWit(Q,I,t). Then by the fact that MWit(Q,I,t) ⊆ Why(Q,I,t),
which was just shown above, we know J ∈ Why(Q,I,t). We need to
show that J is minimal in Why(Q,I,t). Let J ′ ∈ Why(Q,I,t) such that
J ′ ⊆ J be given. Then J ′ ∈ Why(Q,I,t) ⊆ Wit(Q,I,t), so J ′ = J by
the minimality of J in Wit(Q,I,t). Hence, J ∈ MWhy(Q,I,t).

For the ⊇ direction, suppose J ∈ MWhy(Q,I,t). Then J ∈
Why(Q,I,t) ⊆ Wit(Q,I,t). We need to show that J is minimal in
Wit(Q,I,t). Suppose J ′ ∈ Wit(Q,I,t) with J ′ ⊆ J . Then by Theo-
rem 2.7, we know that there exists J ′′ ∈ Why(Q,I,t) with J ′′ ⊆ J ′. But
since J is minimal in Why(Q,I,t) and J ′′ ⊆ J , we have J ′′ = J ′ = J .
Hence J ∈ MWit(Q,I,t).

Note that the definition of MWit(Q,I,t) is independent of the struc-
ture of the query. Since MWhy(Q,I,t) = MWit(Q,I,t), and MWit is
clearly invariant under query equivalence by definition, MWhy is also
invariant under query equivalence.

Corollary 2.11. Let Q,Q′ be SPJRU queries, where Q ≡ Q′. Let I be
an instance and t a tuple. Then MWhy(Q,I,t) = MWhy(Q′, I, t).

A natural question that arises at this point regards the relation-
ships between lineage, why-provenance (i.e., the witness basis) and the
minimal witness basis. We shall not pursue this further here, but will
address this question in some detail in Section 5. In particular, we shall
show in Section 5.1 that for the case of SPJRU queries, both lineage
and the minimal witness basis can be computed from why-provenance;
in fact all of these can be viewed as instances of the semiring model.
However, neither lineage, nor why-provenance can be obtained from
the minimal witness basis.
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2.2.1 Minimal Witnesses and the View Deletion Problem

In subsequent work, Buneman et al. [14] make explicit the connection
between minimal witnesses and the view deletion problem. Let I be a
database instance and V = Q(I) be a view defined over I. The view
deletion problem is to find a set of tuples ∆I to remove from I so as
to delete a given tuple t in the view V . This problem makes sense for
monotone queries, where source tuples must be removed in order to
delete a tuple from the output. In translating the deletion of t from
the view into deletions over the input database I, an obvious starting
point is to examine the input tuples that witness the existence of t
in I according to Q. Intuitively, all minimal witnesses of t must be
“destroyed” to delete t from the view, where a witness is destroyed
if one of the tuples in the witness is deleted from I. Thus, minimal
witnesses and the view deletion problem are closely connected.

Only in very restricted settings does a unique set ∆I that causes
the deletion of the desired tuple in the view exist. To see this, consider
a view that is the result of a join between two relations R1 and R2. Let
t be a tuple in the view and assume for simplicity that t has a single
minimal witness consisting of tuples t1 of R1 and t2 or R2. Clearly,
there are at least two choices of sets of tuples to delete from the source
that result in the deletion of t from the view (i.e., {t1}, {t2}, or any
subset of source tuples that contains t1 or t2). In [14], Buneman et al.
study the alternative problem of finding a minimal update to I that
will cause the desired deletion of t from the view. They consider two
variants of the problem, which correspond to minimizing two different
objective functions: (1) the number of side-effects that the deletions in
I cause in the view (in addition to the deletion of t); and (2) the number
of tuples deleted from I, regardless of the number of side-effects in V .

The first variant leads to the view side-effect problem stated as
follows: given a source database I, a query Q, the view V = Q(I)
and a tuple t ∈ V , find a subset ∆I ⊆ I whose removal will delete
t from V while minimizing the number of other tuples deleted from
the view. In other words, we wish to minimize |∆V |, where ∆V =
(V \Q(I\∆I))\{t} is called the set of side-effects on V . If ∆V = ∅ we
say that the deletion ∆I on I is side-effect free. Note that the query,
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source database, as well as the tuple are part of the input to the view
side-effect problem. Buneman et al. showed a dichotomy in the com-
plexity of the problem of deciding whether there exists a side-effect-free
deletion for the class of SPJRU queries. The problem is NP-hard for
queries involving join and either projection or union [14, Theorem 2.1].
For this class of queries, a tuple in the output of the query may have
many witnesses (due to projection or union), and there may be many
possible ways of destroying each witness (due to join). The difficulty
here consists in reasoning about how a set of source deletions affects
the existence of other view tuples in order to minimize the side-effects
on the view. On the other hand, the problem of finding a side-effect
free deletion can always be solved in polynomial time for the subclass
of queries that do not simultaneously involve join, and either projection
or union (i.e., SPU and SJ queries) [14, Theorems 2.3 and 2.4].

The second variant leads to the source side-effect problem stated
as follows: given a source database I, a query Q, the view V = Q(I)
and a tuple t ∈ V , find the smallest subset ∆I ⊆ I whose removal will
delete t from V . Buneman et al. show that the problem is NP-hard for
queries involving join and either projection or union [14, Theorems 2.5
and 2.6], and it is polynomial-time solvable for the remaining queries
in the class [14, Theorems 2.8 and 2.9]. Again, we treat the query Q,
instance I and tuple t as part of the input in these results.

It is worth pointing out that view deletions, and more generally, the
view update problem has been studied extensively in the past. In earlier
research on the general view update problem [4, 24, 30, 46], an update
(i.e., deletion, insertion, or modification) to the view can be translated
as a combination of different types of updates to the source. Dayal and
Bernstein [30] also identify clean sources, which, in the context of the
view deletion problem for SPJU views, corresponds to side-effect free
deletions. Cui and Widom [26] give an algorithm that finds an exact
side-effect free deletion whenever there exists one, using lineage.

Cong et al. [23] show that both the view side-effect and the source
side-effect problems become tractable in the case of key-preserving SPJ
views [23, Theorems 3.1 and 3.4]. Intuitively, an SPJ query Q is key-
preserving if it retains a key for every input relation involved in Q.
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How-Provenance

The why-provenance of an output tuple provides a set of witnesses
for that output tuple. However, it does not provide additional infor-
mation on how the output tuple is actually derived. In this section,
we begin by discussing the relational algebra provenance semirings
framework of Green et al. [43], where the notion of how-provenance
was first articulated. We also discuss the lineage component of the
Trio system [2, 6, 59] for managing relational data with uncertainty
and lineage. Trio tracks data provenance and uses it to compute
confidence levels for uncertain values in the output of a query, among
other things. Although described as capturing “where data comes
from” in [5, 52], Trio’s notion of lineage can be viewed as a form of
how-provenance, as we shall explain in this section.

After this, we describe an extension of provenance semirings for
recursive datalog programs also proposed by Green et al. [43]. We then
leave the realm of relational algebra and datalog, and turn our attention
to schema mappings. In this context, we discuss an extension of prove-
nance semirings implemented in the ORCHESTRA collaborative data
sharing system [42, 44]. We also discuss routes, a notion of provenance
over schema mappings proposed by Chiticariu and Tan [21], prior to the
work of Green et al. on ORCHESTRA [42, 43, 44], in the context of the
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SPIDER system [3] for debugging schema mappings. Routes are also a
form of how-provenance over schema mappings, hence their treatment
in this section.

3.1 Provenance Semirings

The notion of how-provenance was introduced by Green et al. [43]. In
this work, the classical semiring algebraic structure is used in devis-
ing a general framework for uniformly treating various extensions to
relational algebra such as handling bag semantics or incomplete and
probabilistic databases. Moreover, Green et al. show that their semir-
ing framework is appropriate for capturing a notion of data provenance
that is more general than why-provenance and which they call how-
provenance. (We will discuss the precise meaning of “more general”
later in Section 5.)

The idea behind the semiring framework of Green et al. [43] is to
distinguish two basic transformations that source tuples undergo as a
result of applying a relational query to a source database: they can be
either joined together as an effect of a join, or merged together, via
union or projection. In Section 1, we have already seen an example of
how this observation can be exploited to provide an explanation of how
an output tuple is derived in the result of a query. For convenience,
the example is reproduced in Figures 3.1(a, b). Consider the query Q
and the tags shown to the right of the result of Q in Figure 3.1(b).
Intuitively, these abstract tags describe how each output tuple is pro-
duced in the result of Q, in terms of the abstract tags (or identifiers) of
the source tuples. For example, the tag t1 · (t1 + t3) describes that the
first output tuple (San Francisco, 415-1200) is produced by joining (·)
t1 with the result of unioning (+) t1 and t3. Similarly, the tag t22
describes that the second output tuple (Santa Cruz, 831-3000) was
created by joining t2 with itself. Green et al. [43] observe that these
abstract tags describing how source tuples are combined (i.e., unioned
and/or joined) to produce an output tuple are in fact polynomials in
a commutative semiring (K,0,1,+, ·).

Let us now formally introduce the framework of [43] for mapping
relational algebra operations into operations in the semiring. Let K be
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Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type

t3: BayTours San Francisco cable car
t4: BayTours Santa Cruz bus
t5: BayTours Santa Cruz boat
t6: BayTours Monterey boat

(a)

Q:
SELECT e.destination, a.phone
FROM Agencies a,

(SELECT name,
based in AS destination

FROM Agencies a
UNION
SELECT name, destination
FROM ExternalTours ) e

WHERE a.name = e.name

Result of Q:
destination phone
San Francisco 415-1200 t1 · (t1 + t3)
Santa Cruz 831-3000 t22
Santa Cruz 415-1200 t1 · (t4 + t5)
Monterey 415-1200 t1 · t6

(b)

Fig. 3.1 (a) Example source database with two N[t1, . . . , t6] relations; (b) the N[t1, . . . , t6]
relation resulting from evaluating the query Q in the provenance semiring.

a set containing a distinguished element 0. A K-relation models a
relation as a function R on all possible tuples, where R maps tuples in
the relation to nonzero elements of K, and tuples that are not in the
relation to the special element 0. Formally, a K-relation over a finite
set of attributes U is a function R:U-Tuples → K, such that its support
defined as supp(R) = {t |R(t) 	= 0} is finite. Here, U-Tuples denotes
the set of all tuples with attributes U . A K-relation R:U -Tuple → K

corresponds to a finite relation whose elements are tagged with
elements of K. In particular, B-relations correspond to ordinary tables,
and N-relations to multisets or bags. Indeed, the K-relational model we
are about to discuss subsumes both classical set-based semantics and
bag-based semantics of the relational algebra, as well as several other
interesting semantics such as probabilistic and incomplete information.

We sometimes write K-relations concretely as ordinary rela-
tions in which each tuple carries an annotation. For example
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{(A :1,B:2)x,(A :17,B:42)y+xy} denotes the K-relation r satisfying
r(A :1,B:2) = x, r(A :17,B:42) = y + xy, and r(t) = 0 for all other
tuples. In this representation, the semiring annotations of any duplicate
tuples are summed, for example, {(A :1,B:2)p,(A :1,B:2)q} is equiva-
lent to {(A :1,B:2)p+q}.

The basic relational algebra operators are mapped into operations
on an algebraic structure (K,0,1,+, ·) as follows.

Definition 3.1 ([43, Definition 3.2]). Let (K,0,1,+, ·) be an alge-
braic structure with two binary operations + and · and two distin-
guished elements 0 and 1. The operations of the positive K-relational
algebra are defined as follows.

Empty relation. For any set of attributes U , there exists ∅: U-Tuples →
K such that ∅(t) = 0.

Selection. Let R: U-Tuples → K and θ be a selection predicate that
maps each U-Tuple to either 0 or 1. Then σθ(R) : U-Tuples → K is
defined by (σθ(R))(t) = R(t) · θ(t). That is, (σθ(R))(t) is R(t) if θ holds
on t and 0 otherwise.

Projection. Let R: U-Tuples → K and V ⊆ U . Then πV (R):
V -Tuples → K is defined by (πV (R))(t) =

∑
t=t′[V ]∧R(t′) 	=0R(t′).

Union. Let R1,R2: U-Tuples → K. Then R1 ∪ R2: U-Tuples → K is
defined by (R1 ∪ R2)(t) = R1(t) + R2(t).

Natural join. Let R1: U1-Tuples → K and R2: U2-Tuples → K. Then
R1 �� R2: U1 ∪ U2-Tuples → K is defined by (R1 �� R2)(t) = R1(t1) ·
R2(t2), where t1 = t[U1] and t2 = t[U2].

If we assume that K-relational semantics satisfies the same equiva-
lence laws as positive relational algebra operators over bags (i.e., union
(+) is associative, commutative and has identity ∅, join (·) is asso-
ciative, commutative and distributive over union, and projection and
selection commute with each other, as well as with union and join),
Green et al. conclude that (K,0,1,+, ·) must be a commutative semir-
ing. Recall that an algebraic structure (K,0,1,+, ·) is a commutative
semiring if (K,0,+) and (K,1, ·) are commutative monoids, · distributes
over + and 0 · a = a · 0 = 0, ∀a ∈ K. Here, a commutative monoid is an
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algebraic structure (K,id,op), where op is associative and commutative
and has identity element id.

The semiring operations essentially document how each output tuple
is produced from source tuples. Intuitively, if each source tuple in a
database D is tagged with a distinct tuple id, the semiring gives us the
how-provenance for each output tuple in the form of a polynomial with
coefficients from the set N of natural numbers and indeterminates (or
variables) from the set of source tuple ids.

For clarity, we restate the above definition (which was taken literally
from [43]) as a set of equations. In these equations, we write QK(I) for
the result of evaluating a query Q on an instance I with respect to a
particularK. This notation is useful since we sometimes need to discuss
more than one K simultaneously elsewhere in the paper.

({u})K(I)t =
{

1, t = u,

0, otherwise.

RK(I)t = I(R)(t)

(σθ(Q))K(I)t = θ(t) · QK(I)t

(ρA�→B(Q))K(I)t = QK(I)(t[B �→ A])

(πV (Q))K(I)t =
∑

u∈supp(QK(I)),u[V ]=t

QK(I)u

(Q1 � Q2)
K(I)t = Q1

K(I)(t[U1]) · Q2
K(I)(t[U2])

(Q1 ∪ Q2)
K(I)t = Q1

K(I)t + Q2
K(I)t

Observe that in the expression ({u})K(I)t, the expression {u} is a query
expression describing a constant, singleton relation, not a relation value
per se. We interpret such constants as K-relations that assign 1 to u
and 0 to all other tuples; this is equivalent to the singleton set {u}
in relational algebra or the singleton multiset {u} in bag relational
algebra. The summation in the case for projection is finite since the
support of a K-relation is assumed to be finite. Also, in the rule for
selection, we view a test θ as a function θ: U-Tuples → {0K ,1K}.

Definition 3.2 (Positive algebra provenance semiring [43,
Definition 4.1]). Let X be the set of all tuple ids of a database
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instance D. The positive algebra provenance semiring for D is defined
as the semiring of polynomials (N[X],0,1,+, ·), where N[X] denotes the
set of polynomials with coefficients from N and variables from X, and
+ and · have the usual definitions from algebra.

Concretely, if TupleLoc is the set of all tagged tuples from I, then
we define KHow as N[TupleLoc], and we define the KHow-instance IHow

as follows:

IHow(R)(t) =
{

(R,t) t ∈ I(R)
0 t /∈ I(R)

Finally, we define the how-provenance of a tuple t with respect to Q(I)
as How(Q,I,t) = QKHow(IHow)t. That is, we take how-provenance to be
a polynomial expression over tuples (R,t).

To illustrate, our source database from Figure 3.1(a) can be seen as
consisting of two N[t1, . . . , t6] relations. Applying the query Q to these
relations and performing the calculations in the provenance semiring
results in the N[t1, . . . , t6] relation shown in Figure 3.1(b). As an exam-
ple, the how-provenance of the first two output tuples is given as the
polynomials t1 · (t1 + t3) and respectively, t22. (Note that t1 · (t1 + t3)
is the same as t21 + t1t3, since · distributes over +.)

3.2 Trio Lineage

Trio [5, 52] is a system for managing relational data along with uncer-
tainty and lineage. In this paper, we discuss a simplified version of Trio’s
ULDB (Uncertainty-Lineage Databases) data model which is described
in [52]. This simplified model is similar to the relational model, except
that each tuple in a relation is associated with a numerical confi-
dence value in the interval [0,1], indicating the probability that the
tuple belongs to the database, as well as with an expression describ-
ing its lineage. Trio’s lineage is different from the lineage notion of Cui
et al. [27], which is a form of why-provenance, as explained in Section 2.
In [5, 52], Trio’s lineage is described as capturing “where data comes
from”. However, as we shall explain in this section, Trio’s lineage can
also be characterized as a form of how-provenance.
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Agencies
name based in phone

t1: BayTours San Francisco 415-1200 0.7 λ(t1) = t1
t2: HarborCruz Santa Cruz 831-3000 1.0 λ(t2) = t2

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50 0.9 λ(t3) = t3
t4: BayTours Santa Cruz bus $100 0.6 λ(t4) = t4
t5: BayTours Santa Cruz boat $250 0.5 λ(t5) = t5

(a)
Trips
destination phone

u1: San Francisco 415-1200 0.63 λ(u1) = t1 ∧ t3
u2: Santa Cruz 415-1200 0.56 λ(u2) = (t1 ∧ t4) ∨ (t1 ∧ t5)

(b)

Fig. 3.2 An example ULDB database with two base relations (a) and one derived
relation (b).

Consider the ULDB database shown in Figure 3.2(a). This is a prob-
abilistic version of our online travel agency portal database, which may
have been obtained, for example, by scraping and integrating data from
various websites. Consequently, each tuple may exist in the database
with some confidence, and the confidence values are shown to the right
of each tuple. Each tuple has a unique id, denoted as t1–t5 in the figure,
and is annotated with lineage. Lineage is represented as a function λ

that associates to each tuple id a Boolean formula whose symbols are
other tuple ids in the database. Since Agencies and ExternalTours are
base relations, the lineage of each of their tuples is the tuple itself (i.e.,
λ(ti) = ti, i ∈ [1,5]).

To illustrate lineage for derived data, suppose we execute the query
πdestination,phone(Agencies �� ExternalTours) on the database instance
from Figure 3.2(a) and we store its result in a relation called Trips (see
Figure 3.2(b)). In Trio, joins produce conjunctive lineage indicating
that an output tuple exists due to the tuples in the input relations that
joined to produce that output tuple. For example, the lineage of the first
tuple in the relation Trips is given by λ(u1) = t1 ∧ t3, indicating that
its existence is due to the existence of both tuples t1 and t3 in relations
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Agencies and ExternalTours, respectively. In turn, operations such as
projection or union, produce disjunctive lineage, if they are duplicate-
eliminating. By default, Trio operates with bags of tuples carrying tuple
identifiers, and an additional duplicate elimination operator is applied,
whenever set semantics are desired. For illustration purposes, let us
assume that projection is duplicate-eliminating. The lineage of the sec-
ond Trips tuple is given by λ(u2) = (t1 ∧ t4) ∨ (t1 ∧ t5). This essentially
indicates that the existence of u2 in Trips is due to the existence of both
t1 and t4, or both t1 and t5.

In a companion technical report, Das Sarma et al. [51] give
algorithms for computing lineage over various relational operators in
the context of the general ULDB model of Trio. In this general ULDB
model, discussed by Benjelloun et al. [5] and Das Sarma et al. [52,
Section 6], each tuple may have one or more alternatives. Each alterna-
tive a of a tuple t is associated with a confidence value which indicates
the probability that t takes the value a. Moreover, each alternative is
associated with its own distinct lineage, described in terms of alter-
natives of other tuples in the database. For the purpose of drawing
a meaningful comparison between Trio’s lineage and other versions of
how-provenance discussed in this section, we prefer to base our dis-
cussion on the simplified ULDB model discussed for the most part
by Das Sarma et al. [52] and ignore the multi-alternative aspect of
ULDBs.

In the following, we present the algorithms for computing lineage
given in Das Sarma et al. [52, Appendix A], which we restrict to the spe-
cial case of simplified ULDB relations (i.e., without tuple alternatives).
These algorithms can essentially be viewed as a procedural definition
for lineage of ULDB data over relational operators.

Definition 3.3 (Trio lineage adapted from [51, Appendix A]).
Consider input relations R, R1 and R2 with lineage λ, λ1 and λ2. Let
λ′ denote the lineage of the output obtained by applying a relational
operator op on R (if op is unary), or R1 and R2 (if op is binary).

Selection. For each tuple t ∈ R satisfying the selection predicate θ, add
a new tuple t′ in σθ(R) such that t′ is identical to t, and λ′(t′) = λ(t).
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Projection. For each tuple t ∈ R, add a new tuple t′ in πU (R) such that
t′ = t[U ], and λ′(t′) = λ(t).

Join. For each pair of tuples t1 ∈ R1 and t2 ∈ R2 satisfying the join
condition, add a new tuple t′ in R1 �� R2 such that t′[U1] = t1, t′[U2] =
t2, and λ′(t′) = λ(t1) ∧ λ(t2), where U1 and U2 are the attributes of R1

and respectively, R2.

Union. For each tuple t1 ∈ R1 add a new tuple t′ in R1 ∪ R2 such
that t′ is identical to t1, and λ′(t′) = λ(t1). Similarly, for each tuple
t2 ∈ R2 add a new tuple t′ in R1 ∪ R2 such that t′ is identical to t2,
and λ′(t′) = λ(t2).

Intersection. For each tuple t1 ∈ R1 such that there exists at least one
tuple t2 ∈ R2 that is identical to t1, add a new tuple t′ in R1 ∩ R2 such
that t′ is identical to t1, and λ′(t′) = λ(t1) ∧ (λ2(t12) ∨ ·· · ∨ λ2(tk2)),
where t12, . . . , t

k
2 are all the tuples in R2 that are identical to t1.

Difference. For each tuple t1 ∈ R1 such that there does not exist a tuple
t2 ∈ R2 that is identical to t1, add a new tuple t′ in R1 − R2 such that
t′ is identical to t1, and λ′(t′) = λ(t1).

Duplicate elimination. For each distinct tuple t ∈ R, add a new tuple t′

in δ(R) such that t′ = t, and λ′(t′) =
∨

t′′∈R∧t′′=tλ(t′′).
Grouping with aggregation. Let G be the attributes of relation R that
we group by, and let A be the attribute of R that we aggregate over. For
each group of R tuples t1, . . . , tk that agree on the values of attributes
G, add a new tuple t′ in γG,aggr(A) AS A′(R) such that t′[G] = t1[G](=
t2[G] = · · · = tk[G]), t •A′ is the aggregated value computed over the A
values of tuples in the group and λ′(t′) = λ(t1) ∧ ·· · ∧ λ(tk).

As mentioned earlier, all Trio operators are designed to work with
bags of tuples. Set semantics for each operator can be obtained by
explicitly applying the duplicate-elimination operator as an additional
step. In addition to the basic operators, Trio also defines lineage for
three other relational operators: intersection, difference and grouping
with aggregation. For intersection, the lineage of a tuple t in the result
of R1 ∩ R2 is the conjunction between the lineage of the tuple t1 in R1

that t was created from, and a disjunction between the lineages of all
tuples t12, . . . , t

k
2 in R2 that are identical to t. Hence, the lineage indicates
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that t was created due to the existence of t1 in R1, together with the
existence of at least one identical tuple in R2, and pinpoints exactly
those identical tuples in R2. Note that the procedure for computing
lineage is not symmetric, in that R1 ∩ R2 and R2 ∩ R1 have different
lineages.1 However, it becomes symmetric if we take intersection to
be duplicate-eliminating. In this case, the lineage of a tuple t in R1 ∩
R2 is identical to the lineage of the same tuple in R2 ∩ R1 and it is
given by λ′(t) = (λ1(t11) ∨ ·· · ∨ λ1(tm1 )) ∧ (λ2(t12) ∨ ·· · ∨ λ2(tk2)), where
t11, . . . , t

m
1 and respectively, t12, . . . , t

k
2 are all the tuples identical to t in

R1, and respectively R2. For difference, the lineage of a tuple t in the
result of R1 − R2 is the lineage of the tuple t1 in R1 that t was created
from. Finally, for grouping with aggregation, the lineage of a tuple t in
the result is the conjunction of the lineages of all tuples in the group
that corresponds to t.

If we consider only the basic relational operators consisting of
selection, projection, union and natural join (as a special case of the
join operator), and assume they are all duplicate-eliminating, then con-
junction and disjunction in the lineage of an output tuple indicate how
input tuples have been joined, and respectively, merged together to pro-
duce that output tuple. This is essentially the reason why we consider
Trio’s lineage to be a form of how-provenance, as opposed to having a
flavor of where-provenance as described in [5, 52]. In fact, if we consider
the simplified ULDB model where each tuple has a single alternative,
then the Trio model is similar to the N[X]/≡-relational model where
N[X]/≡ is the provenance semiring quotiented by the least congru-
ence satisfying x · x ≡ x. Thus, multiplication is idempotent (reflect-
ing Boolean identity x ∧ x = x) but addition is not (reflecting the fact
that tuples in Trio may appear multiple times). In particular, for the
example query discussed above (with the input and output shown in
Figure 3.2), evaluation in this semiring yields lineage t1 · t3 for tuple
u1 and t1 · t4 + t1 · t5 for tuple u2, which is the same as the results of
Trio (reading + as ∨ and · as ∧). This characterization was suggested
by Green [40]; note that this approach does not take node identities

1 However, the possible instances for R1 ∩ R2 and R2 ∩ R1 are the same.
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or tuple alternatives into account, so it is not clear that the full Trio
model is an instance of the semiring model.

However, Trio’s design is still under active development and so fur-
ther comparison with other models is beyond the scope of this paper.

3.2.1 An Application: Computing Confidence Values
of Derived Data

One of the main applications of lineage in Trio is in computing the
confidence values for derived data. For example, since λ(u1) = t1 ∧ t3,
the confidence value associated with u1 is computed as the probability
that both t1 and t3 are in the database: Pr(u1) = Pr(t1 ∧ t3) = Pr(t1) ·
Pr(t3) = 0.7 · 0.9 = 0.63, where Pr(t) denotes the confidence value
associated with tuple t. The lineage of u2 can be reduced to λ(u2) = t1 ∧
(t4 ∨ t5). Hence, the confidence of u2 is computed as Pr(u2) = Pr(t1 ∧
(t4 ∨ t5)) = Pr(t1) · (Pr(t4 ∨ t5)). Since t4 and t5 are independent of
each other, we have Pr(t4 ∨ t5) = Pr(t4) + Pr(t5) − Pr(t4) · Pr(t5) =
0.6 + 0.5 − 0.6 · 0.5 = 0.8. Hence, we have Pr(u2) = 0.7 · 0.8 = 0.56.

Trio adopts the eager approach for computing lineage. That is, the
lineage of data that is the result of a query is computed at query exe-
cution time. Furthermore, whenever the derived data is stored in the
database, its lineage is also recorded along with the data. The recorded
lineage is subsequently used to ensure that confidence values of derived
data are computed correctly, regardless of the query plan chosen by the
query optimizer. To exemplify, let us consider the following two equiv-
alent query plans for executing the query that produces the relation
Trips.

Plan 1: πdestination,phone(Agencies �� πname,destination(ExternalTours))
Plan 2: πdestination,phone(Agencies �� ExternalTours)

Suppose confidence values are not computed based on the lin-
eage associated with result tuples. Instead, let us assume that confi-
dences and lineage are computed within each operator in the query
plan, propagated along with data to the next operator, and finally
to the result. For simplicity, assume the base relations consist of only
tuples t1, t4 and t5. According to Plan 1, the projection on External-
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Tours produces one intermediate tuple (BayTours, SantaCruz), which
we denote as w. Its lineage is λ(w) = t4 ∨ t5 and its confidence is
computed as Pr(w) = Pr(t4 ∨ t5) = 0.8. The join results in one
intermediate tuple with lineage t1 ∧ w whose confidence is computed
as Pr(t1) · Pr(w) = 0.7 · 0.8 = 0.56. The final projection produces the
output tuple u2 with final confidence 0.56.

In Plan 2, the join produces two intermediate tuples, which we
denote as w1 and w2, where λ(w1) = t1 ∧ t4 and λ(w2) = t1 ∧ t5.
Hence, we have Pr(w1) = Pr(t1) · Pr(t4) = 0.42 and Pr(w2) = Pr(t1) ·
Pr(t5) = 0.35. After projection, we obtain the output tuple u2 with
lineage λ(u2) = w1 ∨ w2. Hence, the confidence for u2 is computed as
Pr(u2) = Pr(w1) + Pr(w2) − Pr(w1) · Pr(w2) = 0.623, which is an
incorrect result. This is because the computation assumed indepen-
dence between the two intermediate tuples w1 and w2, which does not
hold, since they both have “contributions” from the input tuple t1.
Intuitively, Plan 2 is “unsafe” in that computing confidences operator
by operator is not guaranteed to produce the correct result. In contrast,
computing confidences based on the lineage associated with the final
output result, as done in Trio, is guaranteed to produce the correct con-
fidences, even when the query plan is unsafe. Observe that expanding,
followed by simplifying, the lineage expression of u2 obtained with Plan
2 leads to λ(u2) = λ(w1) ∧ λ(w2) = (t1 ∧ t4) ∨ (t1 ∧ t5) = t1 ∧ (t4 ∨ t5)
and results in the correct confidence value as explained above.

Dalvi and Suciu [28] gave a sound and complete algorithm that
will rewrite a select–distinct–project–join query into an equivalent safe
query if and only if there is a safe plan for the query. This work comple-
ments the above work on calculating confidence using lineage in Trio.

3.3 Provenance Semirings and Recursion

Green et al. [43] generalized the provenance semirings framework to
consider “pure” datalog programs, where the body of each datalog rule
consists of only relational atoms. A difficulty that arises in extending
the semiring model in this context has to do with handling recursion.
We use the recursive transitive closure datalog program from Figure 3.3
to briefly illustrate the extension.
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Source instance I:
Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3001

ExternalTours
name destination type

t3: BayTours San Francisco cable car
t4: BayTours Marine County bus
t5: HarborCruz Monterey boat

Datalog program P :
m1: Tours(c1,c2) :− Agencies(n,c1,p), ExternalTours(n,c2,t).
m2: Tours(c1,c2) :− Tours(c1,c3), Tours(c3,c2).

Instance J (result of P on I):
u1: San Francisco San Francisco u1 = t1t3 + u2

1

u2: San Francisco Marine County u2 = t1t4 + u1u2

u3: Santa Cruz Monterey u3 = t2t5

Fig. 3.3 An example illustrating provenance semirings for datalog.

Green et al. [43] developed two interpretations for the semantics
of datalog queries on K-relations, corresponding to the proof-theoretic
and, respectively, fixpoint interpretations of datalog, and prove that
they are equivalent. Under the proof-theoretic interpretation, the tag
of an output tuple is the sum over all its derivation trees of the product
of the tags at the leaves of each tree. Due to recursion, a tuple may
have infinitely many derivation trees which leads to infinite sums. In
our example from Figure 3.3, both output tuples (e.g., denoted u1

and u2) have infinitely many derivation trees. For example, some of
the derivation trees for u1 are shown below.

u1

t1 t3

u1

u1 u1

t1 t3 t1 t3

u1

u1 u1

u1 u1 t1 t3

t1 t3 t1 t3

u1

u1u1

u1 u1t1 t3

t1 t3 t1 t3

…
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Under the alternative, but equivalent, fixpoint interpretation, the
possibly infinite sums of products are represented by means of an alge-
braic system of equations which reflect all possible ways of producing an
output tuple as an effect of applying the immediate consequence oper-
ator of the datalog query. The algebraic system obtained for our exam-
ple is shown in Figure 3.3. For example, the equation u1 = t1t3 + u2

1
indicates that the output tuple u1 can be obtained in two ways: by
joining the source tuples t1 and t3, or by joining with itself. Note that
since the immediate consequence operator may involve output tuples,
in addition to input tuples, the algebraic system involves two sets of
variables, corresponding to the set of input, and respectively, output
tuple tags.

To capture the how-provenance of tuples in the result of a datalog
query on N[X]-relations, where X is the set of source tuple ids, Green
et al. identify the semiring N∞[[X]] of formal power series as appropri-
ate. A formal power series with variables from X and coefficients from
N∞ is a mapping that associates to each monomial with variables from
X a coefficient in N∞. Note that polynomials in N[X] are no longer suf-
ficient, since infinite sums need to be supported. Also, the coefficients
are from N∞, as opposed to N, since an output tuple may be produced
in infinitely many ways from the same monomial. To illustrate, the
provenance semiring for our example in Figure 3.3 is N∞[[{t1, . . . , t6}]].

3.3.1 Computing How-Provenance for Datalog Programs

Intuitively, the how-provenance of tuples in the output of a datalog pro-
gram can be computed by solving the corresponding fixpoint system of
equations. For example, the how-provenance of the output tuple u1 in
Figure 3.3 is the infinite sum t1t3 + t21t

2
3 + 2t31t

3
3 + 5t41t

4
3 + · · · . Green

et al. [43] show that it is decidable whether the how-provenance of a
tuple is a polynomial in N[X] and give an algorithm for computing it.
The algorithm proceeds by repeatedly applying the immediate conse-
quence operator starting from source tuples and keeping track of the
derivation trees produced in the process until a fixpoint is reached. At
every step, the algorithm detects if an output tuple has infinitely many
derivations and places it in a separate pool, so that no other derivation
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trees are produced for it, thus ensuring termination. For each output
tuple t with finitely many derivation trees, the algorithm outputs a
polynomial obtained by taking the sum of products of tuple ids at the
leaves of all t’s derivation trees. If t has infinitely many derivation trees,
Green et al. show that it is decidable whether the how-provenance of
t is in N[[X]], or in N∞[[X]], and give an algorithm for computing the
coefficient for a particular monomial in the provenance series of t, even
when this coefficient is ∞.

3.4 How-Provenance for Schema Mappings

In this section we turn our attention to schema mappings, which have
been widely used to specify relationships between schemas in appli-
cations requiring interoperability between heterogeneous data sources
(e.g., data exchange [47], data integration [48], and dataspaces [45]).
The ORCHESTRA data sharing system [42, 44] proposed an exten-
sion of provenance semirings to express how-provenance over schema
mappings. A year earlier, the notion of route was introduced in the
context of the SPIDER system [3, 21] for debugging schema mappings.
Routes are also a form of how-provenance over schema mappings. In
this section, we discuss the two systems and compare their correspond-
ing notions of how-provenance.

Schema Mappings. Intuitively, schema mappings are high-level abstrac-
tions for expressing the relationships between two database schemas.
Formally, a schema mapping is a quadruple M = (S, T, Σst, Σt) [47],
where S is a source schema, T is a target schema, and Σst is a set of
source-to-target (s–t) tgds and Σt is the union of a finite set of target
tgds with a finite set of target equality generating dependencies (egds).
An s–t tgd is a tgd of the form ∀xφ(x) → ∃yψ(x,y), where φ(x) is
a conjunction of atomic formulas over S and ψ(x,y) is a conjunction
of atomic formulas over T. A target tgd has a similar form, except
that φ(x) is a conjunction of atomic formulas over T. A target egd is
of the form ∀xφ(x) → x1 = x2, where φ(x) is a conjunction of atomic
formulas over T, and x1 and x2 are variables among x.

A simple schema mapping is shown in the top of Figure 3.4. The
source schema is our travel portal database schema, the target schema
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Source-to-target dependencies (Σst):

m1 : Agencies(n,b,p) → ∃I Trips(I,n,p)

m2 : ExternalTours(n,d,t) → ∃I Transportation(I,t,p)

Target dependencies (Σt):

m3 : Transportation(i,t,p) → ∃N∃P Trips(i,N ,P )

Source instance I (of peer S):
Agencies

name based in phone
t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type

t3: BayTours San Francisco cable car

Target instance J (of peer T):
Trips

id agency phone
u1: I1 BayTours 415-1200 Pv(u1) = m1(t1)
u2: I2 HarborCruz 831-3000 Pv(u2) = m1(t2)
u3: I3 N3 P3 Pv(u3) = m3(u4)

Transportation
id type

u4: I3 cable car

Pv(u4) = m2(t3)

Fig. 3.4 Example schema mapping, and source and target instances satisfying the mapping.

consists of relations Trips(id, agency, phone) and Transportation(id,
type), and the relationships between the two schemas are given by the
s–t tgds m1 and m2, and a target tgd m3. Intuitively, m1 specifies that
for each Agencies tuple in the source, there must exist a tuple in the
Trips target relation, with agency name and phone values extracted
from the name and phone values of the Agencies source tuple. Sim-
ilarly, according to m2, for every ExternalTours source tuple, there
must exist a Transportation tuple in the target with type and price

values extracted from the corresponding values of the ExternalTours
tuple. Finally, the target tgd m3 expresses a referential constraint on
the target data: for every Transportation tuple there must exist a cor-
responding Trips tuple with the same trip id value.

3.4.1 ORCHESTRA

ORCHESTRA [42, 44] is a collaborative data sharing system that
supports a network of interconnected peers wishing to exchange infor-
mation with each other. In this context, provenance semirings are
used to filter data based on trust conditions, as well as perform
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updates incrementally, without recomputing a peer’s data instance
from scratch.

We illustrate the provenance component of ORCHESTRA using
the example schema mapping in Figure 3.4. Assume we have two peers
S and T, whose database schemas are the source and respectively,
the target schemas used in our example. The tgds m1–m3 specify the
relationships between the relational schemas of the two peers.2 Initially,
the instances of both peers are empty. Suppose tuples t1–t3 shown in
Figure 3.4 are inserted into peer’s S instance, and S decides to share this
newly added information with T. Hence, the instance of T is updated
as follows. Tuples u1 and u2 are added to the Trips relation due to
the tgd m1. At the same time, the how-provenance of these tuples
is also computed and stored in additional data structures at peer T.
Conceptually, the provenance is recorded as shown in Figure 3.4, next
to each tuple of peer T. For example, the provenance of u1 is recorded
as Pv(u1) = m1(t1), indicating that u1 can been derived from tuple t1,
and mapping m1 is involved in the derivation. Furthermore, due to m2,
the tuple u4 is added in Trips, with Pv(u4) = m2(t3). Finally, due to
m3, the tuple u3 is added in Trips, with Pv(u3) = m3(u4). Note that
“unknown” new values not present in the instance of S (e.g., I1–I3) are
generated in the process. Such values are called labeled nulls [32] and
they are automatically generated during the transformation as needed,
to enforce the semantics of the tgds.

If we ignore the provenance aspect, the process of computing a peer’s
instance described above is known as the classical chase procedure [1].
Chase with tgds has been used before, in a closely related context, to
compute canonical instances in data exchange [32]. Given a schema
mapping M and a source instance I, a target instance that together
with I satisfies M is called a solution for I under M in the terminology
of [32]. For example, the target instance J shown in Figure 3.4 is a
solution for the source instance I under the schema mapping shown in
the same figure.

An important aspect of ORCHESTRA is that it eagerly computes
and stores data provenance as new data is derived from one peer to

2 In ORCHESTRA, egds are not considered.
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another. ORCHESTRA’s representation of provenance is based on the
datalog provenance semirings framework of Green et al. [43]: prove-
nance semiring expressions are essentially recorded as a system of
fixpoint equations (one equation for each derived tuple). Note that
recording mapping information along with the tuple ids in the prove-
nance representation is in fact an extension of the original semiring
model. As such, this provenance representation is used to support two
important aspects of ORCHESTRA: (1) filtering updates based on
trust conditions, and (2) incrementally maintaining a peer’s instance,
when deletions occur in the system.

Filtering updates based on trust. Each peer may specify trust condi-
tions on the data derived from other peers. For example, a peer may
distrust a subset of data of a specific peer, or data derived through
a specific mapping. Trustworthiness of derived data is formalized in
terms of provenance: data that cannot be derived from trusted tuples
and via trusted mappings is considered untrustworthy and is not used
in updating the peer’s local instance. For example, suppose peer T does
not trust data derived through m2. The provenance expression for u4 is
Pv(u4) = m2(t3) and shows that u4 is derived via the distrusted map-
ping m2. Hence, u4 will not be added to T’s instance. On the other
hand, if the provenance of u4 would be Pv(u4)) = m2(t3) + m∗(t∗),
where m∗ is a trusted mapping and t∗ is a trusted tuple, then T would
accept the insertion of u4, since it can be derived from trusted map-
pings and tuples.

Incremental update exchange. An algorithm for propagating deletions
of tuples that occur in a peer’s instance to other peers in the system is
given in [42]. The algorithm leverages provenance information to com-
pute the set of tuples which can no longer be derived from data still
present in the system, and hence should be deleted. To illustrate, sup-
pose t3 is deleted from peer S. Using the provenance recorded for u3, it
can be easily tested that this tuple is no longer derivable. Hence, u3 can
be deleted from T’s instance and the effect is propagated recursively in
the system. Provenance information indicates that the only tuple that
could be affected by the additional deletion is u4, hence the algorithm
checks if u4 is still derivable, and the process continues until no other
tuples need to be deleted.
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3.4.2 Routes

We illustrate the notion of routes and overview the SPIDER schema
mapping debugging system [3, 21] with the example from Figure 3.4.
The idea behind SPIDER is to use source and target data to assist a
human mapping designer in understanding, refining and debugging a
schema mapping, and this is similar in spirit to debuggers for standard
programming languages which allow one to understand a program by
analyzing its behavior on input test data. A mapping designer is allowed
to browse through and select on source and target data, and SPIDER
displays routes which illustrate the behavior of the schema mapping
with the selected data. For example, R1 shown below is a route for the
target tuple u3:

R1 : 〈I,∅〉 (m2,h)−−−−→ 〈I,{u4}〉 (m3,h′)−−−−→ 〈I,{u3,u4}〉
where h = {n �→ “BayTours”, d �→ “San Francisco”, t �→ “cable car”,
I �→ I3} and h′ = {i �→ I3, t �→ “cable car”, N �→ N3, P �→ P3}. For sim-
plicity, the route can be schematically represented as t3

m2−→ u4
m3−→ u3.

Intuitively, the route demonstrates the existence of the selected tar-
get tuple u3 with the schema mapping, the source data and some inter-
mediate target data (i.e., the target tuple u4). The route consists of
two satisfaction steps with (m2,h) and (m3,h

′), respectively. Note that
under h, the LHS of m2 is t3, while the RHS of m2 is u4. Hence, the first
satisfaction step (m2,h) demonstrates the existence of the target tuple
u4 with the mapping m2 and the source tuple t3. Furthermore, the
second satisfaction step (m3,h

′) demonstrates the existence of u3 with
m3 and the target tuple u4. This route may help a mapping designer
in discovering a “bug” in the schema mapping: the association between
the values “BayTours” and “cable car” in the External-Tours tuple t3
is somehow lost when this data was transferred from the source to the
target. Indeed, the mapping m2 does not migrate the name values of
ExternalTours tuples to the target. Furthermore, the route indicates
that u3 is created to ensure the satisfaction of the target referential
constraint m3. With this information, the designer may now proceed
to refine the schema mapping so as to eliminate the bug. She may then
repeat the process over several iterations, until she is satisfied with the
resulting schema mapping.
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From the example above it is easy to see that routes are a form
of how-provenance. They demonstrate how the selected target tuple is
witnessed with data from the source and the target instances, and the
schema mapping. Formally, a route for a set of selected target tuples
Js is a sequence of satisfaction steps defined as follows.

Definition 3.4 (Satisfaction step [21, Definition 3.1]). Let m be
a tgd ∀xφ(x) → ∃yψ(x,y). Let K1 and K be instances such that K1 ⊆
K and K |= m. Furthermore, let h be a homomorphism from φ(x) ∧
ψ(x,y) to K such that h is also a homomorphism from φ(x) to K1.
We say that m can be satisfied on K1 with homomorphism h and
solution K, or simply m can be satisfied on K1 with homomorphism
h, if K is understood from the context. The result of satisfying m

on K1 with homomorphism h is K2, where K2 = K1 ∪ h(ψ(x,y)) and
h(ψ(x,y)) = {R(h(z))|R(z) is a relation atom in ψ(x,y)}. We denote

this step as K1
m,h−→ K2.

Definition 3.5 (Route [21, Definition 3.3]). Let M = (S, T, Σst,
Σt) be a schema mapping, I be a source instance and J be a solu-
tion of I under M. Let Js ⊆ J . A route for Js with M, I and J (in
short, a route for Js) is a finite non-empty sequence of satisfaction steps

(I,∅)
m1,h1−−−−→(I,J1), . . . ,(I,Jn−1)

mn,hn−−−−→(I,Jn), where (a) Ji ⊆ J,1 ≤ i ≤
n, (b) mi, 1 ≤ i ≤ n, are among Σst ∪ Σt, and (c) Js ⊆ Jn.

3.4.2.1 Computing Routes

As Definition 3.5 shows, routes have declarative semantics, based on
the logical satisfaction of dependencies, and hence independent of the
implementation of the schema mapping. In [21], Chiticariu and Tan
describe algorithms for lazily computing routes by examining the source
instance, the target instance, and the schema mapping. Thus, their
debugging technique based on routes may be easily deployed on any
mapping-based data integration, data exchange or peer-to-peer data
sharing system without changes to the underlying mapping execution
engine.
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One of the algorithms of [21] computes a finite, concise representa-
tion of all routes for a set of target tuples. Given a source instance I, a
target instance J that is a solution for I under the schema mapping M,
and a selected set of target tuples Js from J , their algorithm outputs
a concise representation of all routes for Js with I, J and M, called a
route forest. In the terminology of [21], all routes for Js are character-
ized by the set of all minimal routes for Js. Intuitively, a route for Js is
minimal if none of its satisfaction steps can be removed and the result
still remains a route for Js. For example, the earlier route R1 for u3 is
minimal, while the route R2 shown below is not a minimal route for
u3. (Below, h′′ is such that it maps the LHS of m1 to t1 and the RHS
of m1 to u1.)

R2 : 〈I,∅〉 (m2,h)−−−→ 〈I,{u4}〉 (m3,h′)−−−−→ 〈I,{u3,u4}〉 (m1,h′′)−−−−→ 〈I,{u1,u3,u4}〉

The challenge in developing an algorithm for computing the route
forest was reasoning about recursive mappings. The algorithm given
in [21] proceeds by finding all pairs (m,h), where m is an s–t tgd, that
can witness the selected tuple u with source data. Next, it finds all pairs
(m,h), where m is a target tgd, that can witness u with target tuples.
Finally, the algorithm recursively proceeds to find all possible pairs
(m,h) for witnessing each additional target tuple encountered in the
process. Each such tuple once explored, is never explored again. This
ensures termination, since the computation is not trapped in infinite
loops, and furthermore, a polynomial running time for the algorithm,
since the total number of possible (m,h) pairs is polynomial in the sizes
of I and J . Indeed, one of the main results of [21] shows that although
there may be exponentially many minimal routes, the route forest is a
complete and polynomial size representation of all such minimal routes
for the selected tuples, and moreover, it is computed in polynomial time
(in the sizes of I and J).

3.4.3 Provenance Semirings and ORCHESTRA
vs Routes and SPIDER

Let us now illustrate some of the similarities and differences between
routes and provenance semirings. A first observation is that the two
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models have been originally designed for different languages: the prove-
nance semiring model [43] applies to datalog programs, while routes
apply to schema mappings (expressed using tgds and egds), which are
more expressive than datalog. (Essentially, datalog rules are full tgds,
i.e., without existential quantifiers, with a single atom in the RHS.)
However, the original provenance semiring model has been extended in
ORCHESTRA to handle a version of datalog with skolem functions,
which, in addition to full tgds, also captures non-full tgds by appro-
priately skolemizing the existential variables. Hence, ORCHESTRA’s
provenance semirings model handles schema mappings expressed using
tgds. It does not, however, handle schema mappings with egds.

In order to draw a meaningful comparison between routes and prove-
nance semirings we use the schema mapping shown below, obtained by
expressing the two datalog rules from Figure 3.3 as tgds. We also use
I and J from Figure 3.3 as source and target instances. Clearly, I and
J satisfy the schema mapping below.

Source-to-target dependencies (Σst):
m1 : Agencies(n,c1,ph) ∧ ExternalTours(n,c2,t,p) → Tours(c1,c2)
Target dependencies (Σt):
m2 : Tours(c1,c3) ∧ Tours(c3,c2) → Tours(c1,c2)

Consider the tuple u3 in J . In the original semirings framework of
Green et al. [43] the provenance polynomial of u3 is t2t5. A route for u3

is 〈I,∅〉 (m1,h)−−−−→ 〈I,{u3}〉, where h ={n �→ “HarborCruz”, c1 �→ “Santa
Cruz”, ph �→ “831-3000”, c2 �→ “Monterey”, t �→ “boat”}. Under h,
the LHS of m1 consists of tuples t2 and t5 and hence, the route can
be schematically represented as {t2, t5} m1−→ {u3}. A minor difference
between the route and the provenance polynomial is that the former
tells us more about u3, in addition to the fact that it can be obtained
by joining t2 and t5. In particular, the route reveals that the tgd m1 is
involved, and demonstrates how it is involved, through the assignment
h. However, the mapping is present in the provenance semiring repre-
sentation used in ORCHESTRA (i.e., in the form m1(t2 · t5)), and the
homomorphism h can be easily derived from this representation.

Another difference between routes and provenance semirings lies
in the representation of provenance for tuples that can be derived in
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infinitely many ways. To illustrate, consider the target tuple u1 whose
provenance is given by the polynomial with infinitely many summands

t1t2 + t21t
2
2 + 2t31t

3
2 + 5t41t

4
2 + · · · .

In the work of Green et al. [43], as well as in ORCHESTRA, infinite
provenance is represented as part of the solution for a finite system
of equations, and gave an algorithm that computes the coefficient of a
given monomial in a provenance series, even if it is ∞. As expected,
there are also infinitely many routes for u1, some of which are shown
below.

〈I,∅〉 (m1,h1)−−−−→ 〈I,{u1}〉
〈I,∅〉 (m1,h1)−−−−→ 〈I,{u1}〉 (m2,h2)−−−−→ 〈I,{u1}〉
〈I,∅〉 (m1,h1)−−−−→ 〈I,{u1}〉 (m2,h2)−−−−→〈I,{u1}〉 (m2,h2)−−−−→ 〈I,{u1}〉

· · ·
〈I,{u1}〉 (m2,h2)−−−−→ 〈I,{u1}〉 (m2,h2)−−−−→ 〈I,{u1}〉 (m2,h2)−−−−→ . . .〈I,{u1}〉 (m2,h2)−−−−→ . . .

Here h1 ={n �→ “BayTours”, c1 �→ “San Francisco”, ph �→ “415-
1200”, c2 �→ “San Francisco”, t �→ “cable car”} and h2 ={c1 �→ “San
Francisco”, c2 �→ “San Francisco”, c3 �→ “San Francisco”}. Only two
distinct satisfaction steps are essentially involved in the routes above,
and they can be schematically depicted as {t1, t3} m1−→ {u1} and respec-
tively, {u1} m2−→ {u1}. In [21], Chiticariu and Tan characterize the (pos-
sibly infinite) set of all routes in terms of the route forest which embeds
all minimal routes and give an algorithm for extracting routes from the
route forest. However, their algorithm does not capture the number of
distinct derivations as provenance semirings do.

Apart from the representation of provenance, a difference between
SPIDER and ORCHESTRA consists in the method by which they
compute provenance. ORCHESTRA adopts the eager approach, where
provenance is computed and stored along with the data as data
is exchanged between peers. In contrast, SPIDER adopts the lazy
approach for computing provenance: no extra information is stored
during exchange and provenance is computed only when needed by
analyzing the source and target instances, along with the schema map-
ping. Also recall that the routes definition is based on the logical
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satisfaction of the mapping and applies to any target instance that is a
solution, with no additional properties. Hence, SPIDER is independent
of the mapping execution engine and can be deployed on any mapping-
based data exchange, integration or sharing system without making
any changes to the system. In contrast, ORCHESTRA’s approach is
tied to the mapping execution engine: it can only work with instances
computed within ORCHESTRA, since it requires storing provenance
information during exchange.

Another difference between SPIDER and ORCHESTRA (and
provenance semirings for that matter) is that ORCHESTRA does
not handle schema mappings with target egds. SPIDER works in the
presence of target egds, however, it still does not provide the level
of support one might desire. To illustrate, consider a schema map-
pings with two source-to-target tgds m1: S(x,y,z) → ∃N T (x,y,N)
and m2: S(x,y,z) → ∃N T (x,N,z), and a target egd m3: T (x,y1,z1) ∧
T (x,y2,z2) → y1 = y2 ∧ z1 = z2, expressing that the first attribute of
the target relation T is a key. Consider a source instance I = {(1,2,3)}.
Applying the tgds m1 and m2 results in J ′ = {T (1,2,N1),T (1,N2,3)},
where N1 and N2 are labeled nulls. However, to satisfy m3, we need
to equate N1 with the value 3 and N2 with the value 2, and thus
we obtain the solution J = {T (1,2,3)}. (If a labeled null and a source
value need to be equated during the chase procedure used for data
exchange [32], the null is always replaced by the source value.) SPI-

DER computes two routes for the target tuple: S(1,2,3)
m1,h1−−−−→T (1,2,3)

and S(1,2,3)
m2,h2−−−−→T (1,2,3), where h1 = {x �→ 1,y �→ 2,z �→ 3,N �→ 3}

and h2 = {x �→ 1,y �→ 2,z �→ 3,N �→ 2}. Note that none of these routes
demonstrate how the egd m3 is involved in witnessing the target tuple.
Certainly, it would be useful to extend SPIDER and ORCHESTRA
to demonstrate the contribution of egds in the provenance of target
tuples.

Finally, since the definition of routes is based on the logical sat-
isfaction of tgds, SPIDER may arguably compute “spurious” routes,
if one takes an operational view of the exchange. To illustrate, con-
sider a schema mapping consisting of tgds m1: R(x,y) → T (x,y) and
m2: S(x,y) → ∃N T (x,N). Consider a source instance I consisting of
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tuples R(1,2) and S(1,3). A possible solution for I consists of the
tuple T (1,2). SPIDER computes two routes for this tuple: R(1,2) m1−→
T (1,2) and S(1,3) m2−→ T (1,2). Arguably, the second route is “spurious”
because T (1,2) could not be created by executing m2. In ORCHES-
TRA, only the first is a derivation computed for T (1,2).



4
Where-Provenance

In this section, we discuss the notion of where-provenance introduced
by Buneman et al. [13] and describe subsequent work [14] in which
where-provenance has been used to study the annotation placement
problem. We also discuss an alternative where-provenance semantics
implemented in the DBNotes annotation management system [7, 22]
that is invariant under query rewriting. Finally, we give an overview
of DBNotes, which provides a mechanism for systematically tracing
where-provenance.

4.1 Where-Provenance

The notion of where-provenance has been introduced by Buneman
et al. [13]. In contrast to why- and how-provenance, which indicate the
tuples in the input that witness the existence of an output tuple accord-
ing to a query Q, where-provenance tells us precisely from where an
attribute value v in the output was copied according to Q. Hence, while
why- and how-provenance describe the relationships between input and
output tuples, where-provenance describes the relationships between
input and output locations. Recall that a location (R,t,A) refers to the

441
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Agencies
name based in phone

t1: BayTours San Francisco 415-1200
t2: HarborCruz Santa Cruz 831-3000

ExternalTours
name destination type price

t3: BayTours San Francisco cable car $50
t4: BayTours Santa Cruz bus $100
t5: BayTours Santa Cruz boat $250
t6: BayTours Monterey boat $400
t7: HarborCruz Monterey boat $200
t8: HarborCruz Carmel train $90

Fig. 4.1 Our example database: an online travel portal.

Q1:
SELECT a.name, a.phone
FROM Agencies a, ExternalTours e
WHERE a.name = e.name AND
e.type=‘boat’

Result of Q1:
name phone

BayTours 415-1200
HarborCruz 831-3000

Fig. 4.2 Example query.

field A of a tuple t of a relation R. Intuitively, the where-provenance of
a value v found at location l in the output of Q is the set of all locations
in the input database from which v was copied according to Q.

To illustrate, consider our example travel portal database repro-
duced for convenience in Figure 4.1. Consider the query Q1 asking for
travel agencies offering boat tours shown in Figure 4.2. The where-
provenance of the value “BayTours” in the first tuple in the result of
Q1 is the location (Agencies, t1, name) in the input database, since
“BayTours” was copied from the name attribute of the tuple t1 in the
Agencies relation, according to Q1. Similarly, the where-provenance of
the value “HarborCruz” in the second output tuple is the input location
(Agencies, t2, name).

Buneman et al. [13] defined where-provenance for a determinis-
tic semi-structured data model and an associated query language.
In a follow-up work [14], they adapted the definition to the rela-
tional model with SPJRU queries, and studied the connection between
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where-provenance and annotation propagation through queries. Intu-
itively, the where-provenance of a location in the result of a query
determines the set of all annotations in the input database to be asso-
ciated with that output location. Subsequently, Buneman et al. [14]
defined the semantics of where-provenance by means of a set of
propagation rules for annotations, which specify, for each individual
relational algebra operator, how annotations associated with input
locations propagate to output locations according to the operator.

We next explain the annotation propagation rules of [14], and for-
mally define where-provenance after that. In what follows, we consider
annotated relations in which each location carries a set of zero or more
annotations. To illustrate, consider the database instance shown in Fig-
ure 4.3(a). Each location in R1 and R2 is associated with exactly one
annotation. For example, the locations (R1, t1,A) and (R1, t1,B) have
annotations {a1}, and respectively, {a2}.

Definition 4.1(Annotation Propagation Rules [14, Section 3]).

(1) If t ∈ σθ(R) then an annotation on (R,t′,A) propagates to
(σθ(R), t,A) if t = t′.

(2) If t ∈ πU (R), where U is a set of attributes, then an anno-
tation on (R,t′,A) propagates to (πU (R), t,A) if A ∈ U and
t = t′[U ].

(3) If t ∈ ρ[A�→B](R), then an annotation on (R,t′,C) propagates
to (ρ[A�→B](R), t,C[A �→ B])) if t = t′[A �→ B].

(4) If t ∈ R1 � R2 then an annotation on (R1, t1,A) (or
(R2, t2,A)) propagates to (R1 � R2, t,A) if t[U1] = t1 (or
t[U2] = t2), where U1 and U2 are the attributes of R1 and
R2, respectively.

(5) If t ∈ R1 ∪ R2 then an annotation on (R1, t1,A) (or
(R2, t2,A)) propagates to (R1 ∪ R2, t,A) if t = t1 (or t = t2).

It is easy to see that the annotation propagation behavior defined
by the above rules is indeed based on where data is copied from. Fig-
ure 4.3(b) illustrates the rules for the select, project, renaming and join
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R1
A B

t1: 1a1 2a2

t2: 1a3 3a4

R2
A C

t3: 1a5 2a6

t4: 4a7 5a8

(a)

σB=2(R1)
A B

1a1 2a2

πA(R1)
A

1a1,a3

ρB �→C(R1)
A C

1a1 2a2

1a3 3a4

R1 � R2

A B C

1a1,a5 2a2 2a6

1a3,a5 3a4 2a6

(b)

Fig. 4.3 An input database (a); annotation propagation for relational algebra operators
based on where-provenance (b).

operators with the input database from Figure 4.3(a). In the result
of σB=2(R1) the values “1” and “2” are associated with annotations
{a1}, and respectively, {a2}, since they were copied from the values at
input locations (R1, t1,A) and (R1, t1,B), respectively. In the result of
πA(R1), the value “1” has two annotations, since it was copied from
the “1” values at locations (R1, t1,A) and (R1, t2,A), according to the
semantics of projection. Note that by projecting on the A attribute of
R1 we obtain {(1a1),(1a3)}. However, since set semantics are assumed,
identical tuples are merged and their annotations are unioned together,
thus obtaining a single tuple (1a1,a3). The above operation is called
annotation-union in [7, 56].

The rule for renaming is straightforward. For R1 � R2, an out-
put tuple is formed by combining two input tuples (one from R1 and
one from R2) Thus, the values corresponding to the join attributes
in the output always collect annotations from the corresponding loca-
tions in both these input tuples. For example, the value “1” of the
first tuple in R1 � R2 has annotations {a1,a3}, since “1” was copied
from both the values at locations (R1, t1,A) and (R2, t3,A) according
to the semantics of join. For the case of union, the result of R1 ∪ R2 is
{(1a1,a5 ,2a2,a6),(1a3 ,3a4),(4a7 ,5a8)}. Note that the values “1” and “2”
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of the first tuple have two annotations each, obtained by unioning
together the annotations from the corresponding values of the first
tuple in R1 and respectively, the first tuple in R2.

4.1.1 An Alternative Definition of Where-Provenance

In this section, we shall give an alternative, more direct, definition of
where-provenance for SPJRU queries, which will allow us to relate it
with other notions of provenance discussed in previous sections. Recall
that we defined FieldLoc as the set of locations, or triples of the form
(R,t,A); we write P(FieldLoc) for the set of sets of locations.

We define where-provenance as a partial function Where(Q,I,t) that
takes an instance I ∈ R-Inst , an SPJRU query Q: R → U , and a tuple
t ∈ U -Tuple and yields either a record of sets of locations, or ⊥, mean-
ing “undefined”. As with lineage and why-provenance, we return ⊥ to
indicate that t /∈ Q(I). Otherwise, we obtain a record u where each
of the fields is associated with a set of annotations. For example, if
u = Where(Q,I,t) then u · A will be the where-provenance associated
with t •A with respect to Q and I.

Our definition of Where(Q,I,t) makes use of a binary merging oper-
ation � on records of sets, which is defined as follows. Suppose t1 and
t2 are tuples of types U → P(FieldLoc) and V → P(FieldLoc), respec-
tively. Then,

(t1 � t2) · A =




t1 · A, A ∈ U − V

t1 · A ∪ t2 · A, A ∈ U ∩ V .

t2 · A, A ∈ V − U

This means that � is a partial function which returns an element of
(U ∪ V ) → P(FieldLoc), where the set of annotations associated with
a field A is the union of the respective sets of annotations in field A

of t1 and t2, when A ∈ U ∩ V , and for other fields, we just inherit
the annotations from t1 or t2. Note that � generalizes the annotation–
union operation of [7, 56], which only takes as input two tuples of the
same type. In order to deal with ⊥, we define strict merge �S and lazy
merge �L and

⊔
L operations, similar to analogous operations defined
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in Section 2.1.1:

X �S ⊥ = ⊥ �S X = ⊥
X �S Y = X � Y (X 	= ⊥ 	= Y )

X �L ⊥ = ⊥ �L X = X

X �L Y = X � Y (X 	= ⊥ 	= Y )

⊔
LS =

{
t1 �L · · · �L tn, S = {t1, . . . , tn}
⊥, S = ∅

Finally, we define where-provenance for SPJRU queries as follows.

Definition 4.2 (Where-provenance). Let I ∈ R-Inst be an
instance, Q : R → U be an SPJRU query and t : U be a tuple.
The where-provenance of t with respect to Q and I, denoted as
Where(R,I, t) is as follows.

Where({u}, I, t) =
{

(A : ∅)A∈U , if t = u

⊥, otherwise

Where(R,I, t) =
{

(A : {(R,t,A)})A∈U , if t ∈ I(R)
⊥, otherwise

Where(σθ(Q), I, t) =
{

Where(Q,I,t), if θ(t)
⊥, otherwise

Where(πU (Q), I, t) =
⊔

L{Where(Q,I,u)[U ] | u[U ] = t}
Where(ρB �→C(Q), I, t) = (A : Where(Q,I,t[C �→ B]) · (A[C �→ B]))A∈U

Where(Q1 � Q2, I, t) = Where(Q1, I, t[U1]) �S Where(Q2, I, t[U2])

Where(Q1 ∪ Q2, I, t) = Where(Q1, I, t) �L Where(Q2, I, t)

To illustrate, consider again the queryQ1 from Figure 4.2, which can
be expressed in relational algebra as πname,phone(σtype=‘boat’(Agencies �

ExternalTours)). According to Definition 4.2, the where-provenance of
the second tuple (name: HarborCruz, phone: 831-3000) in the result
of Q1 is the record (name: {(Agencies, t2, name), (ExternalTours, t7,
name)}, phone: {(ExternalTours, t2, phone)}), where the first compo-
nent tells us that the value “HarborCruz” was copied from the locations
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corresponding to the name fields of input tuples t2 and t7, whereas the
second component tells us that “831-3000” was copied from the phone
field of t2. Note a slight difference in the semantics of where-provenance
in case of joins, if the query is expressed in relational algebra as opposed
to SQL. In the latter case (refer to Figure 4.2) the where-provenance
of “HarborCruz” is (Agencies, t2, name), since according to the select
clause of Q1 “HarborCruz” is copied from the name value of t2 (and
not the name values in both t2 and t7).

Note that in contrast to lineage and why-provenance, the rule for
renaming is more involved: we need to invert the renaming applied to
t and ask for the provenance of the field B that was renamed to C. For
example, consider an instance R = {t} where t = (A:1,B:2). The result
of the query ρA�→C(R) is {t′}, where t′ = (C:1,B:2). Then:

Where(ρA�→C(R), I, t′) · C = Where(R,I, t′[C �→ A]) · (C[C �→ A])

= Where(R,I, t) · A = {(R,t,A)}
Another interesting observation that there is a slight mismatch

between our definition of where-provenance, which is based on rela-
tional algebra, and where-provenance with SQL queries in general. The
mismatch is due to the fact that there are multiple ways to define a nat-
ural join operator in SQL. For example, consider the relational algebra
query

πname,phone(σname=‘boat’(Agencies � ExternalTours) .

In our definition of where-provenance, the name field in the output
will receive annotations propagated from both Agencies.name and
ExternalTours.name. In SQL, it is natural to expect that this behavior
could be expressed as:

SELECT name, phone

FROM Agencies JOIN ExternalTours

WHERE type =‘boat’

However, this is not valid SQL; the SQL-92 standard requires that
column name references be unambiguous. Conforming SQL proces-
sors should reject queries with ambiguous field references such as name
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above, although implementations could make a best-effort to disam-
biguate it as one of two different relational algebra queries, one in which
the name field is copied from Agencies.name (as in Q1 in Figure 4.2),
and the other in which the field is copied from ExternalTours.name.
These two queries are equivalent with respect to the ordinary seman-
tics of queries, but not with respect to their where-provenance seman-
tics. Nevertheless, a knowledgeable programmer can always avoid this
ambiguity by writing a more specific query expression; in addition, the
techniques described in the next section avoid this problem entirely by
modifying the where-provenance semantics so that equivalent queries
have equivalent where-provenance.

4.1.2 Semantics-Invariant Where-Provenance

The definition of where-provenance and the annotation propagation
behavior discussed in the previous section are closely tied to the
syntactic form of the query, and hence sensitive to query rewriting.
The abstract example shown in Figure 4.4 (and also discussed in
Section 1.1.3) illustrates three queries Q, Q′ and Q′′ that are equivalent,
but not annotation-equivalent: given the same input, they may produce
outputs annotated differently. For example, observe that in the output

Annotated
instance Ia:
R

A B

1a1 2a2

1a3 3a4

4a5 2a6

Three equivalent queries:
Q : Ans(x,y) :− R(x,y).
Q′ : Ans(x,y) :− R(x,y),R(x,z).
Q′′ : Ans(x,y) :− R(x,y),R(w,y).

Output of Q(Ia)
(DEFAULT
propagation):

A B

1a1 2a2

1a3 3a4

4a5 2a6

Output of Q′(Ia)
(DEFAULT
propagation):

A B

1a1,a3 2a2

1a1,a3 3a4

4a5 2a6

Output of Q′′(Ia)
(DEFAULT
propagation):

A B

1a1 2a2,a6

1a3 3a4

4a5 2a2,a6

Output of Q(Ia),
Q′(Ia) and Q′′(Ia)
(DEFAULT-ALL
propagation):

A B

1a1,a3 2a2,a6

1a1,a3 3a4

4a5 2a2,a6

Fig. 4.4 Example illustrating the semantics-invariant where-provenance.
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of the three queries, the locations of the output tuple (1,2) are asso-
ciated with different sets of annotations. Formally, two queries Q and
Q′ are annotation-equivalent if they are annotation-contained in each
other. We say that Q is annotation-contained in Q′ if Q is contained in
Q′ (under the classical interpretation of query containment) and, fur-
thermore, for every source instance I and for every location l inQ(I), we
have that the set of annotations associated with location l is contained
in the set of annotations associated with the corresponding location
in Q′(I). The problem of query containment with annotation propaga-
tion has been studied by Tan [56], who gives a necessary and sufficient
condition for deciding annotation-containment [56, Theorem 3.6] and
shows that the problem has the same complexity as classical query
containment, which is NP-complete [56, Proposition 3.1].

The definition of where-provenance discussed in Section 4.1 corre-
sponds to the default annotation propagation scheme in the DBNotes
annotation management system [7, 22]. An overview of the DBNotes
system is given in Section 4.2.2. In this section, we shall discuss an
alternative annotation propagation scheme implemented in DBNotes,
called the default-all scheme, that is insensitive to query rewriting.

Under the default-all scheme of DBNotes, a query Q propagates
annotations based on where data is copied from according to all equiv-
alent queries of Q. Hence, equivalent queries will always have identical
annotation propagation behavior under the default-all scheme, and so
this scheme can be seen as a “better” method for propagating annota-
tions for Q. The essence of the default-all propagation scheme is to con-
sider all rewritings of the query, some of which possibly having different
where-provenance behaviors, and combine the resulting annotations:

Default all(Q,I,t) =
⊔

L{Where(Q′, I, t) | Q ≡ Q′}
It was shown in [7] that although there are infinitely many rewritingsQ′

for a given query Q, only finitely many rewritings have different where-
provenance behavior, and thus it suffices to consider only a finite set
of such rewritings [7, Theorems 1, 2]. To illustrate, consider again the
annotated instance I and the query Q from Figure 4.4. The result of Q
on I under the default-all propagation behavior is shown at the bottom
right of Figure 4.4.
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4.2 Applications

4.2.1 Where-Provenance and the Annotation
Placement Problem

A closely related issue to annotation propagation studied by Buneman
et al. [14] is that of propagating annotations backwards, from the out-
put of a query back to the source database. Specifically, they study the
following annotation placement problem: given a source database I, a
query Q, the view V = Q(I) and an annotation a placed in some loca-
tion l in V , decide whether there exists a source location in I to place
the annotation “a” such that “a” propagates to the minimal number of
output locations, including the specified location l in V . The annotation
a is called side-effect free if it propagates only to the desired location l
and nowhere else in V .

Buneman et al. showed a dichotomy in the complexity of the
annotation placement problem. They showed that for queries involv-
ing projection and join it is NP-hard to decide whether there exists a
side-effect-free annotation [14, Theorem 3.2]. Subsequently, Tan showed
in [56] that this problem is in fact DP-hard for this type of queries [56,
Theorem 4.1], and conjectured that the exact complexity lies in a class
that is slightly above DP.1 When the query is of bounded size, the
problem of determining a minimum side-effect annotation for queries
involving only project and join can be solved in polynomial time [55,
Theorem 2.4.3]. On the other hand, Buneman et al. [14] showed that
the annotation placement problem can be solved in polynomial time for
the subclass of queries that do not simultaneously involve projection
and join (i.e., SPU and SJU queries) [14, Theorem 3.4]. In the case
of key-preserving SPJ queries (i.e., where a key is retained for every
input relation involved in the query), Cong et al. [23] subsequently
showed that the annotation placement problem coincides with the view
side-effect problem and becomes tractable for this type of queries [23,
Theorem 3.1].

1 DP is the class of decision problems that are intersections of a problem in NP and a
problem in co-NP.
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4.2.2 Tracing Where-Provenance in DBNotes

DBNotes [7, 22] is an annotation management system for relational
databases built upon the ideas in [13, 58]. In DBNotes, every attribute
value of a tuple in a database (i.e., a location) may be associated
with a set of zero or more annotations, and these annotations prop-
agate along with the data, as data is being transformed through SQL
queries. The query language of DBNotes, called pSQL, is essentially
the fragment of SQL corresponding to conjunctive queries with union
enriched with a PROPAGATE clause that specifies how annotations
propagate. DBNotes provides three different schemes for propagating
annotations: the default, the default-all and the custom propagation
schemes. A pSQL query Q with default scheme propagates annotations
based on where-provenance. Under the default-all scheme, Q propa-
gates annotations based on the combined where-provenance behavior
of all equivalent queries of Q, as discussed in Section 4.1.2. The cus-
tom scheme provides a user with the means to specify how annotations
should be propagated. This scheme is useful, for example, when one
is only interested in annotations provided by a certain trusted data
source.

As described by Chiticariu et al. [22], pSQL also provides limited
facilities for querying the annotations associated with the data, in addi-
tion to the data itself. With this feature, a user can pose queries to
retrieve, for example, all tuples that are derived from a particular
data source, provided that the annotations carry information about
the sources. Additionally, pSQL can also be used to count the number
of annotations. For example, one may ask to retrieve all tuples having
more than x number of annotations on a particular field.

DBNotes makes use of the default propagation mechanism to sys-
tematically and eagerly trace the where-provenance of data. Each
attribute value in a database is automatically assigned a special anno-
tation indicating its exact location in the database. As data is being
transformed through a pSQL query, these special “address” annotations
automatically propagate along according to the default propagation
behavior, and are accumulated in the output. When the output is
materialized, each data value receives a new address annotation, in
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addition to the accumulated ones, indicating its location in the newly
materialized database. DBNotes can therefore eagerly compute the
where-provenance of a data value, through various databases and chains
of transformation steps, by only examining the collection of “address”
annotations associated with that data value.



5
Comparing Models of Provenance

In the previous sections, we have reviewed the where-, why- and how-
provenance models, as well as related techniques such as lineage and
Trio. Along the way, we have developed uniform definitions of most
of these models in terms of monotone, relational (SPJRU) queries.
Moreover, as we have surveyed these models, we have also raised ques-
tions about relationships among them. In this section, we clarify pre-
cisely some of the relationships between various notions of provenance.
Questions about some of the relationships have also been raised or
stated without further elaboration in some previous studies, such as
whether semiring-based how-provenance is more general than why-
provenance and lineage [43], whether how-provenance is “the most gen-
eral form of provenance” [43], and whether how-provenance is related to
where-provenance [34]. In addition, we clarify precisely the similarities
and differences between the two notions, lineage and why-provenance,
which are terms that have been used interchangeably in many previous
studies.

As we shall show, part of the benefit of formalizing the different
models of provenance in a uniform framework is that we now have

453
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direct proofs to many results. More specifically, we show:

(1) Lineage, why-provenance, and minimal why-provenance are
instances of the semiring model, and can be derived from
how-provenance (Section 5.1).

(2) Lineage can be derived from why-provenance (and hence
also how-provenance), but not from minimal why-provenance
(Section 5.2).

(3) Where-provenance is “contained in” lineage, why, and how-
provenance in a certain sense (Section 5.3).

(4) However, the semiring model cannot exactly express where-
provenance (Section 5.4).

Hence, in particular, how-provenance indeed generalizes lineage and
why-provenance, and how-provenance contains where-provenance in a
certain sense.

5.1 Relating Semiring-Based Techniques

Green et al. [43] stated that how-provenance generalizes why-
provenance and lineage, and illustrated this by describing a particular
semiring (see KLin below), but did not elaborate further on the gen-
eralization. In this section, we make precise the way how-provenance
generalizes these two notions of provenance. In particular, we show that
lineage and why-provenance are instances of the semiring-valued rela-
tional model. We also show that minimal why-provenance is an instance
of the semiring-valued relational model.

To show these results, we recapitulate a key property ofK-relational
algebra, which we call the homomorphism invariance property (Propo-
sition 5.1). Recall that:

Definition 5.1. Let K and K ′ be two semirings. A semiring homo-
morphism is a function h: K → K ′ such that:

h(0K) = 0K′ h(x +K y) = h(x) +K′ h(y)
h(1K) = 1K′ h(x ·K y) = h(x) ·K′ h(y)
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Moreover, we can lift a homomorphism h to act on K-relations and
K-instances in the obvious way, e.g., h(r) = h ◦ r. In [43], Green et al.
established the following useful property:

Proposition 5.1 (Homomorphism Invariance [43, Proposi-
tion 3.5]). Let Q be a query, K and K ′ be two semirings, I be
a K-instance, and h: K → K ′ be a semiring homomorphism. Then
h(QK(I)) = QK′

(h(I)).

Finally, we recall the definition of free semiring from abstract
algebra:

Definition 5.2. A semiring K is called a free semiring on generators
X provided X ⊆ K and for any semiring K ′ and function g: X → K ′,
there exists a unique homomorphism h: K → K ′ such that g(x) = h(x)
for all x ∈ X.

It is a standard result in abstract algebra that N[X] is the free
semiring on generators X. It is not difficult to show that:

Lemma 5.2. Suppose K is a semiring and I a K-instance. Sup-
pose dom(I) ⊆ dom(IHow). Then there is a unique homomorphism
hK : KHow → K such that hK(IHow) = I.

To show that lineage is an instance of the semiring-valued relational
model, consider the structure:

KLin = (P(TupleLoc)⊥,⊥,∅,∪L,∪S)

which is easily verified to be a semiring. Moreover, suppose we define
ILin = {{(R,t)} | R(t) ∈ I}. That is, for an ordinary instance I, we
define ILin as the KLin-instance in which each tuple R(t) is annotated
with {(R,t)}. Using this annotated database instance, we can charac-
terize lineage in terms of semirings:

Proposition 5.3. Let Q be a SPJRU query, I be an instance and t

be a tuple. Then Lin(Q,I,t) = QKLin(ILin)t.
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Proof. Straightforward induction on Q.

Since KHow is a free semiring, we know (by Lemma 5.2) that there
exists a unique homomorphism hLin: KHow → KLin. Specifically:

hLin(0) = ⊥, hLin(x + y) = x ∪L y,

hLin(1) = ∅, hLin(x · y) = x ∪S y.

Hence, lineage can be directly obtained from how-provenance:

Corollary 5.4. Let Q be an SPJRU query, I be an instance and t be
a tuple. Then Lin(Q,I,t) = hLin(How(Q,I,t)).

Proof. Observe that hLin(IHow) = ILin. Hence, using the homomorphism
invariance property, we have:

Lin(Q,I,t) = QKLin(ILin)t

= QKLin(hLin(IHow))t

= hLin(QKHow(IHow)t)

= hLin(How(Q,I,t)).

Next, for why-provenance, consider the structure:

KWhy = (P(P(TupleLoc)),∅,{∅},∪,�)

which is again a semiring. Suppose we define IWhy = {{{(R,t)}}|
R(t) ∈ I}. That is, IWhy is a KWhy-instance obtained by annotating
each tuple with the collection {{(R,t)}}. Using this instance, we can
also characterize why-provenance in terms of semirings:

Proposition 5.5. Let Q be an SPJRU query, I an instance and t a
tuple. Then, Why(Q,I,t) = QKWhy(IWhy)t.

Proof. Straightforward induction on Q.

Again, since How(Q,I,t) = QKHow(IHow)(t) where KHow is a
free semiring, we know (by Lemma 5.2) that there exists a unique
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homomorphism hWhy : KHow → KWhy such that IWhy = h(IHow).
Specifically:

hWhy(0) = ∅, hWhy(x + y) = x ∪ y,

hWhy(1) = {∅}, hWhy(x · y) = x � y.

(Recall that � is an operator that takes the pairwise unions of all sets
in two collections; see Definition 2.4.) Hence, why-provenance can be
directly obtained from how-provenance:

Corollary 5.6. Let Q be an SPJRU query, I an instance and t a tuple.
Then, Why(Q,I,t) = hWhy(How(Q,I,t))

Proof. Observe that hWhy(IHow) = IWhy. Hence, using the homomor-
phism invariance property, we have:

Why(Q,I,t) = QKWhy(IWhy)t

= QKWhy(hWhy(IHow))t

= hWhy(QKHow(IHow)t)

= hWhy(How(Q,I,t)).

Finally, the minimal witness variant of why-provenance also has
a semiring characterization. The easiest way to see this is to observe
that there is a homomorphism from KWhy to another semiring which
happens to correspond to minimal why-provenance.

Let

Min(S) = {x ∈ S | ∀y ∈ S.y ⊆ x implies y = x}
That is, Min(S) consists of all of the minimal elements of S

(with respect to the subset ordering). By definition, we know that
MWhy(Q,I,t) is the set of all minimal elements of Why(Q,I,t); that is,
MWhy(Q,I,t) = Min(Why(Q,I,t)). Consider the semiring Irr(KWhy) of
“irreducible” elements of KWhy, with 0 = 0Why, 1 = 1Why, and oper-
ations x + y = Min(x ∪ y) and x · y = Min(x � y). It is not difficult
to show that Min: KWhy → Irr(KWhy) is a semiring homomorphism.
Now, we can show that minimal why-provenance MWhy (which is the
same as MWit according to Theorem 2.10) is also an instance of the
semiring model.
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Proposition 5.7. Let Q be an SPJRU query, I an instance and t a
tuple. Then, MWhy(Q,I,t) = QIrr(KWhy)(IWhy)t .

Proof. Using the homomorphism invariance property, and since
Min(IWhy) = IWhy, we have:

MWhy(Q,I,t) = Min(Why(Q,I,t))

= Min(QKWhy(IWhy)t)

= QIrr(KWhy)(Min(IWhy))t

= QIrr(KWhy)(IWhy)t.

To conclude, we can obtain minimal why-provenance directly from
how-provenance by composing hWhy and Min:

Corollary 5.8. Let Q be an SPJRU query, I an instance and t a tuple.
Then, MWhy(Q,I,t) = Min(hWhy(How(Q,I,t)))

Proof. By the definition of MWhy(Q,I,t) and Corollary 5.6 we have:

MWhy(Q,I,t) = Min(Why(Q,I,t)) = Min(hWhy(How(Q,I,t))).

5.2 Relating Lineage, Why-Provenance and Minimal
Why-Provenance

We now consider the relationships between lineage, why-
provenance, and minimal why-provenance. We already showed above
(Proposition 5.7) that minimal why-provenance can be obtained
from why-provenance (and hence how-provenance) via a semiring
homomorphism. We shall now show that lineage can be obtained from
why-provenance, but not from minimal why-provenance.

At first sight, the lineage and why-provenance of a tuple are two
different kinds of objects: one is a set of tuples, while the other is
a set of sets of tuples. However, it turns out that they are related
in a natural way: lineage “summarizes” why-provenance in the sense
that the lineage collects all tuple locations mentioned in any witness
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in the why-provenance. The argument makes use of the semiring-based
characterizations.

Proposition 5.9. Let Q be an SPJRU query, I an instance and t a
tuple. Then, Lin(Q,I,t) =

⋃
L Why(Q,I,t).

Proof. It is straightforward to verify that
⋃

L is a semiring homo-
morphism (recall Definition 5.1) from KWhy to KLin, and that⋃

L IWhy = ILin. Hence (using the homomorphism invariance property)
we conclude:

Lin(Q,I,t) = QKLin(ILin)t

= QKLin(
⋃

L(IWhy))t

=
⋃

L(QKWhy(IWhy)t) =
⋃

L Why(Q,I,t).

However, lineage cannot be computed from the minimal witness
variant of why-provenance. The reason is that two equivalent queries
may have different lineage. On the other hand, minimal why-provenance
is invariant under query equivalence (Corollary 2.11).

Corollary 5.10. There is no function h: Irr(KWhy) → KLin such that
Lin(Q,I,t) = h(MWhy(Q,I,t))) for every query Q, instance I, and
tuple t.

5.3 Where-Provenance is “Contained” in Why-Provenance

Another natural question is how where-provenance is related to the
other techniques. It seems reasonable to expect that if the output data
in tuple t is “copied from” some tuple (S,u) in the input, then (S,u)
is present in the lineage of t (which implies that (S,u) is in one of the
elements of Why(Q,I,t) by Proposition 5.9). In fact, we can show:

Proposition 5.11. Let Q be an SPJRU query, I be an instance,
and t be a U -tuple in Q(I). Let A ∈ U , and suppose (S,u,B) ∈
Where(Q,I,t) · A. Then (S,u) ∈ Lin(Q,I,t).
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Proof. We prove that (S,u) ∈ Lin(Q,I,t) by induction on Q. The case
of constant queries {t} is vacuous, so immediate.
Case 1. Suppose Q = R. Then Where(R,I, t) = (A: {(R,t,A)})A∈U .

Hence (S,u,B) = (R,t,A) so (S,u) = (R,t) ∈ {(R,t)} =
Lin(R,I, t), as desired.

Case 2. Suppose Q = σθ(Q′). Then (S,u,B) ∈ Where(Q′, I, t) · A and
θ(t) holds, so by induction we have (S,u) ∈ Lin(Q′, I, t) =
Lin(σθ(Q′), I, t).

Case 3. Suppose Q = πU (Q′). Then (S,u,B) ∈ Where(Q′, I,u) · A for
some u such that u[U ] = t. Consequently, by induction we have
(S,u) ∈ Lin(Q′, I,u) ⊆ Lin(πU (Q′), I, t).

Case 4. Suppose Q = ρC �→D(Q′). Then (S,u,B) ∈ Where(Q′, I,
t[D �→ C]) · (A[D �→ C]). Consequently, by induction we have
(S,u) ∈ Lin(Q′, I, t[D �→ C]) ⊆ Lin(ρC �→D(Q′), I, t).

Case 5. Suppose Q = Q1 � Q2. Then Where(Q1 � Q2, I, t) =
Where(Q1, I, t[U1]) �S Where(Q2, I, t[U2]). Since we
assume t ∈ (Q1 � Q2)(I), both sides must be defined.
Suppose (S,u,B) ∈ Where(Q1, I, t) · A; the case where
(S,u,B) ∈ Where(Q2, I, t) · A is symmetric. Then by induc-
tion we have (S,u) ∈ Lin(Q1, I, t[U1]) ⊆ Lin(Q1, I, t[U1]) ∪S

Lin(Q2, I, t[U2]) = Lin(Q1 � Q2, I, t), where the latter equality
again relies on the fact that t ∈ (Q1 � Q2)(I).

Case 6. Suppose Q = Q1 ∪ Q2. Then Where(Q1 ∪ Q2, I, t) =
Where(Q1, I, t)�L Where(Q2, I, t). Suppose (S,u,B)∈
Where(Q1, I, t) · A; the case where (S,u,B) ∈ Where(Q2, I, t) ·
A is symmetric. Then by induction we have (S,u) ∈ Lin(Q1,

I, t) ⊆ Lin(Q1, I, t) ∪L Lin(Q2, I, t) = Lin(Q1 ∪ Q2, I, t).

Since lineage contains all of the tuples mentioned in either the why-
or how-provenance, as discussed earlier, it should be clear that all of
the locations mentioned in the where-provenance of a tuple (S,u) are
also present in the why- or how-provenance of (S,u).

5.4 Is Where-Provenance an Instance of How-Provenance?

We just showed that the lineage (or why- or how-provenance) of
a tuple contains all of the input sources that can appear in its
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where-provenance. But, can where-provenance be defined as an instance
of the semiring model?

We show that the answer is no. Intuitively, the reason that where-
provenance cannot be cast straightforwardly into the semiring-valued
model is because semiring valued models are tuple-based, whereas
annotations on where-provenance are of a finer granularity (i.e.,
attribute based). This intuition is a little naive since our approach
to defining where-provenance is also “tuple-based” in a sense: we view
the field annotations as being collected into a tuple-based record. What
makes our counterexample work is that renaming (and similarly pro-
jection) need to manipulate the “field-level” parts of an annotation, to
which the semiring model does not have access.

Proposition 5.12. There exist SPJRU queries Q1 and Q2, instance I
and tuple t such that for any K and K-instance J , we have Q1

K(J)t =
Q2

K(J)t, yet Where(Q1, I, t) 	= Where(Q2, I, t).

Proof. A simple example is shown below, where R is a binary relation
with attributes A and B.

Q1 = R, Q2 = ρC �→A(ρA�→B(ρB �→C(R)))

which when run on input I = {R(A:1,B:1)} yields Q1(I) =
{(A:1,B:1)} = Q2(I). Take I as above and t = (A:1,B:1). Then for
any K and K-instance J , we have

Q1
K(J)t = RK(J)t

= RK(J)(t[A �→ C][B �→ A][C �→ B])

= (ρC �→A(ρA�→B(ρB �→C(R))))K(J)t

= Q2
K(J)t

because t[A �→ C][B �→ A][C �→ B] = t. However,

Where(Q1, I, t) = (A:{(R,t,A)},B:{(R,t,B)})

Where(Q2, I, t) = (A:{(R,t,B)},B:{(R,t,A)}) .

This implies that where-provenance cannot be defined in terms
of the semiring model, because in the above example we have
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Q1
K(J)t = Q2

K(J)t for any K and J , whereas Where(Q1, I, t) 	=
Where(Q2, I, t). Thus, there can exist no K-instance J corresponding
to I such that we can extract the where-provenance of t from Q1

K(J)t,
since another query with different where-provenance produces the same
result in the K-valued semantics.

On the other hand, our formulation of where-provenance is similar
to the semiring-valued semantics in a number of ways. Thus, there may
be a natural generalization of the two approaches. We leave investigat-
ing this possibility to future work.



6
Conclusions

We conclude this article by surveying related research on provenance
that we have not covered in detail, and discussing some of the remaining
research challenges involving provenance and annotation management
in databases. Provenance is also an active topic for research in the
scientific computation and workflow management system communities.
Although there is some overlap with database and data provenance
research, we will restrict attention to work that focuses on prove-
nance within databases, and refer readers interested in workflow prove-
nance to recent surveys [8, 53] and a recent tutorial [29]. A tutorial on
database provenance (including additional discussion of related work)
can be found in [15], and a recent issue of IEEE Data Engineering
Bulletin [12] presents high-level overviews of much of the recent work
on data provenance we discuss below.

The lineage, where, why and how models. The lineage model intro-
duced by Cui et al. [27] seems to be the first model to be defined
for relational queries based on a semantic criterion. Subsequently, the
(minimal) why-provenance model of Buneman et al. [13] was developed
based on the idea of (minimal) witnesses. The how-provenance and
semiring-valued relational models were introduced by Green et al. [43],
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along with a high-level discussion of the possibility of extracting
lineage and why-provenance from how-provenance. The semiring char-
acterizations for lineage, why- and minimal why-provenance were first
presented in (terse) detail in [10], following discussions including the
authors, Green, Vansummeren and Tannen. In this article, we have
described these characterizations in a more expository fashion, in order
to show clearly how the original ideas are captured by the semiring
model and make these concepts more broadly accessible to a general
audience.

Techniques for computing lineage lazily were also explored by Cui
et al. However, query optimization in the presence of eager provenance-
propagation is an important problem which has only begun to be
studied. Tan [56] investigated query containment in the presence of
annotation propagation based on where-provenance. More recently,
Green [41] has studied query containment and equivalence for the
semiring-valued model, including the semiring characterizations of lin-
eage, how-, why- and minimal why-provenance we used here. Green’s
results also establish relationships among the containment and equiva-
lence problems for the different models, providing further insight into
their relative expressiveness.

Beyond why, how and where. In this article, we have restricted our
attention to the well-understood why-, how-, and where-provenance
models, a few closely related models such as lineage and Trio, and their
main applications. However, there has also been work on provenance
models that do not appear to fit the why, how, or where models. Some
early approaches to provenance and lineage resist such classification,
including Wang and Madnick’s Polygen model [58] and Woodruff and
Stonebraker’s work [61]. Furthermore, the full ULDB model used in
Trio [5] does not seem to be a direct instance of why-, how-, or where-
provenance due to its use of tuple identifiers and tuple alternatives.

There is also complementary work on annotation, whose goal is
providing high expressive query languages for annotated databases.
The MONDRIAN system of Geerts et al. [37, 38] extends the where-
provenance approach used in DBNotes [7, 22] by allowing annotations
to be placed on sets of attribute values of a tuple. In Mondrian,
annotated databases are abstractly represented using colors. Different
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colors applied to a set of attribute values signify different annotations.
Geerts et al. [38] describe a color algebra that allows one to query both
data and annotations, and prove that this algebra is both complete
(i.e., it can express all possible queries over annotated databases) and
minimal (i.e., none of its operators can be simulated using the oth-
ers). Geerts and Van den Bussche [36] subsequently proved expressive
completeness for the color algebra. Srivastava and Velegrakis [54] inves-
tigated techniques for associating annotations with arbitrary subsets of
the locations in the input, defined using queries. They report improve-
ments in storage overhead of annotations and query execution time
with respect to the DBNotes and MONDRIAN approaches. Finally,
Eltabakh et al. [31] proposed the BDBMS system where annotations
can be placed on rectangular regions consisting of adjacent columns of
adjacent rows in a table, and investigated various storage schemes for
such annotations.

Another approach, called dependency provenance, has been intro-
duced by Cheney et al. [20] and is based on the idea of tracking the
parts of the input that parts of the output depend on. We discuss
this approach further below. The variety of approaches that go beyond
“why, how or where” illustrates that we are probably far from having
fully explored the design space of provenance-tracking or annotation-
management techniques.

Other data models and query languages. We have also restricted our
attention to monotone relational queries. Some work has been done
on provenance or lineage for other query languages. Both lineage and
Trio lineage have been defined for non-monotone operations such as
aggregation and negation operations. However, it is non-obvious how
to extend these definitions to why- or how-provenance while preserving
their nice properties (e.g., Theorem 2.7 or Corollary 2.11). Recently,
Geerts and Poggi [39] studied expressive completeness results for the
K-relational model, and along the way extended it with negation and
duplicate elimination operations. However, we believe further work is
needed to understand the principles of provenance in the presence of
negation and aggregation.

Other work has considered provenance in settings besides the flat
relational model. For example, as discussed in Sections 2 and 4, the
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initial work on why- and where-provenance of Buneman et al. [13] was
based on a deterministic tree model. More recent work by Buneman
et al. [11] has extended where-provenance to the nested relational cal-
culus (NRC). In this approach, as in Polygen and the where-provenance
model of Buneman et al. [14], the where-provenance of an output part
is a part of the input from which the output was “copied”. Each part of
the nested relational value (data value, record or collection) carries an
annotation; the annotation semantics can be used to define provenance
by observing how the annotations propagate from a distinctly anno-
tated input. The main results of [11] include identifying suitable seman-
tic invariants satisfied by where-provenance and proving an expressive
completeness result stating that these invariants exactly characterize
queries with where-provenance semantics. The model and expressive
completeness results are also adapted to an NRC-based update lan-
guage; in the context of provenance, update languages are distinctly
more expressive than query languages.

The dependency provenance model proposed by Cheney et al. [20]
was defined in terms of NRC as well. In this approach each part
of the database carries a set of annotations, and an annotation–
propagation semantics is defined such that the annotations on a part
of the output highlight parts of the input on which the given output
“depends”. Cheney et al. develop a formal characterization of this
dependence property inspired by techniques in information flow secu-
rity and program slicing, show that obtaining “minimal” dependence
information is undecidable for full NRC, and show that the annotation–
propagation semantics is a safe approximation. Cheney [18] further dis-
cusses the relationship between this form of provenance and program
slicing.

Foster et al. [34] extended the semiring model (and hence also why-
and how-provenance) to nested relations. Their approach is based on
the observation that semiring-annotated relations can be viewed as
a monadic collection type, generalizing sets and bags (but not lists).
Furthermore, they add primitives for constructing (unordered) XML
trees and structural recursion over trees, and show how to translate
XQuery over unordered trees to this language, yielding a provenance
semantics for unordered XML.
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These NRC-based approaches provide smoother handling of fea-
tures such as aggregation and grouping, but incorporating techniques
based on NRC into standard relational or XML databases may be non-
trivial. In a recent invited paper, Cheney [19] outlined an approach to
adapting various forms of provenance to XQuery; however, this paper
only scratches the surface. Thus, more work is needed to adapt these
techniques for use in practice.

Update languages and curated databases. Provenance has also been
studied in the context of update languages. An important motivation
for modeling provenance in update languages is to support provenance
tracking for curated databases. Curated databases consist largely of
data manually added or corrected by experts, and are especially pop-
ular in bioinformatics; the scientific value of such databases relies on
provenance records. Buneman et al. [9] introduced a where-provenance
model for manual update operations to deterministic trees; Buneman
et al. [11] subsequently generalized this idea to an update language for
nested relational data. Further work is needed to better understand
the design space of provenance techniques for updates: for example,
can why- or how-provenance also be adapted to update languages?
Also, further work on implementing these techniques within practical
systems used by data curators is essential for establishing their feasibil-
ity and effectiveness. Buneman et al. [10] give an overview of research
issues involving curated databases, including provenance, annotation,
and archiving.

Querying provenance. Finally, for many techniques there has been little
work on querying the provenance information itself alongside ordinary
data, or presenting (often large amounts of) provenance information in
a way casual users find useful. A few exceptions include DBNotes [22],
Mondrian [37, 38], and Srivastava and Velegrakis [54], which provide
capabilities for querying annotations and hence provenance, assum-
ing that annotations carry information about provenance. DBNotes
can also display visual diagrams of the where-provenance of data that
has been repeatedly copied from one database to another through a
sequence of queries. Other systems that provide facilities for visualiz-
ing provenance include the WHIPS data warehouse system [25], which
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displays visual diagrams of the lineage of view tuples at the granularity
of individual relational operators, and the SPIDER debugging sys-
tem for schema mappings [3], which shows graphical representations of
routes. The problem of reducing the amount of provenance information
stored, and therefore shown to a user, has been recently tackled. Tech-
niques proposed include compressing [9, 16] and approximating [20, 50]
provenance.
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