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both free and commercial databases on product in- 

Abstract 

We witness a rapid increase in the number of 
structured information sources that are available 
online, especially on the World-Wide Web. These 
sources store interrelated data on topics such as 
product information, stock market information, 
entertainment, etc. We would like to use the 
data stored in these databases to answer complex 
queries that go beyond keyword searches. We de- 
scribe the Information Manifold, an implemented 
system that provides uniform access to a.hetero- 
geneous collection of more than 100 information 
sources on the WWW. IM contains declarative de- 
scriptions of the contents and capabilities of the 
information sources. We describe algorithms that 
use the source descriptions to prune efficiently the 
set of information sources for a given query and 
practical algorithms to generate executable query 
plans. We also present experimental studies indi- 
cating that the architecture and algorithms used 
in the Information Manifold scale up well to sev- 
eral hundred information sources. 

1 Introduction 

We witness a rapid increase in the number of struc- 
tured information sources that are available online. 
The World-Wide Web (WWW), in particular, is a pop- 
ular medium for interacting with such sources. The 
WWW is usually regarded as an interconnected col- 
lection of unstructured documents. However, a large 
number of structured information sources are now be- 
coming available on the Web. These sources include 
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formation, stock market information, real estate, au- 
tomobiles, and entertainment. The interface to such 
sources is typically a collection of fill-out forms. The 
query answer usually takes the form of an HTML doc- 
ument that is very structured, and can be parsed and 
converted into a set of tuples or more complex data 
types. There are other structured information sources 
that are available online but not on the WWW such 
as name servers, bibliographic sources, and university- 
wide and company-wide information systems, and they 
too provide query interfaces. 

Most search tools available for the WWW today 
(e.g., AltaVista, Lycos, Inktomi, Yahoo) are based on 
keyword search. Keyword search is a useful way to 
search a collection of unstructured documents, but is 
not effective with structured sources. Currently, the 
interaction with such a large collection of structured 
sources is done manually. The user must consider the 
list of sources available, decide which ones to access, 
interact with each one individually, and manually com- 
bine answers from different sources. We would like to 
use the data stored in these databases to answer com- 
plex queries, and provide a uniform interface to the 
sources. In particular, the user should be able to ex- 
press what he or she wants, and the system should find 
the relevant sources and obtain the answers, possibly 
by combining data from multiple sources. 

Example 1.1 Suppose we are interested in purchas- 
ing a car. The parameters of interest to us are its 
category (sportscar or sedan), price, year of manufac- 
ture, model, and the car reviews. We ask query Q: 
Get the price and reviews of sportscars for sale that 
were manufactured no earlier than 1992. Suppose we 
have access to the online information sources shown in 
Figure 1) among many others. Some of the sources are 
obviously not useful to answer Q. We can straight- 
away determine that Source 4 is not useful to answer 
this query, because it has no information about cars. 
We can also conclude that Source 3 is not relevant. 
Here the reasoning is more subtle: we are interested 
only in cars manufactured after 1992, whereas Source 
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1 Source 1: Used cars for sale. 
Accepts as input a category or model of car, and optionally a price range and a year range. 
For each car that satisfies the conditions, gives model, year, price, and seller contact information. 
Source 2: Luxury cars for sale. All cars in this database are priced above $20,000 

1 Accepts as input a category of car and an optional price range. I 
For each car that satisfies the conditions, gives model, year, price, and seller contact information. 
Source 3: Vintage cars for sale (cars manufactured before 1950). 
Accepts as input a model and an optional year range. 
Gives model, year, price, and seller contact information for qualifying cars. 
Source 4: Motorcycles for sale. 
Accepts as input a model and an optional price range. 
Gives model, year, price, and seller contact information. 
Source 5: Car reviews database. Contains reviews for cars manufactured after 1990. 
Accepts as input a model and a year. 
Outnut is a car review for that model and vear. 

Figure 1: Example information sources. 

3 has information only on cars manufactured before 
1950. We are left with sources 1, 2, and 5 and two 
possible plans to answer Q: 

1. 

2. 

Ask Source 1 for the models and prices of all 
sportscars manufactured after 1992. For each 
model, obtain a review from the Source 5. 

Ask Source 2 for the models, years, and prices of 
sportscars. From the (Model, Year, Price) tuples 
that result, select only those where Year 1 1992. 
For each model in the selected tuples, obtain a 
review from Source 5. 

Notice that in plan 1 we took advantage of the capabil- 
ity of Source 1 to select a specified year range, whereas 
in plan 2 we had to do the selection ourselves because 
Source 2 cannot do it for us. Also note that the out- 
puts of Sources 1 and 2 are enough to satisfy the inputs 
requirements of Source 5 (i.e., the year and model of 
the car). For example, if Source 5 would also require 
more specific information about the car (e.g., number 
of doors, engine type) in order to return a review, we 
would not be able to combine information from these 
three sources. It is possible to verify that these are the 
only two query plans to answer Q using these informa- 
tion sources. The answer to Q is the union of the sets 
of tuples produced by executing these two plans. 0 

One of the key difficulties in providing access to 
a large collection of information sources is that sev- 
eral sources store interrelated data, and any query- 
answering system must understand and exploit the 
relationships between their contents. In particular, 
since the number of sources is very large, we must 
have enough information about the sources that en- 
ables us to prune the sources accessed in answering a 

specific query, and we must have effective techniques 
for pruning sources. Second, many sources are not 
full-featured database systems and can answer only 
a small set of queries over their data (for example, 
forms on the WWW restrict the set of queries one can 
ask). Moreover, most sources contain incomplete in- 
formation. For example, there are several information 
sources advertising cars for sale. No single source con- 
tains information on all cars for sale. 

We describe the Information Manifold (IM), a fully 
implemented system that provides uniform access to a 
heterogeneous collection of more than 100 information 
sources on the WWW. IM tackles the above problems 
by providing a mechanism to describe declaratively the 
contents and query capabilities of available informa- 
tion sources. There is a clean separation between the 
declarative source description and the actual details 
of interacting with an information source. The system 
uses the source descriptions to prune efficiently the set 
of information sources for a given query and to gener- 
ate executable query plans. Specifically, we make the 
following contributions. First, we present a practical 
mechanism to describe declaratively the contents and 
query capabilities of information sources. In particu- 
lar, the contents of the sources are described as queries 
over a set of relations and classes. Consequently, it is 
possible to model the fine-grained distinctions between 
the contents of different sources, and it is easy to add 
and delete sources. Modeling the query capabilities of 
information sources is crucial in order to interact with 
many existing sources. Second, we describe an efficient 
algorithm that uses the source descriptions to create 
query plans that can access several information sources 
to answer a query. The algorithm prunes the sources 
that are accessed to answer the query, and considers 
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the capabilities of the different sources. Finally, we de- 
scribe experiments that show that our query planning 
algorithm will scale up as the number of information 
sources increases. The experiments show the perfor- 
mance of our query planning algorithm using 100 in- 
formation sources. 

There are several important issues in building a sys- 
tem that provides a uniform interface to multiple in- 
formation sources, that are not discussed here. One 
important issue is that of deciding that two constants 
in two different information sources refer to the same 
object in the world (e.g., the same person appearing in 
two different information sources). Briefly, our imple- 
mentation tries first to find unique identifiers for each 
constant (e.g., social security number of a person). 
When it cannot find such identifiers it uses heuristic 
correspondence functions as in the Remote-Exchange 
system [FHM94]. It should also be noted that the goal 
of Information Manifold is to provide only a query in- 
terface, and not update or transaction facilities. As a 
consequence, we do not address issues such as consis- 
tency and transaction processing which are addressed 
by research on multidatabase systems. 

2 Data Model 

We use the relational model, augmented with certain 
object-oriented features that are useful for describ- 
ing and reasoning about the contents of information 
sources. The data model includes (1) relations of any 
arity, (2) classes and a class hierarchy. There is a par- 
tial order < such that C 4 D whenever class C is a 
subclass of class D, and (3) a set of attributes associ- 
ated with each class. A class also inherits attributes 
from its superclasses. Attributes may be single-valued 
or multi-valued. 

Relations contain tuples while classes contain ob- 
jects. Each object has a unique identifier. The at- 
tribute values of a relation or a class can be either 
atomic values (strings or integers) or object identifiers. 
An object may belong to more than one class (even if 
the classes are not related via 4). It is possible to de- 
clare a pair of classes to be disjoint, meaning that no 
object can belong to both classes. 

In order to be able to treat relations and classes uni- 
formly, we associate a unary relation with each class 
and a binary relation with each attribute. The con- 
tents of these relations are as follows (we use the same 
name for the class and its associated relation): 

l For class C, (X) E C whenever 2: is the identifier 
of an object o and C is one of the classes of o. 

l For attribute A on class C, (X, Y) E A whenever 
(X) E C and x.A = y (y is called the A-$ller of 
X). 

For single-valued attributes we often use A(z) to 
denote the only value for which A(x, y) can hold. In 
order that these relations fully capture the semantics 
of the class hierarchy, our model includes certain in- 
tegrity constraints. These constraints take the form 
of inclusion dependencies and functional dependencies. 
In particular: 

l Whenever C 4 D when C and D are viewed 
as classes, the inclusion dependency C c D holds 
when C and D are viewed as relations. 

l For each auxiliary relation A(X,Y) correspond- 
ing to a single-valued attribute A, we have the 
functional dependency A : X + Y. 

l For each pair of disjoint classes C and D, Cfl D = 
0 holds when C and D are viewed as relations. 

Table 1 shows the classes and attributes we use 
throughout the paper. 
The World View: In the Information Manifold, the 
user poses queries in terms of a world view which is 
a collection of virtual relations and classes. Thus, the 
world view is like a schema. We use the term world 
view instead of schema to emphasize the fact that no 
data is actually stored in the relations and classes of 
the world view.’ It serves as the schema against which 
the user poses queries (thereby freeing the user from 
having to interact with each source schema individ- 
ually), -and it is used to describe the contents of the 
information sources. 

Example 2.1 The world view we use throughout this 
paper consists of the classes in Table 1 (all the at- 
tributes of which are single-valued) and the relation 
ProductReview(Mode1, Year, Review). 0 

In this paper, a query is a conjunctive query over 
the world-view relations and the built-in predicates <, 
5. We require the queries to be range-restricted. 

Example 2.2 The following query asks for models, 
prices, and reviews of sportscars for sale that were 
manufactured no earlier than 1992 (query & of Ex- 
ample 1.1): 

d%P, r> + CarForSale(c), Category(c, sportscar), 

Year(c, y), y > 1992, Price(c,p), 

Model(c, m), ProductReview(m, y, r) 

q 

1 However we do not mean to imply that the world view is a 
schema for all domains. 
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Automobile Product Model, Year, Category Stereo 
Mo2orcycle Automobile Model, Year Car 
Car Automobile Model, Year, Category Motorcycle 
NewCar Car Model, Year, Category UsedCar 
UsedCar Car Model, Year, Category NewCar 
CarForSale Car Model, Year, Category, Price, SellerContact 

Class Subclass of Attributes 
Product 1 Model 

1 Disjoint from 
1 Person 

Table 1: A class hierarchy. The classes Person and Stereo are not shown. 

We use this font to denote constants, lowercase let- 
ters for variable names, and uppercase letters with bars 
to denote tuples of variables and constants. Formally, 
a query is of the form: 

where: (1) RI,..., R, are relations in the world view, 
(2) C, is a conjunction of order subgoals of the form 
U@V, where B E {<, >, I,>} and U,V E LJ,<i,,Zi, 
and (3) X E Ul<i<n Zi. 

-- 
-- 

3 Describing Information Sources 

Queries are posed to the system in terms of the world 
view. However, the data to answer these queries is ac- 
tually stored in external information sources. There- 
fore, to answer a query, we need descriptions that re- 
late the contents of each information source to the 
classes, attributes and relations in the world view. 
Furthermore, since sources may not be able to an- 
swer arbitrary queries About their contents, we need 
to describe the capabilities of the information sources 
in order to create plans that can actually be executed. 

3.1 Contents of Information Sources 

There are several desiderata for descriptions of the con- 
tents of information sources. First, since the number 
of information sources is large and frequently chang- 
ing, we should be able to add new information sources 
without changing the world view, and without affect- 
ing the descriptions of other information sources. Sec- 
ond, since many sources contain closely related infor- 
mation, the descriptions should be able to model fine- 
grained differences between their contents, so that the 
set of sources relevant to a query can be determined 
as “tightly” as possible. 

We model the contents of an information source as 
tuples in one or more relations. The key to the flexibil- 
ity in our source descriptions is that we describe rela- 
tions in the sources as queries over the world-view re- 
lations and the comparison predicates. Formally, each 
source is modeled as containing tuples of a relation 

(or several relations) which we call source relations. 
The names of the source relations are disjoint from 
the names of the world view relations. For each source 
relation, we specify a conjunctive query over the world 
view relations that describes the conditions the tuples 
in the relation must satisfy. Note that the source need 
not contain all the tuples that satisfy the query; for 
example, no database of cars for sale contains all cars 
for sale. We emphasize this incompleteness by using 
the connective c to relate the head and body of the de- 
scription instead of the conventional 6 used in queries. 
Figure 2 shows the content descriptions corresponding 
to the informal descriptions in Figure 1. 

It should be emphasized that the features of our 
data model (the class hierarchy, disjointness of classes 
and built-in predicates) and the fact that we describe 
contents as queries enables us to describe very tightly 
the contents of the sources. Consequently, our query 
processor is able to prune significantly the sources rel- 
evant to a given query. Furthermore, adding sources 
does not affect the descriptions of other information 
sources. 

3.2 Capabilities of Information Sources 

The content description tells us what is in an infor- 
mation source, but it does not tell us which queries 
the source can answer about its contents. Many in- 
formation sources permit only a subset of the possible 
queries on their databases. For example, the used car 
database in Example 1.1 requires either the category 
or model of the car as an input. When generating 
query plans it is important to adhere to the capabil- 
ities of the information sources, and exploit them as 
much as possible. In Example 1.1, the query plan in- 
volving sources 2 and 5 was different from the plan 
involving sources 1 and 5 because source 1 was able to 
perform the selection on the year of the car. 

We describe the capabilities of an information 
source using capabili2y records. Capability records are 
meant to capture the two kinds of capabilities encoun- 
tered most often in practice: the ability of sources to 
apply a (perhaps limited) number of selections, and 
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Source 1: Used cars for sale. . 

Contents: VI(~) C_ CurForSale(c), UsedCar 
Capabilities: ({Model(c), Category(c)}, {Model(c), Category(c), Year(c), Price(c), SellerCodact(c)}, 
{Year(c), Price(c)}, 1,4) 
Source 2: Luxury cars for sale. All cars in this database are priced above $20,000 
Contents: Vz(c) E CurForSule(c), Price(c,p), p 2 20000 
Capabilities: ({Category(c)}, {Model(c), Category(c), Year(c), Price(c), SellerContact(c 
{Price(c)}, 1,3) 
Source 3: Vintage cars for sale (cars manufactured before 1950). 
Contents: h(c) E CarForSule(c), Yeur(c, y), y s 1950 
Capabilities: ({Model(c)}, {Model(c), Calegory(c), Year(c), Price(c), SellerContact(c 
{ Year(c)), 1 j 2) 
Source 4: Motorcycles for sale. 
Contents: V~(C) c Motorcycle(c) 
Capabilities: ({Model(c)}, {Model(c), Year(c), Price(c), SellerContact(c {Price(c)}, 1,2) 
Source 5: Car reviews database. Contains reviews for cars manufactured after 1990. 
Contents: Vs(m, y, r) 2 Cur(c), Model(c, m), Year(c, y), ProductRewiew(m, y, r) 
Capabilities: ({m, y}, {m, y, r}, {}, 2,2) 

Figure 2: Source descriptions for the sources in Figure 1 

the limited forms of variable bindings that an informa- 
tion source can accept. The capability records specify 
which inputs can be given to the source, the minimum 
and maximum number of inputs allowed, the possible 
outputs of the source and the selections the source can 
apply. Sources with capabilities to perform arbitrary 
relational operators (e.g., full fledged databases) are 
considered in [LRU96]. 

Formally, a capability record specifies which param- 
eters can be given to the source. A parameter of a 
source relation @I?) is either a variable 2 E 5? or A(z) 
where A is an attribute name and x E x. With ev- 
ery source relation we associate exactly one capability 
record of the form (Sin, S,,,,t, Ssel, min, max), where 
Si,,, Sout and SSel are sets of parameters of&, and 
min and max are integers. Every variable in X must 
appear in a parameter either Si, or Sout. 

The meaning of the capability description is the fol- 
lowing. In order to obtain a tuple of R from the infor- 
mation source, the information source must be given 
bindings for at least min elements of Si,,. The ele- 
ments in Sout are the parameters that can be returned 
from the information source. The elements of Sse,, 
which must be a subset of Sin U Sout, are parameters 
on which the source can apply selections of the form 
oopc, where c is a constant and op E {<,<,#,=}. 
Given a source relation R, providing the informa- 
tion source with the values al,. . . , a, for the elements 
Ql,..., CX,, in Si,, asking for the values of pi, . . . , PI 
in Sout, and passing the selections ~1, . . . , rk to the 
source will produce the tuples (Yl, . . . , Yl) that satisfy 
the following conjunction: 

R’(Yl,..., Yr) : -R(X1,. . .,X,), QI = al, . . . , 
%=%,k%=~, .*.,@l=~,yl, *..,yk. 

Given a content description of the form R C_ &R and 
input/output specifications as described above, the fol- 
lowing is called the augmented description of R w.r.t. 
the input/output specifications: 

R’(Yl,... ,X) C QR,W=UI, . . ..Q~=u., 

pl=K, .*~,b=~,yl, . . ..-/k 

In our query-planning algorithm we use a specific 
canonical augmented description of R in which the 
inputs include all of Si,,, the outputs include all of 
Sout and there are no selections (note that this does 
not mean that our query plans necessarily provide all 
the inputs and extract all the outputs from a source). 
Figure 2 lists the capability records describing the in- 
formation sources in our example. 

3.3 Query Plans 

A query plan is a sequence of accesses to information 
sources interspersed with local processing operations. 
A query plan must combine information from various 
sources in a way that guarantees semantically correct 
answers, and must adhere to the capabilities of the 
information sources. We explain these notions below. 
Given a query & of the form 

Q(x) + RI(%), . . . , R,(%), C, 

a plan to answer it consists of a set of conjunctive 
plans. Conjunctive plans are like conjunctive queries 
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except that we also specify the inputs and outputs to 
every subgoal. An executable conjunctive plan is of the 
form: 

P:&(X) -VI(BI) (inl,outl,sell) , . . . . 

Each of the q’s is a source relation corresponding 
toan information source. The elements of the sets ini 
are of the form pi : ~2, where pi is one of the param- 
eters in the set Sin of the information source of K, 
and pa is either a value appearing in the query, or a 
parameter that appears in out1 U . . . U outi-1. The set 
outi is a subset of S&t in the capability record of the 
information source Vi, and seli is a set of selections to 
be passed to the information source. Finally, the car- 
dinalities of ini, outi and seli must be consistent with 
the capability record of the information source of K. 
Cp is a set of selections that are applied locally by the 
query executor. 

To define the semantic correctness of a conjunctive 
plan, we consider the canonical augmented content de- 
scriptions of the information sources. Recall that given 
the input and output specifications, each information 
source is modeled as containing a subset of the relation 
defined by a conjunctive query Qi. Therefore, we can 
consider the expansion of the plan P as the query PI 
obtained by expanding the definitions of the subgoals 
K. Formally P’ is obtained by replacing the subgoal 
x(Vi) by the body of the query Qi after unifying the 
head variables of Qi with Vi. The conjunctive plan P 
is said to be semantically correct if P’ is contained in 
Q, i.e., for any extension of the world view relations 
that satisfies the integrity constraints, the answer to 
P’ would be a subset of Q. 

Example 3.1 Consider our query asking for sports 
cars manufactured in 1992 or later: 

d%P, r> +- CarForSale(c), Category(c, sportscar), 

Year(c, y), y 2 1992, Price(c,p), 

Model(c, m), ProductReview(m, y, r) 

The following is a semantically correct plan: 

4 : Q(m,p, r> + 
VI(C) ({Category(c) : sportscar}, {Price(c), Model(c)}, 

{Year(c) 1 1992}), 
Vs(m, Y, r> ({m : Model(c), 9 : Year(c)), {r), 0). 

To see why, we can verify that the expansion query P[ 
of PI obtained by unfolding the augmented descrip- 
tions of VI and V5 is contained in the original query: 

P: : Q(m,p, r) +- CarForSale(c), UsedCar( 
Model(c, m), Category(c, t), t = sportscar, Year(c, y), 
Price(c,p), ProductReview(m, y, r), y 2 1992. 0 

. 
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Semantically correct plans required only that P’ be 
contained in Q and not equivalent to Q for the follow- 
ing reasons. First, even if P’ were equivalent to Q, 
the answer obtained by executing P may not be com- 
plete because the sources may be incomplete. Second, 
conjunctive plans that produce only a subset of the an- 
swer are also useful. For example, if we are searching 
for sports cars manufactured after 1992, and we have 
an information source with cars manufactured after 
1994, we would still want to query it. We define the 
set of answers to the query Q as all the tuples that 
can be obtained by some executable and semantically 
correct conjunctive plan for Q. 

4 Algorithms for Answering Queries 

Our algorithm for generating executable query plans 
has two steps. In the first we generate semantically 
correct conjunctive plans, and in the second we try to 
order the conjuncts of the plan to ensure that they are 
executable. The first step of the algorithm is described 
in detail in a companion paper [LR096]. Here we only 
describe the aspects of this step that are needed to un- 
derstand the second step and the experimental results. 

A semantically correct plan guarantees that the an- 
swers produced will actually be answers to the query. 
Finding a semantically correct query plan amounts 
to finding a conjunctive query Q’ that uses only the 
source relations and is contained in the given query 
Q. Therefore, our problem is closely related to the 
problem of answering queries using views [LMSS95, 
RSU95, YL87, CKPS95, SDJL96], where the source 
relations play the role of the views. However, the prob- 
lem of answering queries using views is known to be 
NP-complete in [LMSS95], even for conjunctive queries 
without built-in atoms. The main source of complex- 
ity is the fact that there are an exponential number of 
candidate rewritings that need to be considered. This 
is especially significant in our context because that al- 
gorithm would be exponential in the number of infor- 
mation sources. Our algorithm drastically reduces the 
number of candidate rewritings considered by procecd- 
ing as follows. First, the algorithm computes a bucket 
for each subgoal in the query, each containing the in- 
formation sources from which tuples of that subgoal 
can be obtained. In the second step, we consider all 
the possible combinations of information sources, one 
from each bucket, and check whether it is a semanti- 
cally correct plan, or can be made semantically correct 
if additional built-in atoms are added to the plan. Fi- 
nally, we minimize each plan by removing redundant 
subgoals. As we see in Section 5, the first step, consid- 
erably reduces the number of possibilities considered 
in the second step, The details of the first step are 
given in Figure 3. 



Set Bucketi to 0 for 1 5 i 5 m. 
For i = 1, . . . , m do: 

For each V E V 
Let V be of the form: V(F) C_ S,(?l), . . . , S,(Y,), Cv 
Forj=l,...,ndo 

If Ri = Sj or Ri and Sj are nondisjoint classes 
Let $J be the mapping defined on the variables of V as follows: 
If y is the k’th variable in Yj and Y E y 

then I+!(Y) = xk, where zk is the k’th variable in xi. 
else 4(y) is a new variable that does not appear in Q or V. \ 

Let Q’ be the 0-ary query: 
Q’ + RI(%), . . ., &n(%n),.C~, SI(V@>), . . . , SdlcI(%)>, 1cI(Cv) 
If Sati.$able(Q’) then add $(V) to Bwketi. 

End. 

Algorithm CreateBuckets(V,Q) 
Inputs: V is a set of content descriptions, and Q is a conjunctive query of the form 
Q : Q@) + RI(%), . . . , R&k), CQ. 

Figure 3: Algorithm to create the relevant buckets for each query subgoal. The procedure SatisJiable(Q’) tests 
whether a query Q’ is satisfiable. It tests that the conjunction of built-in atoms is satisfiable, and that there are 
no two subgoals C(x) and D(x) where C and D are disjoint classes. We assume that the source descriptions are 
given to the algorithm in their canonical augmented form. 

Example 4.1 We illustrate the algorithm on our ex- 
ample. Consider our query asking for sports cars man- 
ufactured no sooner than 1992: 

q(ml,pl, ~1) c CarForSale(q), Category(cl, sportscar), 

Year(cl, YI), Y 2 1992, f+ce(cl,pl), 
Model(q, ml), ProductReview(ml , y1, r~). 

and Source 4 does not get added because CarForSale 
and Motorcycle are disjoint classes. Source 5 
is the only source in the bucket of the subgoal 
ProductRevjew(ml, ~1, 7-1). 

and consider what happens when algorithm Create- 
Buckets looks at Source 1 and the first subgoal of our 
query CarForSale(cl). The canonical augmentation of 
the content description of Source 1 is: 

The algorithm will now check the Cartesian product 
of the buckets. For example, as shown in Example 3.1, 
the plan resulting from combining sources 1 and 5 is 
contained in the original query, and is therefore a se- 
mantically correct plan. 0 

4.1 Finding an Executable Ordering 

V{(m, t, y,p, 3) s CarForSale(c), UsedCar( Price(c,p), 
Cotegory(c, t), Year(c, y), Model(c, m), SellerContact(c, s) 

therefore, the algorithm will find the mapping c + cl 
and check whether the following is satisfiable:2 

CarForSale(q), Category (cl, sportscar), 

Year(cl, YI), ~1 2 1992, Price(cl, PI), 
Model(q, ml), ProductRewiew(ml, yl, rl), 
UsedCar( SellerContact(cl, 6) 

Since the classes CarForSale and UsedCar are not 
disjoint, the conjunction is satisfiable and Source 1 
is added to bucketl. In a similar fashion, Source 2 
is added to bucketa. Source 3 does not get added 
because (y 5 1950, y 2 1992) is not satisfiable, 

In the second step of creating query plans we consider 
the semantically correct plans and try to order the sub- 
goals in such a way that the plan will be sxecutable, 
i.e., will adhere to the capability requirements of the 
information sources. Figure 4 describes an algorithm 
that given a semantically correct plan, finds an order- 
ing on its subgoals that is executable, if such an or- 
dering exists. The algorithm proceeds by maintaining 
a list of available parameters, and at every point adds 
to the ordering any subgoal whose input requirements 
are satisfied. Finally, the algorithm pushes as many 
selections as possible to the sources. 

Example 4.2 Consider the semantically correct plan 
for answering our sportscar query: 

2Note that some variables (e.g., y1 and y) get equated be- & : Q(m,p,r) + VI(C), Vs(m, y,r), Model(c, m), 
cause of the single-valued attributes. Year(c, y), Category(c, sportscar), y 2 1992. 
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procedure create-executable-plan(Q’) 
/* Input: Q’ is a semantically correct conjunctive plan whose non-interpreted subgoals are Vi,. . . , U,. */ 

The capability record of the information source of Vi is (ini, out!, seli, mini, mari). 
We assume all bindings in Q’ are given explicitly using the = relation as a conjunct. 

Output: an executable query plan P’, which is an ordering VI,. . . , V, of Vi,. . . , U,,, 
and triplets (V;l,, I&, Vie,) specifying the inputs and outputs of the conjuncts. 
CJZI is the set of selections that will be applied locally. */ 

QueryBindings = The set of variables in Q’ bound by values in the query. 
Q out = The head variables of Q’. 
QuerySelections = The set of variables in Q’ for which the query contains a selection. 
BindAvailo = QueryBindings. 
fori=l,...,n 

The i’th subgoal in the ordering, vi, is any subgoal U, of Q’ that was not chosen earlier and 
at least minj of the parameters in inj are in BindAvaili-1. 
if there is no such subgoal, return plan not executable, else 

BindAvail; = BindAvail;-1 u outj. 
vi’f = A minimal set of parameters in BindAvaili-1 that satisfied the input requirement of U,. 
V& = All the parameters in Outj. 

end for 
if Q,,t g BindAvail, return plan not executable. 
fori=l,...n 

Remove any element from Vi,,, that is not needed as an input to a subsequent subgoal or for Q,,t. 
Add to as many parameters as possible from QuerySelections U BindAvaili-i to r/;k 

and selections using these parameters to V8Lr such that the cardinality of Vi: U V;=, does 
not exceed the input capacity of its source. 

C~I includes all the built-in atoms in Q’ that are not in one of the V$‘s. 
end create-executable-plan. 

Figure 4: An algorithm for computing an executable ordering of a semantically correct plan. We assume,that any 
pair of variables that are forced to be equal because of the functional dependencies have already been equated 
in the input. 

The bindings available in the query are {Category(c)}. 
Therefore, the input requirements of Vi(c) are sat- 
isfied and so it is put first. The outputs of VI(C) 
are {Model(c), Price(c), Year(c), SellerContact(c 
therefore BindAvail = {Category(c), Model(c), 
Price(c), Year(c), SellerContact(c and so the in- 
put requirements of Vs(m, y, r) are satisfied. Since the 
second information source provides the review, the 
ordering is executable. Finally, we add y >_ 1992 
to the selections of the first source. We remove 
SellerContact from the outputs of the first subgoal 
because it is not needed anywhere in the query. 0 

The following theorem shows that our algorithm 
will find an ordering of a plan whenever an executable 
ordering exists, and.wili do so in polynomial time. The 
proof is omitted because of space limitations. 

Theorem 4.1: Let&’ be a semantically correct plan. 
If there is an ordering of the subgoals of Q’ that re- 
sults in an executable plan, then procedure create- 
executable-plan will find it. The running time of 

the procedure is polynomial in the size of Q’. 0 

Algorithm create-executable-plan is a, general- 
ization of an algorithm by Morris [Mor88] for ordering 
subgoals in the presence of binding constraints. The 
key difference is that our capability records encode a 
set of possible binding patterns for each subgoal, and 
we find an ordering that chooses one pattern from ev- 
ery such set. Furthermore, our binding patterns in- 
volve not only variables occurring in the query, but 
also attributes on them, and also the possibility of 
pushing selections on parameters. 

Our descriptions allow only one capability record 
for every source relation. This restriction essentially 
means that the parameters that can be obtained from 
the source do not depend on how we chose to satisfy 
the input requirements of the source. In practice, we 
have found this to be sufficient to describe the sources 
we encountered. Conceivably, there may be situations 
in which it will not suffice, and the output set depends 
on which set of input parameters we used. The follow- 
ing theorem shows that in such a case, the problem of 
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determining whether there exists an executable order- 
ing for a plan is intractable, and therefore the choice we 
made also has important computational advantages. 

Theorem 4.2 : If every source relation in the 
content descriptions of information sources could 
have more than one capability record of the form 
(Sin, sout, Ssel, min, max), then the problem of deter- 
mining whether a semantically correct plan can have 
an executable ordering is NP-complete. 0 

5 Implementation and Experiments 

The Information Manifold system, whose architecture 
is shown in Figure 5 uses the techniques described in 
the previous sections to provide a uniform query in- 
terface to 100 structured information sources on the 
WWW. When a query is posed, the system uses the 
descriptions of information sources to compute ex- 
ecutable query plans. The actual interaction with 
the information sources is done through interface pro- 

grams. Logically, for every information source there 
is an interface program that accepts any query tem- 
plate available at the source and returns the appropri- 
ate answer. The interface program accepts the bound 
parameters to a query corresponding to the template, 
interacts with the information source, and produces a 
relation corresponding to the free parameters in the 
query template. Several of the interface programs use 
an .outerjoin-based technique [RU96] to convert hier- 
archically structured documents into relations. An 
important aspect of the system is that it provides 
a stream of answers to the use, and therefore tries, 
to minimize the time taken to begin and sustain the 
stream, as opposed to minimizing the time taken to 
provide all the answers to the query. Minimizing the 
time to the early tuples is important because the user 
is likely to find a satisfactory answer before all answers 
are exhausted. 

In order to experimentally evaluate our algorithms, 
we selected a set of queries and studied how various 
parameters varied as we increased the number of in- 
formation sources available to the system. Here we il- 
lustrate our results using three representative queries: 

1. Find titles and years of movies featuring Tom 
Hanks. 

2. Find titles and reviews of movies featuring Tom 
Hanks. 

3. Find telephone number(s) for Alaska Airlines. 

For each query, we varied the number of informa 
tion sources available to the system from 20 to 100 and 
measured various parameters. The results are shown 

I I 1 I I 8 I I 

20 30 40 50 60 70' 80 90 100 

Figure 6: Total query planning time in seconds versus 
number of information sources. 

in Table 2. Our experiments were run on a SGI Chal- 
lenge 150MHz computer. Maximum bucket size is the 
number of sources in the largest bucket created us- 
ing Algorithm CreateBuckets. Plans enumerated is 
the number of candidate plans enumerated in the sec- 
ond stage of the query planning algorithm, while plans 
generated is the total number of semantically correct 
and executable query plans actually generated for a 
given query. Table 2 also gives the total time taken to 
generate all query plans and the time per plan. 

We note that the number of information sources 
relevant to a query generally increases with the to- 
tal number of sources available. However, Algo- 
rithm CreateBuckets is extremely effective in prun- 
ing away irrelevant sources. The effectiveness of the 
pruning is measured in terms of the reduction in the 
number of candidate plans that are enumerated when 
creating semantically correct plans. If there were no 
pruning (as suggested by the nondeterministic algo- 
rithm in [LMSS95]), we would have to enumerate 
O(nlQl) plans for query Q, where n is the total number 
of information sources and ]&I is the number of sub- 
goals in Q. For example, with 100 sources, we would 
have to enumerate more than 1 million plans for Query 
1. However, the number of plans we actually enumer- 
ate is only 26 (a function of the product pf the bucket 
sizes). : 

Observe also that although Query 1 and Query 2 
both ask about movies, the number of sources rele- 
vant to Query 2 is more than the number of sources 
relevant&o Query 1 (7 versus 2 with 100 sources, for 
example); This difference is due to our ability to model 
fine-grained distinctions among movie sources, which 
enables us to prune away certain sources for Query 1 
that are relevant to Query.2. 

Figure 6 plots the total time to generate all query 
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Figure 5: Architecture of the Information Manifold 
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Figure 7: Average time per plan in seconds versus 
number of information sources. 

plans for each query against the number of information 
sources available to the system. Note that the overall 
time generally increases with the number of informa- 
tion sources, but not exponentially. Due to the effec- 
tive pruning, the time for plan generation is more a 
function of the number of relevant information sources 
than of total number of information sources. 

The total time for query planning is not a very good 
indicator of system response time. In the Information 
Manifold, each query plan is executed a soon as it is 
generated, in parallel with further planning and exe- 

cuting other plans. Thus, a better measure of response 
time is the average time to generate one query plan. 
We plot the average time per plan against the number 
of information sources in Figure 7. In contrast to the 
total query planning time, we observe that the average 
plan time does not always increase with the number 
of information sources, nor does it increase as rapidly. 
This effect is due to the fact that increasing the num- 
ber of sources available generally also increases the 
number of possible query plans. Finally, we observe 
that the average time per plan is within a tight range 
of less than 1 second for the queries we study, even 
when the number of information sources is large. This 
time is to be contrasted with the greater time taken 
to execute a query plan, which typically involves going 
over a network. 

6 Related Work 

Several systems (e.g., TSIMMIS [PGGMU95], HER- 
MES [ACPS96], CARNOT [CHSSl], DISCO [FRV95], 
Nomenclator [OM93]) f or integrating multiple infor- 
mation sources are being built on the notion of a medi- 
ator. The key aspect distinguishing Information Man- 
ifold from the other systems is its generality, i.e., that 
it provides a source independent, query independent 
mediator. Instead of being tailored to specific infor- 
mation sources and/or specific queries on these infor- 
mation sources, the input to Information Manifold is 
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Table 2: Query planning statistics for queries 1, 2, and 3 as the number of available information sources is varied 
between 20 and 100. 

a set of descriptions of the contents and capabilities of 
the sources. Given a query, the Information Manifold 
will consider the descriptions and the query, and will 
create a plan for answering the query using the sources. 
Consequently, we do not have to build a new mediator 
for different queries or information sources. For ex- 
ample, the Nomenclator system incorporates multiple 
CCSO, X.500 and relational name servers. Source de- 
scriptions are given as equality selections on a single 
relation, and queries can only reference one relation. 

The SIMS system [ACHK94] also describes infor- 
mation sources independently of the queries that are 
subsequently asked on them. The descriptions in* the 
Information Manifold are richer than those in SIMS 
because they allow relations of arbitrary arity, and 
in particular allow us to express the fact that an 
information source contains a conjunctive view over 
world-view relations (either classes, roles or relations 
of higher arity). SIMS does not consider capability 
descriptions of the sources. SIMS, as well as the Inter- 
net Softbot [EW94] use Artificial Intelligence planning 
techniques for determining the relevant information 
sources and creating a query plan. These approaches 
do not provide the guarantees of ours, that is that we 
find all and only the relevant sources. 

In [LSK95] a language for describing information 
sources that was less expressivg than the one we de- 
scribe here was proposed. The language did not con- 
sider the capability descriptions, and the algorithms 
described for finding relevant information sources did 
not deal with the case where source descriptions are 
given as queries on the world-view relations. Conse- 

quently, only a limited range of information sources 
could be incorporated. Practical algorithms and evalu- 
ation were also not discussed there. The algorithm for 
finding semantically correct plans is described in detail 
in [LR096]. In that paper we also describe methods 
for using run-time bindings to speed up query process- 
ing and for interleaving of planning and execution. 

A related line of work is on Web query languages. 
For example, W3QS [KS951 is a system for specify- 
ing high-level queries over unstructured information 
sources. This system enables the user to specify in 
the query patterns of nodes on the web and properties 
of such nodes. W3QS is a useful tool that enables a 
lot of otherwise manually done search to be done by 
a search engine, but it does not make use of contents 
of structured sources, and combine information from 
multiple sources. 

7 Conclusions and Future Work 

We described the query planning algorithms used in 
Information Manifold, a novel system that provides a 
uniform query interface to distributed structured in- 
formation sources. The Information Manifold frees 
the user from having to interact with each informa- 
tion source separately, and to combine information 
from multiple sources. The techniques underlying 
the Information Manifold are applicable to sources on 
the WWW as well as other collections of information 
sources such as company-wide databases. The key 
aspect of our system is a mechanism for describing 
the contents and capabilities of the available informa- 
tion sources. This enables expressing fine-grained dis- 
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tinctions between the contents of different information 
sources, thereby enabling us to prune the sources that 
are irrelevant to a given query. A novel aspect of,our 
system is that it describes the capabilities of infor- 
mation sources in addition to their contents, which is 
crucial in order to interact with remote sources. Our 
architecture and algorithms have been useful in prac- 
tice, allowing us to describe many existing information 
source. The end result is the first system that provides 
a database-like interface to over 100 structured infor- 
mation sources on the WWW. 

There are several important areas of research we 
are currently pursuing. One issue is obtaining source 
descriptions. Currently, the source descriptions are 
created by hand, but an active area of research is the 
design of tools for automating this process. We are 
also considering how to extend our source descriptions 
so that we will be able to infer that a source is relevant 
to a query with some degree of likelihood. For exam- 
ple, if we are searching for papers on database systems, 
and have access to a repository of papers on operating 
systems, we cannot completely ignore the repository, 
because we cannot state that these two fields are dis- 
joint. However, we would like to access this repository 
only after we have accessed all other repositories that 
are closer to database systems. 
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