Optimizing ETL Processesin Data War ehouses

Alkis Simitsis
Nat. Tech. Univ. of Athens
asimi@dbnet.ece.ntua.gr

Abstract

Extraction-Transformation-Loading (ETL) tools
are pieces of software responsible for the extraction of
data from several sources, their cleansing,
customization and insertion into a data warehouse.
Usually, these processes must be completed in a
certain time window; thus, it is necessary to optimize
their execution time. In this paper, we delve into the
logical optimization of ETL processes, modeling it as a
state-space search problem. We consider each ETL
workflow as a state and fabricate the state space
through a set of correct state transitions. Moreover, we
provide algorithms towards the minimization of the
execution cost of an ETL workflow.

1. Introduction

Panos Vassiliadis
University of loannina
pvassil@cs.uoi.gr

Timos Sellis
Nat. Tech. Univ. of Athens
timos@dbnet.ece.ntua.gr

Typically, research approaches concern (a) the
optimization of stand-alone problems (e.g., the
problem of duplicate detection [16]) in an isolated
setting and (b) problems mostly related to web data
(e.g., [7]). Recently, research on data streams[f1]
has brought up the possibility of giving an altdivex
look to the problem of ETL. Nevertheless, for the
moment research in data streaming has focused on
different topics, such as on-the-fly computation of
queries [1], [2]. To our knowledge, there is no
systematic treatment of the problem, as far as the
problem of the design of an optimal ETL workflow is
concerned.

On the other hand, leading commercial tools [9],
[10], [13], [14] allow the design of ETL workflows,
but do not use any optimization technique. The
designed workflows are propagated to the DBMS for
execution; thus, the DBMS undertakes the task of

For quite a long time in the past, research hasoptimization. Clearly, we can do better than this,

treated data warehouses as collections of matezdli
views. Although this abstraction is elegant and
possibly sufficient for the purpose of examining
alternative strategies for view maintenance, inat

because, an ETL process cannot be considered as a
“big” query. Instead, it is more realistic to tresat ETL
process as a complex transaction. In addition,nn a
ETL workflow, there are processes that run in satgar

enough with respect to mechanisms that are employedenvironments, usually not simultaneously and under

in real-world settings. Indeed, in real-world data
warehouse environments, instead of
mechanisms for the refreshment of materialized gjew
the execution of operational processes is emplayed

order to export data from operational data sources,we demonstrate that

transform them into the format of the target talded
finally, load them to the data warehouse. The aateg
of tools that are responsible for this task is gaihe
called Extraction-Transformation-Loading (ETL)
tools. The functionality of these tools can be sebr
summarized in the following prominent tasks, which
include: (a) the identification of relevant infortiwan at
the source side; (b) the extraction of this infotior
(c) the customization and integration of the infation
coming from multiple sources into a common format;
(d) the cleaning of the resulting data set, onbiigis of
database and business rules, and (e) the propagdtio
the data to the data warehouse and/or data marts.

So far, research has only partially dealt with the
problem of designing and managing ETL workflows.

automated

time constraints.

One could argue that we can possibly express all
ETL operations in terms of relational algebra alneint
optimize the resulting expression as usual. Inphiger
the traditional logic-based
algebraic query optimization can be blocked, bdlsica
due to the existence of data manipulation functions
Consider the example of Fig. 1 that describes the
population of a table of a data warehotserom two
source databasexl and S2. In particular, it involves
the propagation of data from the recordset
PARTS1(PKEY,SOURCE,DATE,COST) of source S1
that stores monthly information, as well as frone th
recordset PARTS2(PKEY,SOURCE,DATE,DEPT,
COST) of sourceS2 that stores daily information. In
the DW PARTS(PKEY,SOURCE,DATE,COST) stores
monthly information for the cost in Eurg€OST) of
parts (PKEY) per sourcg SOURCE). We assume that
both the first supplier and the data warehouse are
European and the second is American; thus, the data

coming from the second source need to be convested - How can we deal with naming problems?
European values and formats. PARTS1.COSTandPARTS2.COSTare homonyms,
but they do not correspond to the same entity (the

1 3 7 8 9

— — — first is in Euros and the second in Dollars).

M Assuming that the transformatics€ produces
the attribute€COST how can we guarantee that

corresponds to the same real-world entity with

2

PARTS1.COST?
4 5 6
< > -
ﬁ w

Figure 1. A simple ETL workflow

In Fig. 1, activities are numbered with their
execution priority and tagged with the descriptioi
their functionality. The flow for sourc&l is: @) a
check forNot Null values is performed on attribute
COST The flow for sourceS2 is: (4) Dollar costs Figure 2. An equivalent ETL workflow
($COST are converted to Euro£qOST; (5) dates In Fig. 2, we can see how the workflow of Fig. 1
(DATE are converted from American to European can be transformed in an equivalent workflow
format; 6) an aggregation for monthly supplies is performing the same task. The selection on Eur@s ha
performed and the unnecessary attrib@EPT (for been propagated to both branches of the workflow so
department) is discarded from the flow. The twovio that low values are pruned early. Still, we canpash
are then unified 7) and before being loaded to the the selection, neither before the transformatéag,
warehouse, a final check is performed on @m®sT hor before the aggregation. At the same time, there
attribute @), ensuring that only values above a certain & swapping between the aggregation and DWGE

threshold are propagated to the warehouse. conversion functionA2E). In summary, the two main
There are several interesting problems and problems that can be highlighted in this setting @)
optimization opportunities in the example of Fig. 1 to determine which operations over the workflow are

- Traditional query optimization techniques should legal and (b) to determine the best workflow
be directly applicable. For example, it is desieabl ~configuration in terms of performance gains.
to push selections all the way to the sources, in We take a novel approach to the problem by taking
order to avoid processing unnecessary rows. into consideration the aforementioned peculiarities

- Is it possible to push the selection for valuesvabo Moreover, we employ a workflow paradigm for the
a certain threshold early enough in the workflow? modeling of ETL processes, i.e., we do not strictly
As far as the flow for sourdeARTS1is concerned, ~ require that an activity outputs data to some peest
this is straightforward (exactly as in the relaibn data store, but rather, activities are allowed ttpat
sense). On the other hand, as far as the secondlata to one another. In such a context, I/O
flow is concerned, the selection should be Minimization is not the primary problem. In thispes,

performed after the conversion of dollars to Euros. We focus on the optimization of the process in geoh
In other words, the activity performing the |Og|CaI transformations of the workflow. To thiscen

selection cannot be pushed before the activity We devise a method based on the specifics of an ETL
app|y|ng the conversion function. workflow that can reduce its execution cost by
- Is it possibie to perform the aggregation, before Changing either the total number or the executi@®o

the transformation of American values to Of the processes. Our contributions can be listed a
Europeans? In principle, this should be allowed to follows:

happen, since the dates are kept in the resultingg We set up the theoretical framework for the
data and can be transformed later. In this case, th ~ Problem, by modeling the problem as a state space
aggregation operationsan be pushed, before the search problem, with each state representing a

function (as opposed to the previous case). particular deSign of the workflow as a graph. The
nodes of the graph represent activities and data

stores and the edges capture the flow of data amongonsumer. The graph uniformly models situations
the nodes. where (a) both providers are activities (combinedi

- Since the problem is modeled as a state spacepipelined fashion) or (b) activities interact with
search problem, we define transitions from one recordsets, either as data providers or data cossum
state to another that extend the traditional query Each node is characterized by one or more
optimization techniques. We prove the correctness schemata, i.e., finite lists ofattributes. Whenever a
of the introduced transitions. We also provide schema is acting as a data provider for anothezraah
details on how states are generated and thewe assume a one-to-many mapping between the
conditions under which transitions are allowed. attributes of the two schemata (i.e., one provider

- Finally, we provide algorithms towards the attribute can possibly populate more than one
optimization of ETL processes. First, we use an consumers while a consumer attribute can only have
exhaustive algorithm to explore the search space inone provider). Recordsets have only one schema,
its entirety and to find the optimal ETL workflow. whereas activities have at least two (input angbwtiit
Then we introduce greedy and heuristic search Intuitively, an activity comprises a set dhput

algorithms to reduce the search space that weschemata, responsible for bringing the records to the

explore, and demonstrate the efficiency of the

approach through a set of experimental results.

The rest of this paper is organized as follows.
Section 2 presents a formal statement for our bl

activity for processing and one or moreutput
schemata responsible for pushing the data to the next
data consumer (activity or recordset). An actiwitith
one input schema is calleshary, and an activity with

as a state space search problem. In Section 3 wawo input schemata is calldihary.

discuss design issues and correctness of our gelitin
Section 4, we present algorithms for the optimaati
the ETL processes, along with experimental restits.
Section 5 we present related work. Finally, in $ec6

Formally, anactivity is a quadruplé=(id ,I ,0;S),
such that: (a)d is a unique identifier for the activity;
(b) 1 is a finite set of one or more input schemata,
receiving data from the data providers of the aiytiv

we conclude with our results and discuss topics of (c) Ois a finite set of one or more output schemata tha

future research. A long version of the paper, vath
the proofs is found at [19].

2. Formal Statement of the problem

In this section, we show how the ETL optimization

problem can be modeled as a state space searc

problem. First, we give a formal definition of the
constituents of an ETL workflow and we describe the
states. Then, we define a set of transitions thatle
applied to the states in order to produce the &earc
space. Finally, we formulate the problem of the
optimization of an ETL workflow.

2.1. Formal definition of an ETL workflow

An ETL workflow is modeled as a directed acyclic
graph. The nodes of the graph compisgvities and
recordsets. A recordset is any data store that can
provide a flat record schema (possibly through a
gateway/wrapper interface); in the rest of this grap
we will mainly deal with the two most popular typafs
recordsets, namely relational tables and recoms fil
The edges of the graph denotata provider (or
input/output) relationships. an edge going out of a
noden; and into a noda, denotes that, receives data
from n, for further processing. In this setting, we will
refer to n; as thedata provider and n, as thedata

describe the placeholders for the rows that are
processed by the activity; and (8)is one or more
expressions in relational algebra (extended with
functions) characterizing the semantics of the @lata

for each of the output schemata. This can be one
Xpression per output schema or a more complex
xpression involving intermediate results too.

In our approach, we will model an ETL workflow
as a graph. Assume a finite list of activitigsa finite
set of recordsetkRS and a finite list of provider
relationshipsr .

Formally, anETL Workflow is a directed acyclic
graph (DAG),G(V,E) such that/'=AURSandE=Pr.

A subset of RS denoted byRS; contains the
sources of the graph (i.e., the source recordsatd)
another subset oRS denoted byRS;, contains the
sinks of the graph (representing the final target
recordsets of the warehouselz(V,E) can be
topologically ordered, therefore a uniguezecution
priority can be assigned to each activity as its unique
identifier.

Finally, all activities of the workflow should hawee
provider and a consumer (either another activityaor
recordset). Each input schema has exactly one govi
(many providers for the same consumer are captured
by UNION activities).

iV
i
oo
A

i?

SWA (a,,a,) SWA (a,,a,) A

FAC(a, ,a,,a,)

:

(a) Swap

>
A
DIS (ab,a)

>

(b) Factorize and Distribute

MIi‘.R(a1+2 a.

2 ,%)HSPL (a,,,,a,,a,)

(c) Merge Sptit

Figure 3. Abstract examples of transitions

2.2. Theproblem of ETL workflow optimization

We model the problem of ETL optimization as a
state space search problem.

States. Each stateS is a graph as described in
Section 2.1, i.e. states are ETL workflows; therefo
we will use the terms ‘state’ and ‘ETL workflow’
interchangeably.

Transitions. TransitionsT are used to generate
new, equivalent states. In our context, equivastates
are assumed to be states that based on the sauote inp
produce the same output. Practically, this is exadl
in the following way:

(a) by transforming the execution sequence of the
activities of the state, i.e., by interchanging two
activities of the workflow in terms of their
execution sequence;

(b) by replacing common tasks in parallel flows with
an equivalent task over a flow to which these
parallel flows converge;

(c) by dividing tasks of a joint flow to clones applied

to parallel flows that converge towards the joint ~

flow.
Next, we introduce a set of logical transitionsttha
we can apply to a state. We use the notadionT(S)

to denote the transition from a states to a states’ .

The introduced transitions include:

- Swap. This transition can be applied to a pair of
unary activitiesa; and a, and interchange their
sequence, i.e., we swap the position of the two
activities in the graph (see Fig. 3a). Swap corgern
only unary activities, e.g., selection, checking fo
nulls, primary key violation, projection, function
application, etc. We denote this transition as
SWA(a,a 7) -

- Factorize and Distribute. These operations involve
the interchange of a binary activity, e.g., union,
join, difference, etc., and at least two unary
activities that have the same functionality, bug ar

applied over different data flows that converge
towards the involved binary activity. This is
illustrated in Fig. 3b. In the upper part, the two
activitiesa; anda, have the same functionality, but
they are applied to different data flows that
converge towards the binary activity,. The
Factorize transition replaces the two activites
and a, with a new onea, which is placed right
after a,. Factorize and Distribute are reciprocal
transitions. If we have two activities that perform
the same operation to different data flows, which
are eventually merged, we can apply Factorize in
order to perform the operation only to the merged
data flow. Similarly, if we have an activity that
operates over a single data flow, we can distrilitute
to different data flows. One can notice that
Factorize and Distribute essentially model
swapping between unary and binary activities. We
denote Factorize and Distribute transitions as
FAC(ap,a 1,a ;) andDIS(a p,a) respectively.

Merge and Split. We use these two transitions to
“package” and “unpackage” a pair of activities
without changing their semantics. Merge indicates
that some activities have to be grouped according t
the constraints of the ETL workflow; thus, for
example, a third activity may not be placed
between the two, or these two activities cannot be
commuted. Split indicates that a pair of grouped
activities can be ungrouped; e.g., when the
application of the transitions has finished, we can
ungroup any grouped activities. The benefit is that
the search space is proactively reduced without
sacrificing any of the design requirements. Merge
transition is denoted a4ER(a+2,a 1,a) and split
transition is denoted &PL(a 12,2 1,2) .

The reasoning behind the introduction of the

transitions is quite straightforward.

Merge and split are designated by the needs of
ETL design as already described.

- Swapping allows highly selective activities to be The problem of the optimization of an ETL
pushed towards the beginning of the workflow, in workflow involves the discovery of a stagg,., such
a meaning similar to the case of traditional query thatC(Sy,) is minimal.
optimization. In the literature [8], [11], [15] there exists ariedy

- Factorization allows the exploitation of the fact of cost models for query optimization. Our appro&ch
that a certain operation is performed only once (in general in that it is not in particular dependenttbe
the merged workflow) instead of twice (in the cost model chosen.
converging workflows). For example, if an activity

can cache data (like in the case of surrogate key3 gigte generation, transition

assignment, where the lookup table can be . "
cached), such a transformation can be beneficial. applicability and corrrectness

On the other hand, distributing an activity in two In this section, we will deal with several non-tailv
parallel branches can be beneficial in the caseissues in the context of our modeling for the
where the activity is highly selective and is pushe optimization of ETL processes as a state spacelsear
towards the beginning of the workflodbserve problem. We consider equivalent states as workflows
Fig. 4. Consider a simple cost model that takes that, based on the same input, produce the sarpetout
into account only the number of processed rows in To deal with this condition, we will first discuse

each process. Also, consider an inpuB gbws in
each flow, and selectivities equal ®0% for
processoc and 100% for the rest processes. Given
nlog ,n andn as the cost formulae f@K and o
respectively (for simplicity, we ignore the cost of
U), the total costs for the three cases are:
c,=2nlog ,n+n=56, c,=2(n+(n/2)log »(n/2))

=32, c3=2n+(n/2)log ,(n/2)=24 Thus, DIS
(case 2) an#AC (case 3) can reduce the cost of a

state.
SK; o;—>SKy 2%
P I THge
SK; or—>SKy oz

(1) (2) (3)

Figure 4. Factorization benefits

Due to lack of space we omit the details regarding

the formal definitions of the above transitions.eTh
interested reader is referred to the long versibthe
paper [19].

So far, we have demonstrated how to model each

ETL workflow as a state and how to generate thie sta

space through a set of appropriate transformations

(transitions). Naturally, in order to choose thedimal
state, the problem requires a convenient discritiina
criterion.

Such a criterion is a cost model. Given an activity
a, let c(a) denote its cost (possibly depending not
only on the cost model, but also on its positiorihie
workflow graph). Then, the total cost of a state is
obtained by summarizing the costs of all its atitei
The total cosiC(S) of a stateS is given by the next
formula:

C(S) = z c@i)

detail how states are generated and then we wél de
with the problem of transition applicability.

3.1. Namingprinciple

As we have already seen in the introduction, an
obvious problem for the optimization of ETL
workflows is that different attributes names do not
always correspond to different entities of the neatld
and vice versa.

To handle this problem, we resort to a simple
naming principle: (a) all synonyms refer to the sam
entity of the real world, and (b) all different ritute
names, at the same time, refer to different thingse
real world. Since it is possible that the employed
recordsets violate this principle, we map the owdi
attribute names of the involved recordsets to aofet
reference attribute names that do not suffer froia t
problem. Formally, we introduce:

(a) a set of reference attribute names at the conceptual
level, i.e., a finite set of unique attribute namgs
and a mapping of each attribute of the workflow to
this set of attribute names;

(b)a simple naming principle: all synonymous
attributes are semantically related to the same
attribute name im,; no other mapping to the same
attribute is allowed.

In the example of Fig. 1, we can employ the same
reference attribute name for both American and
European dates, since we will treat them equivbient
as groupers. At the same tim&€OST attributes,
expressed in Dollars and in Euros should be mapped
different reference attributes (due to the preseriche
selection predicate on Euros). In the sequel, wé wi

employ only reference attribute names in our

discussions.

3.2. Issuesaround activity schemata

In [18] we have presented a set of template
activities for the design of ETL workflows. Each
template in this library has predefined semantivsd a
set of parameters that tune its functionality: for
example, when the designer of a workflow materédiz
aNot Null template he/she must specify the attribute
over which the check is performed. In order to
construct a certain ETL workflow, the designer must
specify the input and output schemata of each iactiv
and the respective set of parameters. Althoughishes

manual procedure, in the context of this paper, the

different states are automatically constructed,;

therefore, the generation of the input and output

schemata of the different activities must be autesha
too. For lack of space, the automation of this pchte
is presented in the long version of the paper [19].

For the purpose of state transitions, (e.g., swappi
activities), apart from the input and output schema
each activity is characterized by the following
schemata:

1. Functionality (or necessary) schema. This schema

is a list of attributes, being a subset of (theouni
of) the input schema(ta), denoting the attributes
which take part in the computation performed by
the activity. For example, an activity having as
input schemas;=[ABCD] and performing aNot
NuB) operation, has a functionality schersg
=[B] .

Generated schema. This schema involves all the

output attributes being generated due to the

processing of the activities. For example,
function-based activity2€ converting an attribute
dolar_cost to Euros, i.e., euo oost
$2€(dollar_oost) , has a generated schemg=
[euro_cosf] Filters have an empty generated
schema.

. Projected-out schema. A list of attributes,
belonging to the input schema(ta), not to be
propagated further from the activity. For example,

a

once a surrogate key transformation is applied, we =
propagate data with their new, generated surrogate
key (belonging to the generated schema) and we2-

project out their original production key (belongin
to the projected-out schema).

These auxiliary schemata are provided at the 3-

template level. In other words, the designer of the
template library can dictate in advance, (a) whacé

the parameters for the activity (functionality soiz

and (b) which are the new or the non-necessary
attributes of the template. Then, these attribwtes
properly instantiated at the construction of theLET
workflow.

Local Groups. A local group is a subset of the
graph (state), the elements of which form a lirgesth
of unary activities. In the example of Fig. 1, tbeal
groups of the state af® , 456 and{g} .

Homologous Activities. Also, we introduce the
notion ofhomologous activities to capture the cases of
activities. Two activities are homologous if: (dey
are found in converging local groups; (b) they hthe
same semantics (as an algebraic expression); €g) th
have the same functionality, generated and prajecte
out schemata.

3.3. Transition applicability

In this subsection, we define the rules which allow
or prohibit the application of a transformation &0
certain state.

Swap. One would normally anticipate that
swapping is already covered by traditional query
optimization techniques. Still, this is not truen the
contrary, we have observed that the swapping of
activities deviates from the equivalent problem of
“pushing operators downwards”, as we normally do in
the execution plan of a relational query. The major
reason for this deviation is the presence of fumsj
which potentially change the semantics of attribute
Relational algebra does not provide any support for
functions; still, the “pushing” of activities shallbe
allowed in some cases, whereas, in some others, it
should be prevented.

Remember the two cases from the introductory
example of Fig. 1 and 2. It is not allowed to push
selection on Euros before their transformation and
aggregation. On the contrary, it should be permhitte
push the aggregation ODATE before a function
transforming theDATE from American to European
format.

Formally, we allow the swapping of two activities
a; anda, if the following conditions hold:

a, anda, are adjacent in the graph (without loss of
generality assume that is a provider for,)

both a;, and a, have a single input and output
schemata and their output schema has exactly one
consumer

the functionality schema af; anda, is a subset of
their input schema (both before and after the

swapping)

4. the input schemata af, anda, are subsets of their out) activity, rejecting an attribute at its outmehema
providers, again both before and after the swapping (Fig. 6). Then, swapping will produce an error,cgin
Conditions (1) and (2) are simply measures to after the swapping takes place, the rejected at&in

eliminate the complexity of the search space amd th the input schema of activity; (now a consumer af,)

name generation. The other two conditions though, will not have a provider attribute in the outpuhema

cover two possible problems. The first problem is of a;.

covered by condition (3). Observe Fig. 5, where Factorize/Distribute. We factorize two

activity $2€ transforms Dollars to Euros and has an homologous activitiea, anda,, if we replace them by

input attribute nameddolar cost , a functionality a new activitya that does the same job to their
schema that containgolar cost and an output combined flow. Formally, the conditions governing
attribute nameduo cost . Activity o(€) , at the same factorization are as follows:

time, is specifically containing attribuéero cost in its 1. a; and a, have the same operation in terms of

functionality schema (e.g., it selects all cost®wab algebraic expression; the only thing that diffess i

100€). When a swapping has to be performed and their input (and output) schemata

activity o(€) is put in advance of activitg2€, the 2. a, anda, have a common consumer, sgy which

swapping will be rejected. is a binary operation (e.g., union, difference,)etc
The guard of condition (3) can be easily Obviously,a; anda, are removed from the graph

compromised if the designer uses the same name foand replaced by a new activity following a,. In other
the attributes of the functionality schemata oféties words, each edgexa ;) and (x,a ;) becomes
$2€ ando(€) . For example, if instead ablar cost (x,a p) for any nodex, edges(a ;,a,) and(a,,a)
andeuo cost , the designer used the namg , then are removed, the nodes anda, are removed, a node
condition (3) would not fire. To handle this protge a is added, the edg@ ,,a) is added and any edge
we exploit the usage of the naming principle ddwsati (apy) isreplaced byay) forany node.

in subsection 3.1. The distribution is governed by similar laws; an

— activity a can be cloned in two paths if:

ﬁ $2e, 0w 1. a binary activitya, is the provider ofa and two
clones, activitiesa; anda, are generated for each
\ path leading ta,
€D, 2. a; and a, have the same operation in terms of

S algebraic expression withn

o $2€ 4 Naturally, a is removed from the graph. The node
g and edge manipulation are the inverse from the ohes

factorize.
O Merge/Split. Merge does not impose any

Figure 5. Necessity for swap-condition (3) sig_nifica_nt problems: the output schem&_x _of the new

activity is the output of the second activity arte t

a a input schema(ta) is the union of the input schernéta
1 2
' 2N ZN

the involved activities, minus the input schemathaf
second activity linked to the output of the firstisity.
Split requires that the originating activity is amged

@ one, like, for examplea+b+c . In this case, the activity
is split in two activities as (i and (ii)b+c.

a2 a1
» % » 3.4. Correctnessof theintroduced transitions
b Db Do In this section, we prove the correctness of the
transitions we introduce. In other words, we prtivat
>> @@ £ e b
)) -~ whenever we apply a transition to a certain stath®
Fig. 6. Necessity for swap-condition (4) problem, the derived state will produce exactly the

The second problem, confronted by condition (4) is Same data with the originating one, at the endtf i
simpler. Assume that activity, is a o, (projected- ~ €Xecution.

There are more than one ways to establish the

Activity Predicate. Each activity or recordset is

correctness of the introduced transitions. We have characterized by a logical post-condition, which we
decided to pursue a black-box approach and in ourcall activity predicate or activity post-condition, having

setting, we annotate each activity with a predicae
to true whenever the activity successfully cométe
execution (i.e., it has processed all incoming datd
passed to the following activity or recordset).
Otherwise, the predicate is set to false. The peadi
consists of a predicate name and a set of variatiles

assume fixed semantics for each such predicate .name

In other words, given a predica®&2€(COST) we
implicity know that the outgoing data fulfill a
constraint that the involved variable (attrib@eST is
transformed to Euros.

Once a workflow has executed correctly, all the
activities’ predicates are set to true. Within this
framework, it is easy to check whether two workftow
are equivalent: (a) they must produce data under th

same schema and (b) they must produce exactly the

same records (i.e., the same predicates are ttubga
end of their execution.

An obvious consideration involves the
interpretation of the predicate in terms of the astits
it carries. Assume the functioge€ of Fig. 1 that is
characterized by the post-conditi¢a€(COST) . One
would obviously wonder, why is it clear that we all
agree to interpret the semantics 6P€ as the
conversion of Dollars costs to Euros over the
parameter variable (hereCOS)? To tackle this
problem, we build upon the work of [18], where
template definitions are introduced for all the common
categories of ETL transformations. In this casergv
template has a “signature” (i.e., a parameter seflem
and a set of well-defined semantics in LDL. For
example,$2€@#vrbl ;) is the definition of the post-
condition for$2€ function at the template level. In Fig.
1 this is instantiated a$2€(COST), where COST
materializes the#vrbl ;. The scheme is extensible
since, for any other, new activity, that the design
wishes to introduce, explicit LDL semantics can be
also given. For our case, it is sufficient to enyptbe
signature of the activity in a black box approdostth
for template-based or individual activities.

A second consideration would involve the

as variables: (a) the attributes of the functidgali
schema in the case of activities or (b) the atteblof
the recordset schema, in the case of recordsets.

For each nodeneV of a workflow S = ¢V, E)
there is a predicate that acts as post-conditi@ond ,
for noden.

p =cond ,(#vrbl 4,... #vrbl | #vrbl g, F#rbl)

SinceneV=AURS we discern the following cases:

1. n is a unary activity: the attributes of the
functionality schema of the activity acting as the
variables of the predicate.

{#vrbl 4, ..., #vrbl N = n.fun

2. n is a binary activity: the attributes of the

functionality schemata of both activities acting as

the variables of the predicate.

{#vrbl 4, ..., #vrbl } = n.in 1.fun

{#vrbl 1, ..., #vrbl N =nin o ,.fun
3. n is a recordset: the attributes of the recordset

acting as the variables of the predicate.

Once all activities of a workflow are computed,
there is a set of post-conditions which are setrue.
Therefore, we can obtain an expression describing
what properties are held by the data processeddy t
workflows, once the workflow is completed.

Workflow post-condition. Each workflow is also
characterized by aworkflow post-condition, Condg,
which is a Boolean expression formulated as a
conjunction of the post-conditions of the workflow
activities, arranged in the order of their execut{as
provided by a topological sort). For example, i th
workflow of Fig. 1, the workflow post-conditioBondg
is given by the following formula:

Condg = PARTS1(PKEY,SOURCE,DATE,COST)
PARTS2(PKEY,SOURCE,DATE,DEPT,COST) A
NN(COST) A $2€(COST) A A2E(DATE) A
vsuMPKEY,SOURCE,DATE,ECOST) AU() A
o(ECOST) ADW(PKEY,SOURCE,DATE,£COST)

Now, we are ready to define when two workflows
(states) are equivalent. Intuitively, this happerisen
(a) the schema of the data propagated to eachttarge
recordset is identical and (b) the post-conditiohthe

A

commonly agreed upon semantics of variables. We o workflows are equivalent.

tackle this problem by introducing the common
scenario terminology,, and the naming principle of
Section 3.1.

Next, we give the formal definitions of the activit
and workflow post-conditions.

Equivalent workflows. Two workflows (i.e.,
states)G1 andG2 are equivalent when:
a. the schema of the data propagated to each
target recordset is identical
b. Condg; = Condg,

Finally, we can express the following theorems
which guarantee that the state transitions thahaes

defined are correct, in the sense that they produce

equivalent workflows (i.e., states). All proofs doeind
in [19].

Theorem 1: Let a stateS be a graphG=(V,E) ,
where all activities have exactly one output an@ on
consumer for each output schema. Let also a tiansit
T derive a new stateS’, ie., a new graph
G'=(V',E’) , affecting a set of activitieGcVuV' .
Then, the schemata for the activities\6fz, are the
same with the respective schemat&'et 4. O

Theorem 2. All transitions produce equivalent
workflows. O

Having presented the theoretical setup of the
problem of ETL optimization, we can now present the
search algorithms that we propose for this problem.

4. State space search based algorithms

In this section, we present three algorithms toward
the optimization of ETL processes: (a) an exhaastiv
algorithm, (b) a heuristic algorithm that reducée t
search space and (c) a greedy version of the tieuris
algorithm. Finally, we present our experimentaltes

4.1. Preliminaries

In order to speed up the execution of algorithms,
we need to be able to uniquely identify a state.

State I dentification. During the application of the
transitions, we need to be able to discern state® f
one another, so that we avoid to generate (and atamp
the cost of) the same state more than once. Irr tode
automatically deriveactivity identifiers for the full
lifespan of the activities, we choose to assignheac
activity with its priority, as it stems from the
topological ordering of the workflow graph, as givie
its initial form. By making use of these unique
identifiers, we create a string that characterigash
state and we name it thsignature of the state. For
example, the signature of the state depicted in Fig
((1.3)//(2.4.5.6)).7.8.9 .

Finally, note that the computation of the cost of
each state in all algorithms is realized in a semi-
incremental way. That is, the variation of the dosim
the stateS to the stateS’ can be determined by
computing only the cost of the path from the a#ect
activities towards the target in the new state takihg
the difference between this cost and the respectige
in the previous state.

4.2. Exhaustive and heuristic algorithms

Exhaustive Sear ch. In the exhaustive approach we
generate all the possible states that can be geddns
applying all the applicable transitions to evemtst In
general, we formalize the state space as a grapérew
the nodes are states and the edges possible ivassit
from one state to another.

The Exhaustive Search algorithm (ES) employs a
set of unvisited nodes, which remain to be explored
and a set ofvisited nodes that have already been
explored. While there are still nodes to be explothe
algorithm picks arunvisited state and produces its
children to be checked in the sequel. The searahesp
is obviously finite and it is straightforward théte
algorithm generates all possible states and then
terminates. Afterwards, we search thisited states
and we choose the one with the minimal cost as the
solution of our problem. The formal definition diet
Exhaustive algorithm can be found in [19].

Heurigtic Search. In order to avoid exploring the
full state space, we employ a set of heuristicsedan
simple observations, common logic and on the
definition of transitions.

Heurigtic 1. The definition ofFAC indicates that it
is not necessary to try factorizing all the actestof a
state. Instead, a new state should be generatedamno
old one through a factorize transitioFAC) that
involves only homologous activities and the respect
binary one.

Heurigtic 2. The definition ofDIS indicates that a
new state should be generated from an old one ghrou
a distribute transition O0S) that involves only
activities that could be distributed and the retipec
binary one. Such activities are those that could be
transferred in front of a binary activity.

Heurigtic 3. According to the reasons of the
introduction of merge transition, it should be used
where it is applicable, before the application ofya
other transition. This heuristic reduces the search
space.

Heuristic 4. Finally, we use a simple “divide and
conquer” technique to simplify the problem. A state
divided in local groups, thus, each time optimizati
techniques are applied in a part of, instead on the
whole, graph.

The input of the algorithniHeuristic Search (HS)
(Fig. 7) is the initial workflow (stats,) and a list of
merge constraints that are used at the pre-proaessi
stage. Next, we present the various phases of this
algorithm.

Pre-processing (Ln: 4-8). First, all the activities

order to split all the activities that were merghding

that the workflow constraints indicate, are merged. the pre-processing stage. The constraints forStpe

Such constraints might be (a) the semantics of thetransition are

individual activities, e.g., before the applicatioh a

reciprocal to theMER transition

constraints. Finally, HS returns the state with the

surrogate key assignment, we must enrich the dilta w minimum cost.

information about the respective source, and (lgr-us

defined constraints, which capture the fact thatsar
may indicate that some activities should be meiiged
order to reduce the search space. Also, HS firldbel 1.
homologous) and distributable) activities of the
initial state and then, it divides the initial &d&, in
local groups) (having as borders the binary
activities, e.g., join, difference, intersectiots.eand/or
the recordsets of the state).

Phase | (Ln: 9-13). In this phase, HS proceeds with
all the possible swap transitions in each localugro
Every time that HS meets a state with better dus t
the minimum cost that already exists, it assigns it

LCoOoNO A~ON

transitions). 14.
Phase Il (Ln: 14-20). This phase checks for 12

possible commutations between two adjacent local
groups. For each pair of homologous activitiesgfit 17

tests if both activities can be pushed to be adfate 18
their next binary operator (functioshiftFrw()). 19.
Then, it applies factorization over the binary aer 20.
and the pairs of that satisfy the aforementioned 21.
condition. HS adds every new state toisged st 22.
and keeps record of a state with a new minimum cost 3431

Phase Il (Ln: 21-28). HS searches every new state 25'
of Phase Il for activities that could be distritdit@ith 26.
binary operators (functioghiftBkw()). Obviously, it 27.
is not eligible to distribute again the activitigest we 28.
factorize in Phase Il; hence, HS uses the disaliet 29.
activities of the initial stateDj. Again, HS adds every 30.
new state to theisited list and keeps record of a 3L
state with a new minimum cost. g;

Phase IV (Ln: 29-35). Intuitively, in the previous

two phases, HS produces every possible local group,3g:
. apply all

because in the lifetime of each local group thediste 3¢
its original activities minus any activities thatght be 37.
distributed to other local groups union any aciégdt 38.

that might be factorized from other groups. In theth

10.
Sun- Note, that all local groups are part of the same 11,
state:Sy; thus, the output of this phase is a state with a12.
global minimum cost (concerning only the swap 13.

Algorithm Heuristic Search (HS)

Input: An initial stateS,, i.e., a graptG =(V, E)
and a list of merge constraintgrg_cons
Output: A stateSy,y having the minimal cost
Begin

apply all MERaccording to merg_cons;
unvisited= J; visited= ;S min=So;

H < FindHomologousActivities(S 0);

D < FindDistributableActivities(S 0);
L < FindLocalGroups(S 0);
foreach g;in L {
foreach pair(a ,a;)ing ;i {
S NEW € SWA(a, a),
3 if (c(S new<c(S mMN)S MN=S new
visited < Sun;
for each pair(a j,aj)in H{
if ((ShiftFrw(a i»ap) and
(ShiftFrw(a ,ap)) |

S ew€FAC@yaj.aj),
if (c(S neW<c(S mn)S MN=S new
visited < S \ew
1
unvisited = visited;
foreach S inunvisited {
foreach a,in D {
if (ShiftBkw(a g ayp) {
S new € DIS(a p.a y);
it (c(S Ned<C(S mn)S min=S new
visited < S \ew
1
foreach S, invisited {
L < FindLocalGroups(S i)
foreach g;inL {
foreach pair(a ,a;)ing ; {
S NEW € SWA(ai a);
it (c(S Ned<C(S mn)S min=S new

SPLs according to spl_cons;
return S yin;

End.

phase, HS repeats Phase | in order to get all the
possible states that could be produced with the
application of the swas{VA transition in all the nodes
that a local group can have. Of course, if it is
necessary, HS updatggy. After the completion of the
above phases, HS applies spK®P() transitions in

Fig. 7. Algorithm Heuristic Search (HS)

After each transition has taken place, the input an
output schemata of each activity are automaticaly
generated (see [19]). We assign a unique signature
each state;
unvisited

thus, the two listsisited and
do not allow the existence of duplicate

states. Obviously, due to the finiteness of thdesta the initial state; while HS-Greedy returns “unstdbl

space and the identification of states, the algorit
terminates.

HS-Greedy. One could argue that Phase | seems to
overcharge HS, considering its repetition in Phidse
Experiments have shown that the existence of tisé fi
phase leads to a much better solution without

results in a low average value of 47%.
Table 1. Quality of solution

consuming too many resources. Also, a slight change

in Phase | (and respectively in Phase IV) of HS

improves its performance. In particular, if, insteaf
swapping all pairs of activities for each local gpo
HS swaps only those that lead to a state withdess

that the existing minimum, then HS becomes a greedy

algorithm:HS-Greedy.
Experimental results. In order to validate our
method, we implemented the proposed algorithms in

C++ and experimented on the variation of measures

like time, volume of visited states, and improvengn
the solution and the quality of the proposed wankil
We have used a simple cost model taking into
consideration only the number of processed rowsdas
on simple formulae [15] and assigned selectivifas
the involved activities. As test cases, we havel uke
different ETL workflows categorized as small,
medium, and large, involving a range o% to 70
activities. All experiments were run on an AthlonX
machine running at 1.4GHz with 768Mb RAM. As

expected, in all cases, the ES algorithm was slower

ES HS HS-Greedy

workflow | quality of quality of quality of
category | solution % | solution % solution %

(avg) (avg) (avg)
small 100 100 99
medium - 99 86
large - 98 67
" The values are compared to the best of ES when it
stopped.

The time needed for the execution of the
algorithms is satisfactory compared to the time we
will earn from the execution of the optimized
workflow, given that usual ETL workflows run into
a whole night time window. For example, the
average worst case of the execution of HS for large
scenarios is approximately 35 minutes, while the
gain from the execution of the proposed workflow
outreaches a percentage of 70%.

5. Redated work

There exists a variety of ETL tools in the market;

p Wwe mention a recent review [6] and several comraérci
tools [9], [10], [13], [14]. Although these tooldfer
GUI’s to the developer, along with other facilitighe

designer is not supported in his task with any
optimization tools. Therefore, the design procesalsl
with this issue in an ad-hoc manner. Research tsffor

compared to the other two, and in most cases ildcou
not terminate due to the exponential size of trercde

space. As a threshold, in most cases, we let ESipun N ; .
to 40 hours. Thus, we did not get the optimal sotut ~ &/SO €xist in the ETL area, including [4], [3], [$1.2].

; Also, we mention three research prototypes: (a) AJA
for all the test cases, and consequently, for medind X
large cases we compare (quality of solution) thst be y] (b) Potter's Wheel [1:)]' andd ARKFOE’ I [18]hh;
solution of HS and HS-Greedy to the best solutitt 1St tWo prototypes are based on algebras, whieh w

ES has produced when it stopped (Table 1). Table ofind mostly tailored for the case of homogenizingtw
depicts the number of visited states for each #hyor data; the latter concerns the modeling of ETL
the execution time of the algorithm and the peraget processes in a customlza.ble and extensible maper.
of improvement for each algorithm compared with the U’ knowledge, no work in the area of ETL has dealt
cost of the initial state. with optlml.za.non issues so far. .

We note that for small workflows, HS provides the In a similar setting, research has provided tesul
optimal solution according to ES. Also, althoughtbo ~ fOF the problem of stream management [1], [2].
HS and HS-Greedy provide solutions of approximately Techniques used in the area of stream management,

the same quality, HS-Greedy was faster at least 86%Which construct and optimize plans on-the-fly, come

(average value was 92%). For medium ETL the closest that we know of to the optimizationlesty
workflows, HS finds better solution than HS-Greedy that we discuss in the context of ETL. Neverthgless
(in a range of 13-38%). On the other hand, HS-Gyeed strea_m manage_ment techniques are not directly
is a lot faster than HS, while the solution that it 2PPlicable to typical ETL problems (a) due to thetf

provides could be acceptable. In large test cadss, that real time replication is not alw_ays applica_hbe
proves that it has an advantage because it returnd€92cy systems and (b) pure relational querying, as

workflows with improved cost over 70% of the cost o Studied in the field of stream management is not
sufficient for ETL purposes.

Table 2. Execution time, number of visited states and improvement wrt initial state

type of workflow ES HS HS-Greedy
volume of visited |improve | time visited |improve time visited |improve time
category activities (avg) states | ment % sec states | ment % sec states | ment % sec
(avg) | (avg) (avg) (avg) (avg) (avg) (avg) (avg) (avg)
small 20 28410 78 67812 978 78 297 72 76 7
medium 40 45110 52° | 144000 | 4929 74 703 538 62 87
large 70 34205 45 | 144000 | 14100 71 2105 1214 47 584

" The algorithm did not terminate. The depicted ealtefer to the status of the ES when it stopped.

[6] Gartner. ETL Magic Quadrant Update: Market Pressure

; Increases. Available at:
6. Conclusionsand futurework www.gartner.com/reprints/informatica/112769.html

In this paper, we have concentrated on the problem(7] 4. Galhardas, D. Florescu, D. Shasha and E. Simon.

of optimizing ETL workflows. We have set up the Ajax: An Extensible Data Cleaning Tool. SIGMOD'00,
theoretical framework for the problem, by modeling pp.590, Texas, 2000.

the problem as a state space search problem, aaih @ 5] G. Graefe. Query Evaluation Techniques for Large
state representing a particular design of the Wovkf Databases. ACM Computing Surveys, 25(2), 1993.

as a graph. Since the problem is modeled as a statcfg]
space search problem, we have defined transitions
from one state to another. We have also made
thorough discussion on the issues of state geparati
correctness and transition applicability. Finallye
have presented search algorithms. Experimentaltsesu [11] M. Jarke, J. Koch. Query Optimization in Database
on these algonthm_s_ suggest that the benefits of ou Systems.YACM ComputingySur\F/)eys 16(2), 1984,
method can be significant.

Several reseach s are e open, S a8 (] e Wachoune Lo
physical optimization of ETL workflows, (i.e., taig)
physical operators and access methods into SIGMOD'00, pp. 46-57, Texas, USA, 2000.
consideration) or the impact analysis of changes an [13] Microsoft. Data Transformation Services. Availalae

IBM. IBM Data Warehouse Manager. Available at
www-3.ibm.com/software/data/db2/datawarehouse

a[10] Informatica. PowerCenter. Available at:
www.informatica.com/products/data+integration/power
center/default.htm

failures in the workflow environment that we debeti www.microsoft.com
Acknowledgment. This work is supported by the [14] Oracle Corp. Oracle9i™ Warehouse Builder User's
Greek Ministry of Education and the European Union Guide, Release 9.0.2. November 2001. Available at:
through the EPEAEK and the Pythagoras Programs. http://otn.oracle.com/products/warehouse/contemt.ht
[15] M. Tamer Ozsu, P. Valduriez. Principles of Disttisa
7. References Database Systems. Prentice Hall, 1991.

. . . [16] E. Rahm, H. Do. Data Cleaning: Problems and Current
[1] ’[A)\ameI_J. Abadi, D(;)nl Ca(;ney,h_Ugur Qe;lnt%mel, et al Approaches. Bulletin of the Technical Committee on
urora: a new model and architecture for data strea Data Engineering, 23(4), 2000.

management. The VLDB Journal, 12(2):120-139, 2003. i]
[17] V. Raman, J. Hellerstein. Potter's Wheel: An Irtgve

[2] S. Babu, J. Widom. Continuous Queries over Data Data Cleaning Svstem. VLDB'01 381-390. Roma
Streams. SIGMOD Record 30(3): 103-120. taly 2008, PP roma

(3] V. Borl_<ar, K. Deshmuk, S. Sarawagi. Automat?cally [18] P. Vassiliadis, A. Simitsis, P. Georgantas, M. deitis.
Extracting Structure from Free Text Addresses. &irll A Framework for the Design of ETL Scenarios.

of the Technical Committee on Data Eng., 23(4),200 CAISE'03, Klagenfurt, Austria, 2003.

[4] J. Chen, S. Chen, E.A. Rundensteiner. A Transaafion 1g) o' simitsis, P. Vassiliadis, T. Sellis. Optimizif&TL
Model for Data Warehouse Maintenance. ER'02, Processes in Data Warehouse Environments (long
LNCS 2503, pp. 247-262, 2002. version). Available at http://www.dbnet.ece.ntub.gr

[5] Y. Cui, J. Widom. Lineage Tracing for General Data ~asimi/publications/SiVS04.pdf
Warehouse Transformations. The VLDB Journal, 12:41-

58, 2003.

