
What Goes Around Comes
Around

Slides based partially on those originally by Garth Shoemaker

Summary

• 9 epochs in database research
• We are repeating old ideas
• We are failing to learn from old mistakes
• We’ll cover most of the epochs and lessons

Hierarchical (IMS) (late 60s-70s)

Pros:
• Uses simple data manipulation language (DL/I)
Cons:
• Information is repeated
• Existence depends on parents
• no physical data independence (can’t tune physical level without

tuning app)
• Not much logical data independence either (can’t tune schema

without changing app (think views))

Lesson 1. Physical and logical data
independence are highly desirable
• IMS (hierarchical) was particularly bad at this

• Done to avoid very bad performance
• You can’t tune an application and guarantee that the DL/1 program can run

Lesson 2. Tree structured data models are
very restrictive
• Information is repeated

• You have to have a single parent, so sometimes you have to duplicate

• Existence depends on parents
• What do you do if there is no parent value?

Lesson 3. It’s a challenge to provide sophisticated
logical reorganizations of tree structured data
• IMS allowed 2 tree-structured databases to be combined

• Handy thing to do, but…
• Create a separate “view”, and views were handled differently for users (a real

pain)
• Mapping the view to other databases was very, very challenging

Directed graph (CODASYL) (70s)

Pros:
• Yeah! Graphs, not trees!
• Can model many-to-many relationships
Cons
• Still no physical data independence
• Much more complex than IMS

Lesson 6. Loading and recovering directed
graphs is more complex than hierarchies
• Independence:

• In IMS, each database could be independently loaded from a source
• In CODASYL, it’s all connected, so everything had to be loaded at once

• Need to think carefully about disk seeks (no general loading utility)

Relational (70s-early 80s)

The proposal in a nutshell:
• Store the data in a simple data structure (tables)
• Access it through a high level set-at-a-time DML
• No need for a physical storage proposal

Lots of good arguing by various sides “the great debate”

Discussion (Group of 4)

Discuss one side of the “Great Debate,” do you think that side’s
arguments were reasonable/unreasonable? Why?

Relational Databases CODASYL

• Nothing as complex as CODASYL can possibly be a
good idea

• CODASYL does not provide acceptable data
independence

• Record-at-a-time programming is too hard to
optimize

• CODASYL and IMS are not flexible enough to easily
represent common situations (such as marriage
ceremonies)

• COBOL programmers cannot possibly understand
the new-fangled relational languages

• It is impossible to implement the relational model
efficiently

• CODASYL can represent tables, so what’s the big
deal?

Lesson 9: Technical debates are usually settled by
the elephants of the marketplace, and often for
reasons not related to technology
• What really brought down IMS?

• IBM had both IMS and DB/2
• IMS put DB/2 on VAX, but IMS on mainframes
• Mainframes had most of the DB market
• They tried to implement DB/2 on top of IMS and failed (complexity of IMS)
• Releasing DB/2 and IMS for mainframes 
• Curtains for IMS

Lesson 10: query optimizations can beat all but
the best record at a time DBMS application
programmers
• Surprising at the time, but true

• Like playing chess – the computer can think of many more options than a
human, even if not all

• Also similar to compilers

ER (70s)

• Response to normalization
• Standard wisdom: create table, then normalize. Problems for DBAs:

• 1. Where do I get initial tables
• 2. can’t understand functional dependences

• Lesson 11: Functional dependencies are too difficult for mere mortals
to understand. Another reason for KISS

Extended Relational (80s)

• How many features must relational databases have…
• Set valued attributes
• Aggregation
• Generalization
• And many, many more

Lesson 12: unless there is a big performance or functionality
advantage, new constructs will go nowhere

Semantic (late 70’s and 80’s) (SDM)

• Similar ideas, but more radical; change whole model to be
semantically richer.

- Lots of machinery, little benefit. Died without a trace.

Discussion (Pairs)

The previous two epochs (ER & Semantic) didn’t make much lasting
impact. Were they worth doing? Why or why not?

Object-oriented (late 80’s and early 90’s)

+Support OO languages
- market failure: no leverage, no standards, some versions had reliance

on C++

Lesson 13: Packages will not sell to users
unless they are in “major pain”
• Absence of leverage – not good enough to just have to write a load

and unload program
• No standards
• No programming language Esperanto – if you had any program not

written in C++, it wouldn’t work

Lesson 14 (the first one): Persistent languages will go nowhere without
support of PL community

Object-relational (late 80s and early 90s)

• OO + R
+ Some commercial success
+ put some code in DBMS
- no standards

While (as I said) all major DBMSs have some OO features (e.g., stored
procedures), it’s not as much as proposed in OR space

OR lessons

Lesson 14 (the second one): The major benefits of OR is two-fold:
putting code in the database (and thereby blurring the distinction
between code and data) and a general purpose extension mechanism
that allows OR DBMSs to quickly respond to market requirements
Lesson 15: Widespread adoption of new technology requires either
standards and/or an elephant pushing hard

XML (late 90s to - ?)

• Semantic heterogeneity
• Schema later: best for semi-structured… authors claim there aren’t

that many of these
• XML Schema:

• Can be hierarchical, as in IMS
• Can have links to other records as in CODASYL & SDM
• Can have set-based attributes as in SDM
• Can inherit from other records, as in SDM
• Even more complexity!

Lesson 17: XQuery is pretty much OR SQL
with a different syntax
OQL (OO) 

UnQL (unstructured) 

StrUQL (semi-structured)
XMLQL (XML) 

XQuery (XML)

Three visions of the future of XML Schema:

• XML schema fails because of excessive complexity
• A “data-oriented” subset of XML Schema will be proposed that is vastly simpler
• “It will become popular. Within a decade, all problem with IMS and CODASYL

that motivated Codd to invent the relational model will resurface. At that time
some enterprising researcher, call him Y, will ‘dust off’ Codd’s original paper, and
there will be a replay of ‘the Great Debate’ Presumably it will end the same way
as the last one. Moreover, Codd won the Turing award in 1981 for his
contribution. In this scenario, Y will win the Turing award circa 2015”. Note:
Stonebraker won the Turing award in 2014.

Discussion (Group of 4)

What do you think makes a research era worth revisiting? Think about
advancements in other fields, changes in user demand, etc.

What do you think people should get out of revisiting past research?

Are there any examples of successful revisits from your fields?

Other lessons from XML

Lesson 16: Schema-later is probably a niche market
Lesson 18: XML will not solve semantic heterogeneity either inside or

outside the enterprise

Discussion (Pairs)

Of all the lessons, which one do you find the most important and which
one do you think will likely repeat itself?

	What Goes Around Comes Around
	Summary
	Hierarchical (IMS) (late 60s-70s)
	Lesson 1. Physical and logical data independence are highly desirable
	Lesson 2. Tree structured data models are very restrictive
	Lesson 3. It’s a challenge to provide sophisticated logical reorganizations of tree structured data
	Directed graph (CODASYL) (70s)
	Lesson 6. Loading and recovering directed graphs is more complex than hierarchies
	Relational (70s-early 80s)
	Discussion (Group of 4)
	Lesson 9: Technical debates are usually settled by the elephants of the marketplace, and often for reasons not related to technology
	Lesson 10: query optimizations can beat all but the best record at a time DBMS application programmers
	ER (70s)
	Extended Relational (80s)
	Semantic (late 70’s and 80’s) (SDM)
	Discussion (Pairs)
	Object-oriented (late 80’s and early 90’s)
	Lesson 13: Packages will not sell to users unless they are in “major pain”
	Object-relational (late 80s and early 90s)
	OR lessons
	XML (late 90s to - ?)
	Lesson 17: XQuery is pretty much OR SQL with a different syntax
	Three visions of the future of XML Schema:
	Discussion (Group of 4)
	Other lessons from XML
	Discussion (Pairs)

