
The Gamma Database Machine Project
David DeWitt, Shahram Ghandeharizadeh, Donovan Schcheider,

Allan Bricker, Hui-i Hsiao, and Rick Rasmussen

Slides adopted from those of Deepak Bastakoty,
and Ghandeharizadeh and DeWitt, Jianhao Cao

Presenter: Tanya Prasad
Discussion Leader: Jonas Tai
UBC CPSC 504 – 2023.03.06

Motivation

❑ Why parallel databases?
• Obtain faster response time
• Increase query throughput
• Improve robustness to failure
• Reduce processor workload
• Enable scalability

Motivation

❑ DIRECT
• Early parallel database project
• Shared memory
• Centralized control of parallel algorithms

Motivation

❑ DIRECT
• Early parallel database project
• Shared memory
• Centralized control of parallel algorithms

Motivation

❑ Share-nothing
• Each processor has it own memory or disk(s)

❑ Hash-based parallel algorithms
• No need for centralized control

Motivation

❑ Horizontal partitioning (declustering)
• Tuples of a relation distributed over multiple disks.
• Round robin; hashed; range partitioned

Hardware Architecture

❑ GAMMA 1.0
• 17 VAX 11/750 processors, each with 2 MB memory
• Another VAX as the host machine
• An 80 Mb/s token ring to connect processors
• 8 processors attached with 333 MB disk drivers

❑ Problems
• The token ring network packet size is too small (2K bytes)
• The bandwidth mismatch between the token ring and the Unibus on the 11/750
• Insufficient memory for each processor

Hardware Architecture

❑ GAMMA 2.0
• 32 processor iPSC/2 hypercube from Intel
• 386 CPU, 8 MB memory
• 330 MB MAXTOR 4380 disk drive with a 45 KB RAM buffer
• Custom VLSI routing modules for network communication
• NOSE (Gamma’s OS) run as a thread package inside a process

Discussion 1 (Groups of 3, at least 1 Systems)

▪ As some of you pointed out in their reviews, the authors
spend a lot of time talking about hardware
• Issues in Gamma Version 1.0 such as insufficient memory
• Problems with the disk controller in Gamma Version 2.0
• Conversion problems because of different addressing

schemes
▪ What do you think was the motivation to include this long

section about the hardware and the problems they faced?
▪ Do you think the experiences they made with the chosen

hardware strengthen, weaken or do not impact the paper?

Software Architecture

Horizontally partitioned
data: round robin; hashed;
range partitioned

One for each active
Gamma user

One for each
multisite query

Software Architecture
The split table defines a mapping of values to a set of destination processes.

The Parallel Simple Hash Join

Data flow Control flow

Query Processing

❑ Selection
• Selection on the partitioning attribute

• Direct the selection to a subset of node if hash or range partitioned.
• Initiate the selection on all nodes if round-robin partitioned.

❑ Join
• Partition relations into disjoint subsets (buckets) by hashing on the join

attribute.
• Four types of parallel joins: sort-merge, Grace, Simple, Hybrid.
• The Hybrid hash join almost always provides the best performance.

The Parallel Hybrid Hash Join

• A partitioning split table separates the relations
into N logical buckets.

• A joining table sends tuples in the first bucket to
M processors for the join operation.

• In-memory hash table for the first bucket of the
inner table to be joined with the first bucket of
the outer table.

• The N-1 buckets are temporarily stored on disks.

Query Processing Algorithms

❑ Aggregate functions
• Each processor computes a partial results on its partition.
• The processors redistribute the results on hashing on the “group by” attribute.

❑ Update operators
• Most operators are implemented with standard techniques.
• A replace operator will send a tuple to the partition to which it belongs.

Transaction and Failure
Management
❑ Concurrency control

• Two-phase locking.
• A local lock manager with a lock table and a transaction wait-for-graph.
• A centralized deadlock detector communicate with each node.

❑ Recovery and Log manager
• A log record is generated when a tuple is updated.
• Log records are sent to one or more log managers.
• The log manager keeps track of the last flushed record from each node.
• The buffer managers observe the WAL protocol.

Data Placement
❑ Chained declustering

❑ Interleaved declustering

Load Balancing When One Node
Fails

Access both the primary and backup copies to balance load on each node.

Ideal Parallelism
❑ Speedup

Given a system with 1 node, does adding n nodes speed it up with a factor of n ?

❑ Scaleup
Given a system with 1 node, does the response time remain the same with n nodes ?

Discussion 2 (Groups of 4)

▪ The Gamma database paper is quite old (as you
probably also noticed from the used hardware).

▪ What kind of use cases do you think did the authors
have in mind?

▪ Why do you think parallel databases were not a big
breakthrough at the time?

▪ How do you think the demand for parallel databases
has changed since then?

Conclusion

❑ Three key ideas that enables Gamma
to be scaled to hundreds of processors:

• Horizontally partitioned relations
• Extensive use of hash-based parallel algorithms
• Dataflow scheduling techniques for multioperator queries

MapReduce: Simplified Data
Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat
Google, OSDI 2004

Slides based on those by authors and other online sources

Presenter: Tanya Prasad
Di i L d J T i

Motivation
▪ Large scale data processing

• Using hundreds or thousands of machines but without the
hassle of management

▪ MapReduce benefits
• Automatic parallelization & distribution
• Fault tolerance
• I/O scheduling
• Monitoring & status updates

Programming model
▪ Input & Output: each a set of key/value pairs
▪ Programmer specifies two functions:

map(in_key, in_value) -> list(out_key,
intermediate_value)

• Processes each input key/value pair
• Produces set of intermediate pairs

reduce(out_key, list(intermediate_value)) ->
list(out_value)

• Combines all intermediate values for a particular key
• Produces a set of merged output values (usually just one)

▪ Inspired by similar primitives in LISP and other

MapReduce model widely applicable
▪ MapReduce programs in Google source tree (2003-04)

Examples

distributed grep distributed sort web link-graph reversal

term-vector / host web access log stats inverted index construction

document clustering machine learning statistical machine translation
...

Implementation overview
▪ Typical cluster:

• 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
• Limited bisection bandwidth
• Storage is on local IDE disks
• GFS: distributed file system manages data (SOSP'03)
• Job scheduling system: jobs made up of tasks, scheduler

assigns tasks to machines

▪ Implementation as C++ library linked into user
programs

Overall execution workflow

Discussion 3 (Pairs)
▪ MapReduce breaks with a lot of conventions: Input data

has no schema, programs are written in Java, no indices,...
• Why do you think MapReduce was still such a huge success?
• Why or why not is that surprising to you?

▪ Discuss the questions with the lessons from last week's
discussion in mind. How do they hold up here?

• Lesson 12: Unless there is a big performance or functionality
advantage, new constructs will go nowhere

• Lesson 13: Packages will not sell to users unless they are in “major
pain”

• Lesson 16: Schema-last is probably a niche market

Fault-tolerance via re-execution
▪ On worker failure:

• Detect failure via periodic heartbeats
• Re-execute completed and in-progress map tasks

- Output stored on the local disk becomes inaccessible

• Re-execute in progress reduce tasks
- Output stored in a global file system

• Task completion committed through master

▪ Master failure:
• Left unhandled as considered unlikely
• Abort the MapReduce computation

Locality Optimization
▪ Master scheduling policy:

• Asks GFS for locations of replicas of input file blocks
• Map tasks typically split into 64MB (== GFS block size)
• Map tasks scheduled so GFS input block replica are on same

machine or same rack or nearest machine.
• Goal to reduce communication overhead as much as possible

▪ Effect: Thousands of machines read input at local disk
speed
• Without this, rack switches limit read rate

Task Granularity
▪ Fine granularity tasks: map tasks >> machines

• Minimizes time for fault recovery
• Can pipeline shuffling with map execution
• Better dynamic load balancing

▪ Often use 200K map and 5000 reduce tasks running on
2000 machines

Backup Execution
▪ Slow workers significantly lengthen completion time

• Other jobs consuming resources on machine
• Bad disks with soft errors transfer data very slowly
• Weird things: processor caches disabled (!!)

▪ Solution: Near end of phase, spawn backup task copies
• Whichever one finishes first "wins"

▪ Benefit: Dramatically shortens job completion time

Skipping Bad Records
▪ Map/Reduce functions sometimes fail for particular

inputs
• Best solution is to debug & fix, but not always possible

▪ On segmentation fault:
• Send UDP packet to master from the signal handler
• Include sequence number of record being processed

▪ If master sees two failures for the same record:
• Next worker is told to skip the record

▪ Effect: Can work around bugs in third-party libraries

Some Refinements
▪ Sorting guarantees within each reduce partition
▪ Compression of intermediate data
▪ Combiner: useful for saving network bandwidth
▪ Local sequential execution for debugging/testing
▪ User-defined counters

MapReduce Grep

Locality optimization helps:
▪ 1800 machines read 1 TB at peak ~31 GB/s
▪ W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs

MapReduce Sort

▪ Backup tasks reduce job completion time a lot!
▪ System deals well with failures

Google Experience: Rewrite of Production
Indexing System

▪ Rewrote Google's production indexing system using
MapReduce
• New code is simpler, easier to understand
• MapReduce takes care of failures, slow machines
• Easy to make indexing faster by adding more machines

Discussion 4 (Groups of 4)

▪ With the Gamma database project and MapReduce we
have seen two models to parallelize data processing:
• What are the differences and similarities?
• Which use cases are they designed for? Do they have the same

kind of applications in mind?
• Which model do you find more convincing and why?

▪ Gamma Database key features:
• Parallel Database
• Horizontally partitioned relations
• Extensive use of hash-based parallel algorithms
• Dataflow scheduling techniques for multioperator queries

Conclusions
▪ MapReduce has proven to be a useful abstraction.
▪ Network bandwidth is a scarce resource.
▪ Redundant execution can reduce the impact of slow

machines and machine failures.

	The Gamma Database Machine Project
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Hardware Architecture
	Hardware Architecture
	Discussion 1 (Groups of 3, at least 1 Systems)
	Software Architecture
	Software Architecture
	The Parallel Simple Hash Join
	Query Processing
	The Parallel Hybrid Hash Join
	Query Processing Algorithms
	Transaction and Failure Management
	Data Placement
	Load Balancing When One Node Fails
	Ideal Parallelism
	Discussion 2 (Groups of 4)
	Conclusion
	MapReduce: Simplified Data Processing on Large Clusters
	Motivation
	Programming model
	MapReduce model widely applicable
	Implementation overview
	Overall execution workflow
	Discussion 3 (Pairs)
	Fault-tolerance via re-execution
	Locality Optimization
	Task Granularity
	Backup Execution
	Skipping Bad Records
	 Some Refinements
	MapReduce Grep
	MapReduce Sort�
	Google Experience: Rewrite of Production Indexing System
	Discussion 4 (Groups of 4)
	Conclusions

