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Motivation

❑ Why parallel databases?
• Obtain faster response time
• Increase query throughput
• Improve robustness to failure
• Reduce processor workload
• Enable scalability
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Motivation

❑ Share-nothing
• Each processor has it own memory or disk(s)

❑ Hash-based parallel algorithms
• No need for centralized control



Motivation

❑ Horizontal partitioning (declustering) 
• Tuples of a relation distributed over multiple disks.
• Round robin; hashed; range partitioned



Hardware Architecture

❑ GAMMA 1.0
• 17 VAX 11/750 processors, each with 2 MB memory
• Another VAX as the host machine 
• An 80 Mb/s token ring to connect processors
• 8 processors attached with 333 MB disk drivers

❑ Problems
• The token ring network packet size is too small (2K bytes)
• The bandwidth mismatch between the token ring and the Unibus on the 11/750
• Insufficient memory for each processor



Hardware Architecture

❑ GAMMA 2.0
• 32 processor iPSC/2 hypercube from Intel
• 386 CPU, 8 MB memory 
• 330 MB MAXTOR 4380 disk drive with a 45 KB RAM buffer
• Custom VLSI routing modules for network communication
• NOSE (Gamma’s OS) run as a thread package inside a  process



Discussion 1 (Groups of 3, at least 1 Systems)

▪ As some of you pointed out in their reviews, the authors 
spend a lot of time talking about hardware
• Issues in Gamma Version 1.0 such as insufficient memory
• Problems with the disk controller in Gamma Version 2.0
• Conversion problems because of different addressing 

schemes
▪ What do you think was the motivation to include this long 

section about the hardware and the problems they faced?
▪ Do you think the experiences they made with the chosen 

hardware strengthen, weaken or do not impact the paper?



Software Architecture

Horizontally partitioned 
data: round robin; hashed;
range partitioned

One for each active 
Gamma user

One for each 
multisite query



Software Architecture
The split table defines a mapping of values to a set of destination processes.



The Parallel Simple Hash Join

Data flow Control flow



Query Processing

❑ Selection
• Selection on the partitioning attribute

• Direct the selection to a subset of node if hash or range partitioned.
• Initiate the selection on all nodes if round-robin partitioned.

❑ Join
• Partition relations into disjoint subsets (buckets) by hashing on the join 

attribute.
• Four types of parallel joins: sort-merge, Grace, Simple, Hybrid.
• The Hybrid hash join almost always provides the best performance.



The Parallel Hybrid Hash Join

• A partitioning split table separates the relations 
into N logical buckets.

• A joining table sends tuples in the first bucket to 
M processors for the join operation.

• In-memory hash table for the first bucket of the 
inner table to be joined with the first bucket of 
the outer table.

• The N-1 buckets are temporarily stored on disks.



Query Processing Algorithms

❑ Aggregate functions
• Each processor computes a partial results on its partition.
• The processors redistribute the results on hashing on the “group by” attribute.

❑ Update operators 
• Most operators are implemented with standard techniques.
• A replace operator will send a tuple to the partition to which it belongs.



Transaction and Failure 
Management
❑ Concurrency control

• Two-phase locking.
• A local lock manager with a lock table and a transaction wait-for-graph.
• A centralized deadlock detector communicate with each node.

❑ Recovery and Log manager
• A log record is generated when a tuple is updated.
• Log records are sent to one or more log managers.
• The log manager keeps track of the last flushed record from each node. 
• The buffer managers observe the WAL protocol.



Data Placement
❑ Chained declustering

❑ Interleaved declustering



Load Balancing When One Node 
Fails

Access both the primary and backup copies to balance load on each node.



Ideal Parallelism
❑ Speedup

Given a system with 1 node, does adding n nodes speed it up with a factor of n ?

❑ Scaleup
Given a system with 1 node, does the response time remain the same with n nodes ?



Discussion 2 (Groups of 4)

▪ The Gamma database paper is quite old (as you 
probably also noticed from the used hardware).

▪ What kind of use cases do you think did the authors 
have in mind?

▪ Why do you think parallel databases were not a big 
breakthrough at the time?

▪ How do you think the demand for parallel databases 
has changed since then?



Conclusion

❑ Three key ideas that enables Gamma 
to be scaled to hundreds of processors: 

• Horizontally partitioned relations
• Extensive use of hash-based parallel algorithms
• Dataflow scheduling techniques for multioperator queries
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Motivation
▪ Large scale data processing

• Using hundreds or thousands of machines but without the 
hassle of management

▪ MapReduce benefits
• Automatic parallelization & distribution
• Fault tolerance
• I/O scheduling
• Monitoring & status updates



Programming model
▪ Input & Output: each a set of key/value pairs 
▪ Programmer specifies two functions: 

map(in_key, in_value) -> list(out_key, 
intermediate_value) 

• Processes each input key/value pair 
• Produces set of intermediate pairs 

reduce(out_key, list(intermediate_value)) -> 
list(out_value)

• Combines all intermediate values for a particular key 
• Produces a set of merged output values (usually just one) 

▪ Inspired by similar primitives in LISP and other 



MapReduce model widely applicable
▪ MapReduce programs in Google source tree (2003-04)

Examples

distributed grep distributed sort web link-graph reversal 

term-vector / host web access log stats inverted index construction 

document clustering machine learning statistical machine translation 
... ... ...



Implementation overview
▪ Typical cluster: 

• 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory 
• Limited bisection bandwidth 
• Storage is on local IDE disks 
• GFS: distributed file system manages data (SOSP'03) 
• Job scheduling system: jobs made up of tasks, scheduler 

assigns tasks to machines 

▪ Implementation as C++ library linked into user 
programs 



Overall execution workflow



Discussion 3 (Pairs)
▪ MapReduce breaks with a lot of conventions: Input data 

has no schema, programs are written in Java, no indices,... 
• Why do you think MapReduce was still such a huge success? 
• Why or why not is that surprising to you?

▪ Discuss the questions with the lessons from last week's 
discussion in mind. How do they hold up here?

• Lesson 12: Unless there is a big performance or functionality 
advantage, new constructs will go nowhere

• Lesson 13: Packages will not sell to users unless they are in “major 
pain”

• Lesson 16: Schema-last is probably a niche market



Fault-tolerance via re-execution
▪ On worker failure: 

• Detect failure via periodic heartbeats 
• Re-execute completed and in-progress map tasks 

- Output stored on the local disk becomes inaccessible

• Re-execute in progress reduce tasks 
- Output stored in a global file system

• Task completion committed through master 

▪ Master failure: 
• Left unhandled as considered unlikely
• Abort the MapReduce computation

         



Locality Optimization
▪ Master scheduling policy: 

• Asks GFS for locations of replicas of input file blocks 
• Map tasks typically split into 64MB (== GFS block size) 
• Map tasks scheduled so GFS input block replica are on same 

machine or same rack or nearest machine.
• Goal to reduce communication overhead as much as possible

▪ Effect: Thousands of machines read input at local disk 
speed 
• Without this, rack switches limit read rate 



Task Granularity
▪ Fine granularity tasks:   map tasks >> machines

• Minimizes time for fault recovery
• Can pipeline shuffling with map execution
• Better dynamic load balancing 

▪ Often use 200K map and 5000 reduce tasks running on 
2000 machines 



Backup Execution
▪ Slow workers significantly lengthen completion time 

• Other jobs consuming resources on machine 
• Bad disks with soft errors transfer data very slowly 
• Weird things: processor caches disabled (!!) 

▪ Solution: Near end of phase, spawn backup task copies 
• Whichever one finishes first "wins" 

▪ Benefit: Dramatically shortens job completion time 



Skipping Bad Records
▪ Map/Reduce functions sometimes fail for particular 

inputs 
• Best solution is to debug & fix, but not always possible 

▪ On segmentation fault: 
• Send UDP packet to master from the signal handler 
• Include sequence number of record being processed 

▪ If master sees two failures for the same record: 
• Next worker is told to skip the record 

▪ Effect: Can work around bugs in third-party libraries 



Some Refinements
▪ Sorting guarantees within each reduce partition
▪ Compression of intermediate data 
▪ Combiner: useful for saving network bandwidth 
▪ Local sequential execution for debugging/testing 
▪ User-defined counters 



MapReduce Grep

Locality optimization helps: 
▪ 1800 machines read 1 TB at peak ~31 GB/s 
▪ W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs 



MapReduce Sort

▪ Backup tasks reduce job completion time a lot!
▪ System deals well with failures



Google Experience: Rewrite of Production 
Indexing System

▪ Rewrote Google's production indexing system using 
MapReduce  
• New code is simpler, easier to understand 
• MapReduce takes care of failures, slow machines 
• Easy to make indexing faster by adding more machines 



Discussion 4 (Groups of 4)

▪ With the Gamma database project and MapReduce we 
have seen two models to parallelize data processing:
• What are the differences and similarities? 
• Which use cases are they designed for? Do they have the same 

kind of applications in mind?
• Which model do you find more convincing and why? 

▪ Gamma Database key features:
• Parallel Database
• Horizontally partitioned relations
• Extensive use of hash-based parallel algorithms
• Dataflow scheduling techniques for multioperator queries



Conclusions
▪ MapReduce has proven to be a useful abstraction.
▪ Network bandwidth is a scarce resource. 
▪ Redundant execution can reduce the impact of slow 

machines and machine failures.
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