
Query Optimization Overview

Presenter: Xuechun Cao
Discussion Lead: Rut Vora

*some slides/texts are borrowed from Rachel’s slides

An Overview of Query Optimization in
Relational Systems

Introduction
Parse SQL Query

Optimization

Code Generation

Execution

Query Execution Engine
Physical operators that take data stream in and

output data stream.
Piece of code that can be used to execute plan

Query Optimizer
Generating inputs for execution engine

Introduction

Discussion 1: Type of Paper and Target Audience

- Not a comprehensive SoK or Literature Review

Discussion in groups of ~4 people

Query Optimizer – key point: complex search problem

Search Space
algebraic transformations

and physical operators

Need to be reduced and
have the lowest cost plan

Cost Estimation
collect statistics to

estimate of resource
needed of candidate plans

Need to be accurate

Enumeration Algorithm
search in search space to

find lowest cost plan

Need to be efficient

Input: parsed SQL representation
Output: an efficient execution plan

Search Space

Depends on:
Equivalence performing algebraic transformations.

Physical operators supported in an optimizer

Transformations may not reduce cost and therefore must be
applied in a cost-based manner to ensure a positive benefit

Search Space - Commutativity

Generalized Join Sequencing
● Most of time join relations follow

commutativity rule so the order of joined
relations can be arranged freely

● Most of system focuses on linear join not
bushy join

● Some special case such as outerjoin–not
freely commute

● Some special case such as groupby– can
be pushed down the tree to provide more
candidate plans

Search Space - Merging Multi-block to single block

Merging Views
● extend search space by combine view

relations into single block
● Q = join(R,V)
● view V = join(S, T)
● Q = join(R,join(S,T))

Merging Nest Block
● rewrite nested block

Discussion 2: Let the user optimise?

- Some languages allow user to optimise

- Useful for application-specific optimisations
(e.g. applications that can tolerate less accuracy)

Discussion in groups of 2

Cost Estimation

Expect to be accurate and efficient

How it works
● Collect statistics summaries of data stored
● Give statistical summary of output data and estimate plan cost

Cost Estimation - Statistics

Example: Histogram
● get general data distribution information
● help estimate cardinality of predicates

Example: other statistics
● number of physical pages, order of

stored indexes, distinct value of columns
(more in second paper)

Open Research Questions
● difficult to estimate accurately

based on base data statistics →
can use sampling to estimate
but for distinct values it can be
error prone

● need to propagate statistics for
different operators →
assumptions made and inability
of capturing correlation are
important error source

Cost Estimation - Cost Computation

Computing Resource Consideration
● CPU, I/O → communication cost in parallel/distributed databases

other optimization interests
● data synchronization for distributed system and effective scheduling for

parallel databases
● modeling buffer utilization

Discussion 3: Varying cost across decades

- More computing power
- Parallel computation
- Faster permanent storage (SSDs)
- Novel architectures like PIMs

Discussion in groups of 4
(2 systems + 2 non-systems)

Enumartion Algorithm

● Want enumerator to adapt to changes in search space
○ New transformations and physical operators
○ Changes in cost estimation techniques

● Solution
○ Use generalized cost functions and physical properties with operator nodes
○ Use rule engine that allows transformations to modify the query expression

or the operator trees
○ Expose “knobs” to tune behavior of system

Other Optimizations

● Distributed and parallel systems
○ communication cost, data synchronization

● Materized views
○ cached relations
○ need to reformulate plan and determining effective

sufficient conditions is nontrivial

Discussion 4: Can AI/ML be used for optimisation?

- Are heuristics sufficient?
- Large search space

(covered in previous discussion)

Discussion in groups of 2/3
(1 AI/ML at least)

Summary

Access Path Selection in a Relational
database Management System

Introduction
Parse SQL Query

Optimization

Code Generation

Execution

Query Optimizer
● search space
● cost estimation

○ catalog lookup statistics
○ calculate estimcated cost for plans

● enumeration algorithm

Introduction - what is the problem?

SELECT *
FROM A,B,C
WHERE A.n = B.n AND
B.m = C.m

● How should we execute this query?
○ must have a plan
○ but there are so many → need to trim

search space
○ and need to be able to compare and check

which one is the cheapest

Okay, for comparison, how do we estimate costs for
plans?

Single Access Path - Catalog - How data stored and what
we need to evaluate

Sequential scan →
good when cardinality

is large

Index scan → good
when cardinality is
small or with order

index

Statistics
● cardinality of tuples
● cardinality of pages
● etc

Physical Operator
● nested loop join
● merged join
● other sorting algorithms

Fetching Data
● sequential scan
● index scan
● buffer utilization

Single Access Path - Calculating Costs - How to get
accurate cost

Predicates
● Helper reduce data size →

evaluate as early as possible
● Use predicates with statistics can

estimate more accurate selectivity
factor (i.e. cardinality)

Interesting Order
● GROUP BY, ORDER BY may

specify order of output data
● This helps determine what

physical operator (e.g sort,
sort-merge join)

Discussion 1: Limitations of Cost Calculation Methods

- Cost Formula too simple. Include other params?
- Cost calculation for distributed databases?

Discuss in groups of 4

Multiple Access Pass Selection - Bottom-up Dynamic
Programming with memorization

● N relations join is just as same as a
sequence of 2-relation join

● Find the cheapest join of a subset of the N
tables and store (memoization)

● Reduce complexity from n! to 2**n (number
of subsets of n tables)

Dynamic Programming

● Bottom-up → find local optimal in
smaller subsets and use those value
to build up larger sets

Bottom-up DP for Access Path Selection

Step
● Enumerate access path for single relation

○ sequential scan
○ stored index scan
○ consider interesting orders

● Enumerate access paths by joining an entra relation
○ nested loop (unordered)
○ merged join (interesting order)
○ prune by leaving cheapest for groups of equivalence

solutions

Example

Example

Example

Example

Example

Discussion 2: Feasibility of similar project in academia

- Large Dataset + Users
- Might not be available in academia

Discuss in groups of 3

Discussion 3: Lack of full evaluation in System R papers

(Skip if out of time)

- No comparison with existing work at all
- Not waiting for a full evaluation. Why?

Class Discussion

Summary

● Introduce how cost is estimated in optimization
○ how statistics stored in system
○ how to use statistics to calculate cost

● Factors need to be considered
○ selectivity
○ interesting order
○ predicates

● Bottom-up dynamic programming for more than 2 joins
○ find suboptimal and build up solution for global optimal

