
Comparison of Parallel DB and MapReduce

MapReduce: A Flexible Data Processing Tool

Original Slides Authors: John Kubiatowicz
Modified by: Jingxuan Huang (Carol), Juntong

Presenter: Juntong
Discussion Lead: Soo Yee

Grey Beards: “MapReduce is a major step backwards”1

Young Turks: “No, it’s because you have so many misconceptions about MapReduce.”2

1. Blogpost: https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
2. MapReduce: A flexible Data Processing Tool



MapReduce vs Parallel DB: are they comparable?

“Though it may seem that MR and parallel databases target different audiences, it is 

in fact possible to write almost any parallel processing task as either a set of 

database queries or a set of MapReduce jobs”



Similarities

1. Both run on “shared nothing” architecture

2. Both achieve parallelism by partitioning the datasets



Differences

Parallel DB MapReduce

Schema Support Yes No

Built-in Index Yes No

Programming Model Declarative (SQL) Procedural (C/ C++/ Java)

Flexibility Not as high High

Execution Strategy Push Pull

Fault Tolerance Not as good Good



Parallel DB MapReduce

Configuration Complex; one-shot Easy; for each task

Start-up Warm “Cold start”

Compression Save time and space Not improve performance

Loading Slow, many pre-processing Easy and fast

Differences



Discussion Question (Groups of 3)

Parallel DB MapReduce

Schema Support Yes No

Built-in Index Yes No

Programming 
Model

Declarative 
(SQL)

Procedural (C/ 
C++/ Java)

Flexibility Not as high High

Execution
Strategy

Push Pull

Fault Tolerance Not as good Good

Parallel DB MapReduce

Configuratio
n

Complex; 
one-shot

Easy; for each 
task

Start-up Warm “Cold start”

Compression Save time and 
space

Not improve
performance

Loading Slow, many 
pre-
processing

Easy and fast

What are the use cases these systems are 
best suited for? Why?



Schema Support

MapReduce

❖ No schema required

❖ Flexible, no need to predefine schema

❖ If data are shared by multiple programs, 

developers must agree on a schema 

❖ Cannot ensure integrity constraints (e.g., 

salaries must be non-negative); it’s the 

programmers’ job to adhere to them.

Parallel DBMS

❖ Schema required

❖ Schema is separate from the 

application

❖ Constraints enforced 

automatically

Flexible when there’s no sharing Good when sharing is needed



Schema Support

MapReduce

❖ No schema required

❖ Flexible, no need to predefine schema

❖ If data are shared by multiple programs, 

developers must agree on a schema 

❖ Cannot ensure integrity constraints (e.g., 

salaries must be non-negative); it’s the 

programmers’ job to adhere to them.

Parallel DBMS

❖ Schema required

❖ Schema is separate from the 

application

❖ Constraints enforced 

automatically

Flexible when there’s no sharing Good when sharing is needed

message Rankings {
required string pageurl = 1;
required int32 pagerank = 2;
required int32 avgduration = 3; 

}

MapReduce’s Defence:
● MapReduce can read and write data with schema defined 

with Google’s Protocol Buffer.
● Example:



Indexing

MapReduce

❖ No built-in indexes, leading to a full 

scan for all input

❖ Building custom indexes is hard, as 

the framework’s data fetching 

mechanisms must be changed

❖ Hard to share the customized 

indexes between multiple 

programmers

Parallel DBMS

❖ All modern DBMSs have hash/B-tree 

indexes to accelerate access to data



Indexing

MapReduce

❖ No built-in indexes, leading to a full 

scan for all input

❖ Building custom indexes is hard, as 

the framework’s data fetching 

mechanisms must be changed

❖ Hard to share the customized 

indexes between multiple 

programmers

Parallel DBMS

❖ All modern DBMSs have hash/B-tree 

indexes to accelerate access to data

MapReduce’s Defence:
● A full scan of all input data is not always needed; MapReduce can 

use the index provided by the input interface.
● For example, the input data may be:

○ Files with natural indexes (e.g., timestamps in log file 
names)

○ A database with an index (e.g., BigTable)



Programming Model

MapReduce

 Procedural: Map and Reduce

 Analogous to Codasyl – “the 

assembly language of DBMS 

access”

Parallel DBMS

 Declarative (e.g., SQL)

This comparison resembles the debate between Codasyl and Relational

 “Programs in high-level languages, such as SQL, are easier to write, easier to 

modify, and easier for a new person to understand.”



Data Distribution

MapReduce

 A naïve implementation of query 

could lead to unnecessary data 

transfer between nodes

Parallel DBMS

❖ Query optimizers can 
automatically rewrite queries to 

reduce network I/O



Execution Strategy

MapReduce

 Pull: Reducers pull data for 

computation from Mappers

 Materializes intermediate results on 

disks

 When multiple Reducers are reading 

files from the same Mapper, there 

could be large numbers of disk seeks

.

Parallel DBMS

❖ Push: send computation to data

❖ Don’t store intermediate results 

on disks



Execution Strategy

MapReduce

 Pull: Reducers pull data for 

computation from Mappers

 Materializes intermediate results on 

disks

 When multiple Reducers are reading 

files from the same Mapper, there 

could be large numbers of disk seeks

.

Parallel DBMS

❖ Push: send computation to data

❖ Don’t store intermediate results 

on disksMapReduce’s Defence:

● The Pull model was due to fault-tolerance properties required 

by Google’s developers.

○ Fault-tolerance would be more important in the future due 

to growing dataset sizes.

● Implementation tricks can mitigate these costs



Flexibility

SQL does not facilitate the desired generality that MR provides, but…

❖ Major DBMSs now provide support for user-defined functions, stored 

procedures, and user-defined aggregates in SQL, increasing their flexibility

MapReduce’s Defence:

● In many cases, the function is too complicated to be expressed 

easily in a SQL query.

● UDF support was still either buggy (in DBMS-X) or missing (in 

Vertica)



Fault Tolerance

MapReduce

❖ If a node fails, just restart the 

task on an alternative node 

(without aborting the whole 

computation)

Parallel DBMS

❖ If a single node fails, must re-

run the entire query



Discussion Question (Groups of 4)

Rank the following features in a large-scale data analysis system from the 

most important to the least:

❖ Schema support

❖ Indexing

❖ Programming model

❖ Data distribution

❖ Execution strategy

❖ Flexibility

❖ Fault tolerance



Performance Benchmarks

Benchmark Environment: 100-node cluster

● “Since few data sets in the world even approach a petabyte in size, it is not at 
all clear how many MR users really need 1,000 nodes.”



Performance Benchmarks

Benchmark Environment: 100-node cluster

● “Since few data sets in the world even approach a petabyte in size, it is not at 
all clear how many MR users really need 1,000 nodes.”

MapReduce’s Defence:

● “There are already more than a dozen distinct data sets at 

Google more than 1PB in size and dozens more hundreds of TBs 

in size that are processed daily using MapReduce. “



Performance Benchmarks

Benchmark Environment: 100-node cluster

● “Since few data sets in the world even approach a petabyte in size, it is not at 
all clear how many MR users really need 1,000 nodes.”

Tested Systems:

● MapReduce framework: Hadoop
● Parallel DB: DBMS-X (an unidentified commercial database system), Vertica



Data Loading

Hadoop: load to HDFS as plain text in parallel, data replicated 3x

DBMS-X: two phases
❖ Each node reads from the local file system and redistributes tuples

❖ LOAD command issued in parallel but actually executed sequentially
❖ Reorganize data on each node (e.g., compress data, build index) in parallel

Vertica: Load data in parallel and automatically sorted and compressed
❖ Has a column-oriented storage



Data Loading

Data Inputs: (2 Data sets)

1. Weak scaling: fix the size of data per node (535MB/node), add nodes and data
2. Strong scaling: fix the total data size (1TB), add nodes

Hadoop outperforms 
parallel DBMS



Data Loading

Data Inputs: (2 Data sets)

1. Weak scaling: fix the size of data per node (535MB/node), add nodes and data
2. Strong scaling: fix the total data size (1TB), add nodes

Hadoop outperforms 
parallel DBMS

MapReduce’s Defence:

● For many comparisons in this paper, the time for loading data in 

parallel DBs is 5-50x the time needed to analyze the data via 

Hadoop.



Performance Benchmarks

Tasks:

 Original MR task (Grep: globally search a regular expression and print) 

 Analytical Tasks (related to HTML document processing)

 Selection

 Aggregation

 Join

 User-defined-function (UDF) aggregation

For each task, Hadoop needs to do an additional Reduce job to combine the output 
into a single file



Performance Benchmarks

Tasks:

 Original MR task (Grep: globally search a regular expression and print) 

 Analytical Tasks (related to HTML document processing)

 Selection

 Aggregation

 Join

 User-defined-function (UDF) aggregation

For each task, Hadoop needs to do an additional Reduce job to combine the output 
into a single file

MapReduce’s Defence:

● This merging is unnecessary!



Grep Task Execution Performance

(Fix the size of data per node)
(Fix the total data size)

Hadoop

 High start-up overhead

 Centralized job tracker

(hurts scalability)

Vertica

❖ Fast due to aggressive

use of data compression



Grep Task Execution Performance

(Fix the size of data per node)
(Fix the total data size)

Hadoop

 High start-up overhead

 Centralized job tracker

(hurts scalability)

Vertica

❖ Fast due to aggressive

use of data compression

MapReduce’s Defence:

● High start-up overhead is due to the immature implementation, 

not fundamental differences in programming models

● (Again) Merging (top segment for Hadoop) is unnecessary



Select & Join Performances

Parallel DBs can use indexes so are much faster



Select & Join Performances

Parallel DBs can use indexes so are much faster

MapReduce’s Defence:

● The conclusion is invalid, as it is based on a misconception that 

MapReduce cannot use indexes



Aggregation Performances

Two versions, both compute the sum of adRevenue in each group but have different # of groups 

• Parallel DBs outperform Hadoop

• Vertica is the best because of its 
column store 

• Runtimes are constant with the 
number of nodes, as they are 
bounded by the “constant 
sequential scan performance and 
network repartitioning costs for 
each node”



UDF Aggregation Performances

Count the number of inlinks for each document (~PageRank calculations)

• Hard to express in SQL (even with UDF)

• DBs require executing extra UDF/parser to load data
(bottom segment of the stack)

• DBs perform worse than Hadoop due to
UDF/parsing interacting with external data



UDF Aggregation Performances

Count the number of inlinks for each document (~PageRank calculations)

• Hard to express in SQL (even with UDF)

• DBs require executing extra UDF/parser to load data
(bottom segment of the stack)

• DBs perform worse than Hadoop due to
UDF/parsing interacting with external data

MapReduce’s Defence:

● (Again) Merging (top segment for Hadoop) is unnecessary



Discussion Question (Groups of 4, 1 systems person in each)

Properly benchmarking a system is a difficult, let alone comparing several 

systems that are built different.

● What are the factors you should consider to ensure a fair comparison of 

two systems? 

● As the author of a paper, what information should you provide to 

ensure the reproducibility of your experiment results?



Summary: Why Are Parallel DBs Faster Than MapReduce?

❖ Can use indexes; don’t always requiring a full scan over input data

❖ Don’t have to stores input data in plain text files after loading it

❖ Can have novel storage mechanisms (e.g., column-orientation)

❖ Can use aggressive compression techniques

❖ Have sophisticated parallel algorithms for querying large amounts of data 

efficiently (query optimization)



Summary: Why Are Parallel DBs Faster Than MapReduce?

❖ Can use indexes; don’t always requiring a full scan over input data

❖ Don’t have to stores input data in plain text files after loading it

❖ Can have novel storage mechanisms (e.g., column-orientation)

❖ Can use aggressive compression techniques

❖ Have sophisticated parallel algorithms for querying large amounts of data 

efficiently (query optimization)

MapReduce’s Defence:

● MR can use Protocol Buffer as a schema and for reading/writing data. This can speed up 

record-parsing by 80x.

● MR can also use input sources that have been indexed

● The step for merging results using a single reducer is unnecessary.

● Many issues are only implementation and evaluation shortcomings



Summary: Why Is MapReduce Better Than Parallel DBs?

❖ Heterogeneous system: supports a mix of storage systems (e.g., distributed file 

systems, database query results, BigTable)

❖ MR provides a simple model for analyzing data in heterogeneous systems.

❖ Easy and fast loading: important as “data sets are often generated, processed 

once or twice, and then discarded”

❖ “it is possible to run 50 or more separate MapReduce analyses before it is possible to load 

the data into a database and complete a single analysis“

❖ Supports complex functions (compared to the awkward UDF)

❖ Easy to setup and use (from the first paper)



Discussion Question (Groups of 3)

MapReduce misconceptions:

❖ Why are there “incorrect understandings” about MapReduce?

➢ MapReduce cannot use indices and implies a full scan of all input data.
➢ MapReduce input and outputs are always simple files in a file system.
➢ MapReduce requires the use of inefficient textual data formats.

❖ It is obvious that the comparison paper authors have internal biases toward 
MapReduce. If you are a critic of a technology, how can you prove your point 

while maintaining a neutral stance? 
❖ Since industry is not very transparent about their work and research, there will 

always be miscommunication between academia and industry. What can people 

do to alleviate such miscommunication?



History Repeats Itself: Sensible and 
NonsenSQL Aspects of the NoSQL Hoopla

-- “Human’s demand of query type is changing in web 2.0.”

-- “Not everything needs to be done differently just because it is supposedly a very 
different world now!”

--- C. Mohan (who proposed ARIES)



Why RDBMSs are inadequate nowaday?

❖ Data is less structured, and the structure changes a lot

❖ Native support for JSON/BSON become desirable

❖ Not every programmer wants to learn SQL

❖ Stringent response time requirements

❖ Better scalability is needed for very large volumes of data

❖ Better fault tolerance is needed due to larger number of nodes

❖ More relaxed consistency requirements

In certain types of applications, typically Web 2.0 ones, for which RDBMSs were 
found to be inadequate: 



Observed Problems of Current NoSQL DBs

❖ Not thinking about locking, storage management and recovery 
concurrently. Adding them later will be very hard (lessons from ARIES).

❖ Don’t scale in terms of concurrency (not supporting fine granularity of 
locking/latching).

❖ Lack of standards and complicated & varying data models . 
❖ Forgot the benefits of high-level languages and data independence.
❖ Lack of general indexing.
❖ Implementation shortcuts that hurt scalability.
❖ Not supporting ACID is at least an oversimplification.



Discussion Question (Groups of 3)

“All the decades of evangelization that went on about the goodness of standards 
seems to have been forgotten in the context of NoSQL systems”

 The author claims that the lack of standards in NoSQL is going to be a nightmare 
in due course of time. Do you agree with this? Do you have any examples in your 
field that proved this wrong?

 When is a good point in time to talk about standardization?


	Comparison of Parallel DB and MapReduce
MapReduce: A Flexible Data Processing Tool
	MapReduce vs Parallel DB: are they comparable?
	Similarities
	Differences
	Differences
	Discussion Question (Groups of 3)
	Schema Support
	Schema Support
	Indexing
	Indexing
	Programming Model
	Data Distribution
	Execution Strategy
	Execution Strategy
	Flexibility
	Fault Tolerance
	Discussion Question (Groups of 4)
	Performance Benchmarks
	Performance Benchmarks
	Performance Benchmarks
	Data Loading
	Data Loading

	Data Loading

	Performance Benchmarks
	Performance Benchmarks
	Grep Task Execution Performance
	Grep Task Execution Performance
	Select & Join Performances
	Select & Join Performances
	Aggregation Performances
	UDF Aggregation Performances
	UDF Aggregation Performances
	Discussion Question (Groups of 4, 1 systems person in each)
	Summary: Why Are Parallel DBs Faster Than MapReduce?
	Summary: Why Are Parallel DBs Faster Than MapReduce?
	Summary: Why Is MapReduce Better Than Parallel DBs?
	Discussion Question (Groups of 3)
	History Repeats Itself: Sensible and NonsenSQL Aspects of the NoSQL Hoopla
	Why RDBMSs are inadequate nowaday?
	Observed Problems of Current NoSQL DBs
	Discussion Question (Groups of 3)

