
CPSC 504 – Background
(aka, all you need to know about databases to prepare for this
course in two lectures)

Rachel Pottinger

January 10 and 15, 2024

Administrative notes
Don’t forget to sign up for a presentation and a discussion

Anyone having topics they’d like for student request days should send those

to me

Please sign up for the mailing list (majordomo@cs – “subscribe cpsc504”)

The homework is on the web, due beginning of class January 22
General theory – trying to make sure you understand basics and have thought about it –
not looking for one, true, answer.

State any assumptions you make

If you can’t figure out a detail, write an explanation as to what you did and why.

Office hours?

Canvas should be visible to everyone

Overview of the next two classes

Entity Relationship (ER) diagrams

Relational databases

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

Levels of Abstraction

A major purpose of a DB
management system is to provide an
abstract view of the data.

Three abstraction levels:
Physical level: how data is actually stored

Conceptual (or Logical) level: how data is
perceived by the users

External (or View) level: describes part of the
database to different users

Convenience, security, etc.

E.g., views of student, registrar, & database
admin.

View 1 View 2 View 3

Conceptual Level

Physical Level

Schema and Instances
We’ll start with the schema – the logical structure of the database (e.g.,
students take courses)

Conceptual (or logical) schema: db design at the logical level

Physical schema: db design at the physical level; indexes, etc.

Later we’ll populate instances – content of the database at a particular
point in time

E.g., currently there are no grades for CPSC 504

Physical Data Independence –ability to modify physical schema without
changing logical schema

Applications depend on the conceptual schema

Logical Data Independence – Ability to change conceptual scheme without
changing applications

Provided by views

Conceptual Database Design
What are the entities and relationships involved?

Entities are usually nouns, e.g., “course” “prof”

Relationships are statements about 2 or more objects. Often, verbs., e.g.,

“a prof teaches a course”

What information about these entities and relationships should

we store in the database?

What integrity constraints or other rules hold?

In relational databases, this is generally created in an Entity-

Relationship (ER) Diagram

Entity / Relationship Diagrams

Entities

Attributes

Relationships between entities

Product

address

buys

Keys in E/R Diagrams

Every entity set must have a key which is identified by an

underline

Product

name category

price

address name sin

Person

buys

makes

employs

Company

Product

name category

stockprice

name

price

Roles in Relationships

Purchase

What if we need an entity set twice in one relationship?

Product

Person

Store

salesperson buyer

Attributes on Relationships

Purchase

Product

Person

Store

date

Product

name category

price

isa

Educational ProductSoftware Product

Age Groupplatforms

Subclasses in E/R Diagrams

Brief exercise

Take a few minutes to create an ER diagram with the

person next to you

Summarizing ER diagrams
Basics: entities, relationships, and attributes

Also showed inheritance

Has things other things like cardinality

Arrows mean different things in different versions; details not important for

this class.

Used to design databases...

But how do you store data in them?

Overview of the next two classes
Entity Relationship (ER) diagrams

Relational databases
How did we get here?

What’s in a relational schema?

From ER to relational

Query Languages

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

How did we get the relational model?

Before the relational model, there were two main

contenders

Network databases

Hierarchical databases

Network databases had a complex data model

Hierarchical databases integrated the application in the

data model

Example Hierarchical Model

Prime Minister

Parliament

Government

Province

Election

Elections

Won Served

Government

Headed

Admitted

During

Native

Sons

Example IMS (Hierarchical) query: Print the names of all the provinces
admitted during a Liberal Government

DLITPLI:PROCEDURE (QUERY_PCB) OPTIONS (MAIN);

DECLARE QUERY_PCB POINTER;

/*Communication Buffer*/

DECLARE 1 PCB BASED(QUERY_PCB),

2 DATA_BASE_NAME CHAR(8),

2 SEGMENT_LEVEL CHAR(2),

2 STATUS_CODE CHAR(2),

2 PROCESSING_OPTIONS CHAR(4),

2 RESERVED_FOR_DLI FIXED BIRARY(31,0),

2 SEGMENT_NAME_FEEDBACK CHAR(8)

2 LENGTH_OF_KEY_FEEDBACK_AREA FIXED BINARY(31,0),

2 NUMBER_OF_SENSITIVE_SEGMENTS FIXED BINARY(31,0),

2 KEY_FEEDBACK_AREA CHAR(28);

/* I/O Buffers*/

DECLARE PRES_IO_AREA CHAR(65),

1 PRESIDENT DEFINED PRES_IO_AREA,

2 PRES_NUMBER CHAR(4),

2 PRES_NAME CHAR(20),

2 BIRTHDATE CHAR(8)

2 DEATH_DATE CHAR(8),

2 PARTY CHAR(10),

2 SPOUSE CHAR(15);

DECLARE SADMIT_IO_AREA CHAR(20),

1 province_ADMITTED DEFINED SADMIT_IO_AREA,

2 province_NAME CHAR(20);

/* Segment Search Arguments */

DECLARE 1 PRESIDENT_SSA STATIC UNALIGNED,

2 SEGMENT_NAME CHAR(8) INIT('PRES '),

2 LEFT_PARENTHESIS CHAR (1) INIT('('),

2 FIELD_NAME CHAR(8) INIT ('PARTY '),

2 CONDITIONAL_OPERATOR CHAR (2) INIT('='),

2 SEARCH_VALUE CHAR(10) INIT ('Liberal '),

2 RIGHT_PARENTHESIS CHAR(1) INIT(')');

DECLARE 1 province_ADMITTED_SSA STATIC UNALIGNED,

2 SEGMENT_NAME CHAR(8) INIT('SADMIT ');

/* Some necessary variables */

DECLARE GU CHAR(4) INIT('GU '),

GN CHAR(4) INIT('GN '),

GNP CHAR(4) INIT('GNP '),

FOUR FIXED BINARY (31) INIT (4),

SUCCESSFUL CHAR(2) INIT(' '),

RECORD_NOT_FOUND CHAR(2) INIT('GE');

/*This procedure handles IMS error conditions */

ERROR;PROCEDURE(ERROR_CODE);

*

*

*

END ERROR;

/*Main Procedure */

CALL PLITDLI(FOUR,GU,QUERY_PCB,PRES_IO_AREA,PRESIDENT_SSA);

DO WHILE(PCB.STATUS_CODE=SUCCESSFUL);

CALL PLITDLI(FOUR,GNP,QUERY_PCB,SADMIT_IO_AREA,province_ADMITTED_SSA);

DO WHILE(PCB.STATUS_CODE=SUCCESSFUL);

PUT EDIT(province_NAME)(A);

CALL PLITDLI(FOUR,GNP,QUERY_PCB,SADMIT_IO_AREA,province_ADMITTED_SSA);

END;

IF PCB.STATUS_CODE NOT = RECORD_NOT_FOUND

THEN DO;

CALL ERROR(PCB.STATUS_CODE);

RETURN;

END;

CALL PLITDLI(FOUR,GN,QUERY_PCB,PRES_IO_AREA,PRESDIENT_SSA);

END;

IF PCB.STATUS_CODE NOT = RECORD_NOT_FOUND

THEN DO;

CALL ERROR(PCB.STATUS_CODE);

RETURN;

END;

END DLITPLI;

Relational model to the rescue!

Introduced by Edgar Codd (IBM) in 1970

Most widely used model today.

Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.

Old Competitor: object-oriented model

ObjectStore, Versant, Ontos

A synthesis emerged: object-relational model
Informix Universal Server, UniSQL, O2, Oracle, DB2

Medium-old competitor: XML data model

New competitor: No-SQL

Key points of the relational model

Exceedingly simple to understand – main abstraction is a

table

Query language separate from application language

General form is simple

Many bells and whistles

Structure of Relational Databases

Relational database: a set of relations

Relation: made up of 2 parts:
Schema : specifies name of relation, plus name and domain (type) of
each field (or column or attribute).

e.g., Student (sid: string, name: string, major: string).

Instance : a table, with rows and columns.
#Rows = cardinality, #fields = dimension / arity

Relational Database Schema: collection of schemas in the
database

Database Instance: a collection of instances of its relations
(e.g., currently no grades in CPSC 504)

Example of a Relation Instance

Name Price Category Manufacturer

gizmo $19.99 gadgets GizmoWorks

Power gizmo $29.99 gadgets GizmoWorks

SingleTouch $149.99 photography Canon

MultiTouch $203.99 household Hitachi

Tuples or rows

Attribute names or columns

Relation or table

Order of rows isn’t important

Formal Definition:
Product(Name: string, Price: double, Category: string,
Manufacturer: string)

Product

Overview of the next two classes
Entity Relationship (ER) diagrams

Relational databases
How did we get here?

What’s in a relational schema?

From ER to relational

Query Languages

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

From E/R Diagrams
to Relational Schema

Entity set → relation

Relationship → relation

Entity Set to Relation

Product

name category

price

Product(name, category, price)

name category price

gizmo gadgets $19.99

Relationships to Relations

makes Company

Product

name category

Stock price

name

Makes(product-name, product-category, company-name, year)

Product-name Product-Category Company-name Starting-year

gizmo gadgets gizmoWorks 1963

Start Year
price

(watch out for attribute name conflicts)

When are two relations related?
You guess they are

I tell you so

Constraints say so
A key is a set of attributes whose values are unique; we underline a key

Product(Name, Price, Category, Manfacturer)

Foreign keys are a method for schema designers to tell you so

A foreign key states that an attribute is a reference to the key of another relation

ex: Product.Manufacturer is foreign key of Company

Gives information and enforces constraint

Brief exercise

Translate the diagram that you did from ER to relational

Overview of the next two classes
Entity Relationship (ER) diagrams

Relational databases
How did we get here?

What’s in a relational schema?

From ER to relational

Query Languages

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

Relational Query Languages

A major strength of the relational model: simple, powerful

querying of data.

Queries can be written intuitively; DBMS is responsible

for efficient evaluation.

Precise semantics for relational queries.

Optimizer can re-order operations, and still ensure that the

answer does not change.

We’ll look at 3: relational algebra, SQL, and Datalog

Querying – Relational Algebra

Select ()- chose tuples from a relation

Project ()- chose attributes from relation

Join (⋈) - allows combining of 2 relations

Set-difference (⎯) Tuples in relation 1, but not in

relation 2.

Union ()

Cartesian Product (×) Each tuple of R1 with each tuple in

R2

Find products where the manufacturer is
GizmoWorks

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

?

Find products where the manufacturer is
GizmoWorks

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

Selection:

σManufacturer = ‘GizmoWorks’Product

Find name of all the products

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

?

Name

Gizmo

Powergizmo

SingleTouch

MultiTouch

Find name of all the products

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Projection:

π NameProduct

Name

Gizmo

Powergizmo

SingleTouch

MultiTouch

Find the Name, Price, and Manufacturers of products whose price is greater
than 100

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

?

Find the Name, Price, and Manufacturers of products whose price is greater
than 100

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Selection + Projection:

πName, Price, Manufacturer (σPrice > 100Product)

Find names and prices of products that cost less than
$200 and have Japanese manufacturers

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Name Price

SingleTouch $149.99

?

Find names and prices of products that cost less than
$200 and have Japanese manufacturers

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Name Price

SingleTouch $149.99

πName, Price((σPrice < 200Product)⋈ Manufacturer

= Cname (σCountry = ‘Japan’Company))

Exercise: using this schema or any other, write
two queries in Relational Algebra

Select ()- chose tuples from a relation

Project ()- chose attributes from relation

Join (⋈) - allows combining of 2 relations

Set-difference (⎯) Tuples in relation 1, but not in

relation 2.

Union ()

Cartesian Product (×) Each tuple of R1 with each tuple in

R2

The SQL Query Language

Structured Query Language

The standard relational query language

Developed by IBM (System R) in the 1970s

Standards:

SQL-86

SQL-89 (minor revision)

SQL-92 (major revision, current standard)

SQL-99 (major extensions)

SQL
Data Manipulation Language (DML)

Query one or more tables

Insert/delete/modify tuples in tables

Data Definition Language (DDL)

Create/alter/delete tables and their attributes

Transact-SQL

Idea: package a sequence of SQL statements → server

SQL basics

Basic form: (many many more bells and whistles in

addition)

Select attributes

From relations (possibly multiple, joined)

Where conditions (selections)

SQL – Selections
SELECT *

FROM Company

WHERE country=“Canada” AND stockPrice > 50

Some things allowed in the WHERE clause:

attribute names of the relation(s) used in the FROM.

comparison operators: =, <>, <, >, <=, >=

apply arithmetic operations: stockPrice*2

operations on strings (e.g., “||” for concatenation).

Lexicographic order on strings.

Pattern matching: s LIKE p

Special stuff for comparing dates and times.

SQL – Projections

SELECT name AS company, stockPrice AS price

FROM Company

WHERE country=“Canada” AND stockPrice > 50

SELECT name, stock price

FROM Company

WHERE country=“Canada” AND stockPrice > 50

Select only a subset of the attributes

Rename the attributes in the resulting table

SQL – Joins

SELECT name, store

FROM Person, Purchase

WHERE name=buyer AND city=“Vancouver”

AND product=“gizmo”

Product (name, price, category, manufacturer)

Purchase (buyer, seller, store, product)

Company (name, stock price, country)

Person(name, phone number, city)

Selection:
σManufacturer = ‘GizmoWorks’(Product)

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

What’s the SQL?

Selection:
σManufacturer = ‘GizmoWorks’(Product)

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SELECT *

FROM Product

WHERE Manufacturer = ‘GizmoWorks’

Selection + Projection:
πName, Price, Manufacturer (σPrice > 100Product)

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

What’s the SQL?

Selection + Projection:
πName, Price, Manufacturer (σPrice > 100Product)

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

SELECT Name, Price,

Manufacturer

FROM Product

WHERE Price > 100

π Name, Price((σPrice < 200Product)⋈ Manufacturer =

Cname (σCountry = ‘Japan’Company))

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Name Price

SingleTouch $149.99

What’s the SQL?

English: find the name and price of

all Japanese products that cost less

than $200

π Name, Price((σPrice <= 200Product)⋈ Manufacturer

= Cname (σCountry = ‘Japan’Company))

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Name Price

SingleTouch $149.99

SELECT Name, Price

FROM Product, Company

WHERE Country = ‘Japan’ AND

price <= 200 AND

Manufacturer = Cname

Querying – Datalog
(Our final query language)

Enables recursive queries

More convenient for analysis

Some people find it easier to understand

Without recursion but with negation it is equivalent in

power to relational algebra* and SQL*

Limited version of Prolog (no functions)

Datalog Rules and Queries
A Datalog rule has the following form:

head :- atom1, atom2, …, atom,…

You can read this as then :- if ...

ExpensiveProduct(N) :- Product(N,P,C,M) & P > $10

CanadianProduct(N) :- Product(N,P,C,M)&Company(M,SP, “Canada”)

IntlProd(N) :- Product(N,P,C,M)& Company (M2, SP, C2)&

NOT Company(M, SP, “Canada”)

(sometimes you’ll see &’s between atoms and sometimes &; both mean “and”)

Relations:

Product (name, price, category, manufacturer)

Purchase (buyer, seller, store, product)

Company (name, stock price, country)

Person (name, phone number, city)

Negated subgoal

Arithmetic

comparison or

interpreted

predicate

Conjunctive Queries

A subset of Datalog

Only relations appear in the right hand side of rules

No negation

Functionally equivalent to Select, Project, Join queries

Very popular in modeling relationships between

databases

Selection:
σManufacturer = ‘GizmoWorks’(Product)

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

What’s the Datalog?

Selection:
σManufacturer = ‘GizmoWorks’(Product)

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

Q(n,p,c,‘GizmoWorks):-Product(n,p,c,’GizmoWorks’)

Selection + Projection:
πName, Price, Manufacturer (σPrice > 100Product)

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

What’s the Datalog?

Selection + Projection:
πName, Price, Manufacturer (σPrice > 100Product)

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Name Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Q(n,p,m):-Product(n,p,c,m), p >

100

πName,Price((σPrice < 200Product)⋈ Manufacturer =

Cname (σCountry = ‘Japan’Company))

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Name Price

SingleTouch $149.99

What’s the Datalog?

English: find the name and price of all

Japanese products that cost less than

$200

πName,Price((σPrice < 200Product)⋈ Manufacturer =

Cname (σCountry = ‘Japan’Company))

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Name Price

SingleTouch $149.99

Q(n,p):- Product(n,p,c,m),

Company(m,s,’Japan’), p < 200

Exercise: using this schema or any other, write
2 queries in Datalog and in English
A Datalog rule has the following form:

head :- atom1, atom2, …, atom,…

You can read this as then :- if ...

ExpensiveProduct(N) :- Product(N,P,C,M) & P > $10

CanadianProduct(N) :- Product(N,P,C,M)&Company(M,SP, “Canada”)

IntlProd(N) :- Product(N,P,C,M)& Company (M2, SP, C2)&

NOT Company(M, SP, “Canada”)

(sometimes you’ll see &’s between atoms and sometimes &; both mean “and”)

Relations:

Product (name, price, category, manufacturer)

Purchase (buyer, seller, store, product)

Company (name, stock price, country)

Person (name, phone number, city)

Negated subgoal

Arithmetic

comparison or

interpreted

predicate

Bonus Relational Goodness: Views
Views are stored queries treated as relations, Virtual views are not physically

stored. Materialized views are stored

They are used (1) to define conceptually different views of the database and (2)
to write complex queries simply.

View: purchases of telephony products:

CREATE VIEW telephony-purchases AS

SELECT product, buyer, seller, store

FROM Purchase, Product

WHERE Purchase.product = Product.name

AND Product.category = “telephony”

Summarizing/Rehashing Relational DBs
Relational perspective: Data is stored in relations. Relations have attributes.
Data instances are tuples.

SQL perspective: Data is stored in tables. Tables have columns. Data
instances are rows.

Query languages
Relational algebra – mathematical base for understanding query languages

SQL – most commonly used

Datalog – based on Prolog, very popular with theoreticians

Bonus! Views allow complex queries to be written simply

Outline

Entity Relationship (ER) diagrams

Relational databases

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

Object-Oriented DBMS’s

Started late 80’s

Main idea:

Toss the relational model!

Use the OO model – e.g., C++ classes

Standards group: ODMG = Object Data Management

Group.

OQL = Object Query Language, tries to imitate SQL in an

OO framework.

The OO Plan

ODMG imagines OO-DBMS vendors implementing an OO

language like C++ with extensions (OQL) that allow the

programmer to transfer data between the database and

“host language” seamlessly.

A brief diversion: the impedance mismatch

OO Implementation Options
Build a new database from scratch (O2)

Elegant extension of SQL

Later adopted by ODMG in the OQL language

Used to help build XML query languages

Make a programming language persistent (ObjectStore)
No query language

Niche market

We’ll see a few others

ODL

ODL defines persistent classes, whose objects may be

stored permanently in the database.

ODL classes look like Entity sets with binary relationships, plus

methods.

ODL class definitions are part of the extended, OO host

language.

ODL – remind you of anything?

interface Student extends Person

(extent Students)

{ attribute string major;

relationship Set<Course> takes inverse stds;}

interface Person

(extent People key sin)

{ attribute string sin;

attribute string dept;

attribute string name;}

interface Course

(extent Crs key cid)

{ attribute string cid;

attribute string cname;

relationship Person instructor;

relationship Set<Student> stds

inverse takes;}

Why did OO Fail?

Why are relational databases so popular?

Very simple abstraction; don’t have to think about

programming when storing data.

Very well optimized

Relational db are very well entrenched – OODBs had not

enough advantages, and no good exit strategy (we’ll see

more about this later)

Merging Relational and OODBs
Object-oriented models support interesting data types –
not just flat files.

Maps, multimedia, etc.

The relational model supports very-high-level queries.

Object-relational databases are an attempt to get the
best of both.

All major commercial DBs today have OR versions – full
spec in SQL99, but your mileage may vary.

Outline

Entity Relationship (ER) diagrams

Relational databases

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

XML

eXtensible Markup Language

XML 1.0 – a recommendation from W3C, 1998

Roots: SGML (from document community - works great

for them; from db perspective, very nasty).

After the roots: a format for sharing data

XML is self-describing

Schema elements become part of the data

In XML <persons>, <name>, <phone> are part of the data, and

are repeated many times

Relational schema: persons(name,phone) defined separately

for the data and is fixed

Consequence: XML is very flexible

Why XML is of Interest to Us
XML is semistructured and hierarchical

XML is just syntax for data

Note: we have no syntax for relational data

This is exciting because:

Can translate any data to XML

Can ship XML over the Web (HTTP)

Can input XML into any application

Thus: data sharing and exchange on the Web

XML Data Sharing and Exchange

application

relational data

Transform

Integrate

Warehouse

XML Data WEB (HTTP)

application

application

legacy data

object-relational

From HTML to XML

HTML describes the presentation

HTML

<h1> Bibliography </h1>

<p> <i> Foundations of Databases </i>

Abiteboul, Hull, Vianu

 Addison Wesley, 1995

<p> <i> Data on the Web </i>

Abiteoul, Buneman, Suciu

 Morgan Kaufmann, 1999

XML

<bibliography>

<book> <title> Foundations… </title>

<author> Abiteboul </author>

<author> Hull </author>

<author> Vianu </author>

<publisher> Addison Wesley </publisher>

<year> 1995 </year>

</book>

…

</bibliography>

XML describes the content

XML Document

<data>

<person id=“o555” >

<name> Mary </name>

<address>

<street> Maple </street>

<no> 345 </no>

<city> Seattle </city>

</address>

</person>

<person>

<name> John </name>

<address> Thailand </address>

<phone> 23456 </phone>

<married/>

</person>

</data>

person elements

name elements

attributes

XML Terminology
Elements

enclosed within tags:

<person> … </person>

nested within other elements:

<person> <address> … </address> </person>

can be empty

<married></married> abbreviated as <married/>

can have Attributes

<person id=“0005”> … </person>

XML document has as single ROOT element

XML as a Tree !!

<data>

<person id=“o555” >

<name> Mary </name>

<address>

<street> Maple </street>

<no> 345 </no>

<city> Seattle </city>

</address>

</person>

<person>

<name> John </name>

<address> Thailand </address>

<phone> 23456 </phone>

</person>

</data>

data

person
person

Mary

name address

street no city

Maple 345 Seattle

name

address

John Thai

phone

23456

id

o555

Element

node

Text

node

Attribute

node

Minor Detail: Order matters !!!

Relational Data as XML

<persons>

<person> <name>John</name>

<phone> 3634</phone>

</person>

<person> <name>Sue</name>

<phone> 6343</phone>

</person>

<person> <name>Dick</name>

<phone> 6363</phone>

</person>

</persons>

n a m e p h o n e

J o h n 3 6 3 4

S u e 6 3 4 3

D i c k 6 3 6 3

person
person person person

name name namephone phone phone

“John” 3634 “Sue” “Dick”6343 6363

personsXML:

XML is semi-structured

Missing elements:

Could represent in a table with nulls

<person> <name> John</name>

<phone>1234</phone>

</person>

<person> <name>Joe</name>

</person>  no phone !

name phone

John 1234

Joe -

XML is semi-structured
Repeated elements

Impossible in tables:

<person> <name> Mary</name>

<phone>2345</phone>

<phone>3456</phone>

</person>

 two phones !

name phone

Mary 2345 3456 ???

XML is semi-structured
Elements with different types in different objects

Heterogeneous collections:

<persons> can contain both <person>s and
<customer>s

<person> <name> <first> John </first>
<last> Smith </last>

</name>
<phone>1234</phone>

</person>

 structured name !

Summarizing XML

XML has first class elements and second class attributes

XML is semi-structured

XML is nested

XML is a tree

XML is a buzzword

Outline

Entity Relationship (ER) diagrams

Relational databases

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

Other data formats

Key-value pairs (e.g., No SQL)

Makefiles

Forms

Application code

What format is your data in?

Outline
Entity Relationship (ER) diagrams

Relational databases

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Query Optimization & Execution

Transaction Processing

Potpourri

How SQL Gets Executed:
Query Execution Plans

Select Name, Price

From Product, Company

Where Manufacturer = Cname

AND Price <= 200

AND Country = ‘Japan’

Product Company

⋈
Manufacturer = Cname

σPrice <= 200 ^ Country = ‘Japan’

πName, Price

Query optimization also specifies the algorithms for each

operator; then queries can be executed

Overview of Query Optimization

Plan: Tree of ordered Relational Algebra operators and choice of
algorithm for each operator

Two main issues:
For a given query, what plans are considered?

Algorithm to search plan space for cheapest (estimated) plan.

How is the cost of a plan estimated?

Ideally: Want to find best plan.
Practically: Avoid worst plans.

Some tactics
Do selections early

Use materialized views

Use Indexes

Tree-Based Indexes

``Find all students with gpa > 3.0’’

If data is sorted, do binary search to find first such student, then

scan to find others.

Cost of binary search can be quite high.

Simple idea: Create an `index’ file.

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

Example B+ Tree

Search begins at root, and key comparisons direct it to a

leaf.

Search for 5*, 15*, all data entries >= 24* ...

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Query Execution

Now that we have the plan, what do we do with it?

How do joins work?

How do deal with paging in data, etc.

New research covers new paradigms where interleaved

with optimization

Outline
Entity Relationship (ER) diagrams

Relational databases

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Query Optimization & Execution

Transaction Processing

Potpourri

Transactions

Address two issues:

Access by multiple users

Protection against crashes

Transactions
Transaction = group of statements that must be executed atomically

Transaction properties: ACID
Atomicity: either all or none of the operations are completed

Consistency: preserves database integrity

Isolation: concurrent transactions must not interfere with each other

Durability: changes from successful transactions must persist through
failures

Transaction Example

Consider two transactions:

T1: READ(A)

A=A+100

WRITE(A)

READ(B)

B=B-100

WRITE(B)

T2: READ(A)

A=1.1*A

WRITE(A)

READ(B)

B=1.1*B

WRITE(B)

Intuitively, T1 transfers $100 to
A’s account from B’s account.
T2 credits both accounts with a
10% interest payment.

No guarantee that T1 executes
before T2 or vice-versa.
However, the end effect must be
equivalent to these two
transactions running serially in
some order:

T1, T2 or T2, T1

Transactions: Serializability
Serializability = the technical term for isolation

An execution is serial if it is completely before or
completely after any other function’s execution

An execution is serializable if it equivalent to one that is
serial

DBMS can offer serializability guarantees

Serializability Example
Enforced with locks, like in Operating Systems !

But this is not enough:

LOCK A

[write A=1]

UNLOCK A

. . .

. . .

. . .

. . .

LOCK B

[write B=2]

UNLOCK B

LOCK A

[write A=3]

UNLOCK A

LOCK B

[write B=4]

UNLOCK B

User 1 User 2

What is wrong ?

time

Okay, but what if it crashes?

Transaction States

A transaction can be in one of the following states:

active:

makes progress or waits for resources; the initial state

committed:

after successful completing a “commit” command

to undo its effects we need to run a compensating transaction

A few others we won’t go into

Enforcing Atomicity & Durability

Atomicity:
Transactions may abort ; Need to rollback changes

Durability:
What if DBMS stops running? Need to “remember” committed
changes.

Desired behaviour after
system restarts:

– T1, T2, & T3 should be
durable.

– T4 & T5 should be
aborted (effects not seen)

crash!
T1
T2
T3
T4
T5

Handling the Buffer Pool

Force every write to disk?

Poor response time.

But provides durability.

Steal buffer-pool frames from

uncommitted Xacts? (resulting in

write to disk)

If not, poor throughput.

If so, how can we ensure atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Transactions modify pages in memory buffers

Writing to disk is more permanent

When should updated pages be written to disk?

What to do?

Basic idea: use steal and no-force

Keep a log that tracks what’s happened

Make checkpoints where write down everything that’s

actually happened

After a crash: assure Atomicity and Durability by keeping

all committed transactions and getting rid of actions of

uncommitted transactions

Outline

Entity Relationship (ER) diagrams

Relational databases

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

Complexity

Memory hierarchy

Complexity
Characterize algorithms by how much time they take

The first major distinction: Polynomial (P) vs. Non-deterministic Polynomial
(NP)

Algorithms in P can be solved in P. time in size of input
E.g., merge sort is O(n log n) (where n = # of items)

NP algorithms can be solved in NP time; equivalently, they can be verified in
in polynomial time

NP-complete = a set of algorithms that is as hard as possible but still in NP
E.g., Traveling Salesperson Problem

Co-NP refers to algorithms whose converses are NP complete

Complexity Ice Cream Cone

P

NP Co-

NP

Memory hierarchy

Note: Moore’s law is over; multi-cores/processors much more

common in last 20 years

Outline

Entity Relationship (ER) diagrams

Relational databases

Object Oriented Databases (OODBs)

XML

Other data types

Database internals (Briefly)

Potpourri

Now what?

Time to read papers

Prepare paper responses – it’ll help you focus on the

paper, and allow for the discussion leader to prepare

better discussion

You all have different backgrounds, interests, and

insights. Bring them into class!

Projects! Looking for a group? Stick around!

