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A view is a stored query. It can be saved and reused.

In SQL:

Taken from Jeffrey Niu’s, Nalin Munshi’s slides 3

Product(Name, Price, Category, Manufacturer)
Company(Cname, StockPrice, Country)

CREATE VIEW JapaneseProducts AS
SELECT Name, Price, Category, Manufacturer
FROM Product, Company
WHERE Product.Manufacturer=Company.Cname 

AND Company.Country = 'Japan'



Can rewrite queries using views (datalog):

Taken from Jeffrey Niu’s, Nalin Munshi’s slides 4

q(code) :- Airport(code, city), Feature(city, POI)

feature-code(code, POI) :- Airport(code, city), 
   Feature(city, POI)

q(code) :- feature-code(code, POI)

Query:

View definition:

Rewriting using view:



1. Query Optimization 
• Build query plan using views

2. Data Integration 
• Query from multiple heterogeneous sources
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Goal:
• Use views alongside base relations to answer a query

• Reuse materialized view
• Rewrite with views should yield same answer as original query
• Maintain physical data independence

• Only need to work with views
• Views do not change when modifying storage schema [1]

Taken from Jeffrey Niu’s, Nalin Munshi’s slides
1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 6



Query 𝑄! is contained in 𝑄" (𝑄! ⊆ 𝑄") if for any database 𝐷, 

𝑄! 𝐷 ⊆ 𝑄"(𝐷)

In other words, the tuples returned from running 𝑄! on 𝐷 are a subset 
of running 𝑄" on 𝐷.
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8

q1(code) :- Airport(code, city)

Query 𝑄!:

q2(code) :- Airport(code, “New York”)

Query 𝑄":
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q1(code) :- Airport(code, city)

Query 𝑄!:

q2(code) :- Airport(code, “New York”)

Query 𝑄":

Code
JFK
LGA

Code
JFK
LGA
YVR
YYZ
…

𝑄! 𝐷 : 𝑄" 𝐷 :

Hence, we have 𝑄" ⊆ 𝑄!



Given query 𝑄 and views 𝐕 = 𝑉!, … , 𝑉' , a query 𝑄′ is an equivalent 
rewriting of 𝑄 using 𝐕 if 𝑄 and 𝑄′ are contained within each other [1] 
(return the exact same answers).

1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294.
Taken from Jeffrey Niu’s, Nalin Munshi’s slides 10



Given query 𝑄 and views 𝐕 = 𝑉!, … , 𝑉' , a query 𝑄′ is an equivalent 
rewriting of 𝑄 using 𝐕 if 𝑄 and 𝑄′ are contained within each other [1] 
(return the exact same answers).

1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294.
Taken from Jeffrey Niu’s, Nalin Munshi’s slides 11

q(code) :- Airport(code, city), Feature(city, POI)

feature-code(code, POI) :- Airport(code, city),
    Feature(city, POI)

q(code) :- feature-code(code, POI)

Query:

View 𝑉!:

Equivalent rewrite 
using 𝑉!	:



Given query 𝑄 and views 𝐕 = 𝑉!, … , 𝑉' , a query 𝑄′ is an equivalent 
rewriting of 𝑄 using 𝐕 if 𝑄 and 𝑄′ are contained within each other [1] 
(return the exact same answers).

1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294.
Taken from Jeffrey Niu’s, Nalin Munshi’s slides 12

q(code) :- Airport(code, city), Feature(city, POI)

Beach-code(code) :- Airport(code, city),
   Feature(city, "Beach")

q(code) :- Beach-code(code)

Query:

View 𝑉":

Non-equivalent 
rewrite using 𝑉"	:

Only gets “Beach” results from Feature



Goal: 
• Provide a uniform query interface to many heterogeneous data 

sources over the internet
• Free the user from having to find the data sources relevant to a query
• Easy to add and delete sources
• Find the maximal set of answers available from the sources

• Each source only has some of the tuples we want

Paper: Information Manifold (IM) provides uniform access to over 100 
heterogeneous sources
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Taken from Jeffrey Niu’s, Nalin Munshi’s slides 14

Beach
🏖

Good weather
🔆

Cheap flight
✈

Lonely Planet Weather.ca AccuWeather

Booking.com Expedia Travelocity



Taken from Jeffrey Niu’s, Nalin Munshi’s slides 15

Beach
🏖

Good weather
🔆

Cheap flight
✈

Lonely Planet

Booking.com Expedia Travelocity

Weather.ca AccuWeather



Taken from Jeffrey Niu’s, Nalin Munshi’s slides 16

Beach
🏖

Good weather
🔆

Cheap flight
✈

Lonely Planet

Booking.com Expedia Travelocity

AccuWeatherWeather.ca



Given the example of Data Integration and its use of incomplete 
sources.
• What are some other modern domains that require the use of 

incomplete sources?
• Can you think of any real-world scenarios (perhaps in your own 

research) where assuming complete data from a single source could 
be advantageous compared to the assumption of incomplete data?
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Challenges:

Incomplete data
• View is sound but not complete
• Assume data is correct, but not all data 

relevant to view is in the view

Different local schemas all over the web
• Need to identify how to bind variables to 

create execution plans
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Uniform Query 
Interface

Local Source 
(view)

Local Schema



Data Integration faces the challenges of different local schemas over 
the web.
• How important is standardization (data formats, APIs, etc.) in the 

evolution of data integration? 
• Can you identify areas where lack of standardization is still a 

significant barrier?
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Given query 𝑄, views 𝐕 = 𝑉!, … , 𝑉' , a query language ℒ, a query 𝑄′ is a 
maximally-contained rewriting of 𝑄 using 𝐕 with respect to ℒ if [1]:

• 𝑄′ is a query in ℒ that refers only to views in 𝐕
• 𝑄* ∪ 𝐕 is contained in 𝑄
• 𝑄′ is the query that obtains the most answers from 𝐕

Finding maximally-contained plan computes all certain answers [2]

1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294.
2. Bertossi, L., Bravo, L. 2005. Consistent Query Answers in Virtual Data Integration Systems. In: Bertossi, L., Hunter, A., Schaub, T. (eds) Inconsistency Tolerance. Lecture Notes in 

Computer Science, vol 3300. Springer, Berlin, Heidelberg. 
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Taken from Jeffrey Niu’s, Nalin Munshi’s slides 21

Dest(code) :- Airport(code, city), Feature(city, 
     "Beach")

Expedia-Air(code, city) :- Airport(code, city)

Dest(code) :- Expedia-Air(code, city),
          LonelyPlanet(city, "Beach")

Query:

Views:

Rewriting:

LonelyPlanet(city, POI) :- Feature(city, POI)

At best maximally contained. Rewriting gives as many answers as it can to query given the 
views.



Given a query 𝑄 .𝑋 ← 𝑅! .𝑋! , … , 𝑅' .𝑋' , 𝐶+:

CreateBucket:
create an empty bucket for every subgoal 𝑅,
for every subgoal 𝑅,:

for each view 𝑉 .𝑌 ⊆ 𝑆! .𝑌! , … , 𝑆- .𝑌- , 𝐶.
for every class 𝑆/:

if 𝑅, and 𝑆/ are non-disjoint:
map variables between 𝑅, and 𝑆/

if union of 𝑄 and the mappings is satisfiable:
add mapped 𝑉 to bucket 𝑖

do containment check over cartesian product of buckets
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Given a query 𝑄 .𝑋 ← 𝑅! .𝑋! , … , 𝑅' .𝑋' , 𝐶+:

CreateBucket:
create an empty bucket for every subgoal 𝑅,
for every subgoal 𝑅,:

for each view 𝑉 .𝑌 ⊆ 𝑆! .𝑌! , … , 𝑆- .𝑌- , 𝐶.
for every class 𝑆/:

if 𝑅, and 𝑆/ are non-disjoint:
map variables between 𝑅, and 𝑆/

if union of 𝑄 and the mappings is satisfiable:
add mapped 𝑉 to bucket 𝑖

do containment check over cartesian product of buckets
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1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 24

V1(student,number,year) :- Registered(student,course,year), 
 Course(course,number),number≥500,year≥1992

V2(student,dept,course) :-Registered(student,course,year), 
   Enrolled(student,dept)

q(S,D) :- Enrolled(S,D),Registered(S,C,Y),Course(C,N), 
 N≥300,Y≥1995.

View definitions:

Query:

V3(student,course) :- Registered(student,course,year), 
   year ≤ 1990



1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 25

Enrolled(S,D) Registered(S,C,Y) Course(C,N) 

V2(S,D,C’)

V2 has the Enrolled subgoal
S → student
D → dept

V1(student,number,year) Registered(student,course,year),Course(course,number),number≥500,year≥1992

V2(student,dept,course) Registered(student,course,year),Enrolled(student,dept)

V3(student,course) Registered(student,course,year),year ≤ 1990

q(S,D) Enrolled(S,D),Registered(S,C,Y),Course(C,N),N≥300,Y≥1995

Buckets



1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 26

Enrolled(S,D) Registered(S,C,Y) Course(C,N) 

V2(S,D,C’) V1(S,N’,Y)

V2(S,D’,C)

V1,V2,V3 have Registered
S → student
C → course
Y → year

V3 predicate does not match in 
year so it is not included

V1(student,number,year) Registered(student,course,year),Course(course,number),number≥500,year≥1992

V2(student,dept,course) Registered(student,course,year),Enrolled(student,dept)

V3(student,course) Registered(student,course,year),year ≤ 1990

q(S,D) Enrolled(S,D),Registered(S,C,Y),Course(C,N),N≥300,Y≥1995



1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 27

Enrolled(S,D) Registered(S,C,Y) Course(C,N) 

V2(S,D,C’) V1(S,N’,Y) V1(S’,N,Y’)

V2(S,D’,C)

V1 has Course
C → course
N → number

V1(student,number,year) Registered(student,course,year),Course(course,number),number≥500,year≥1992

V2(student,dept,course) Registered(student,course,year),Enrolled(student,dept)

V3(student,course) Registered(student,course,year),year ≤ 1990

q(S,D) Enrolled(S,D),Registered(S,C,Y),Course(C,N),N≥300,Y≥1995



• Checks if the plan is executable
• Sets bindings in execution plan
• Adds appropriate inputs to subsequent subgoals
• Removes unnecessary outputs
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Creating executable plan is polynomial in size of 𝑄′
• NP-complete if more than 1 capability record possible per source

NP-complete overall
• Cartesian product over buckets for CreateExecutablePlan

Becomes much worse once we start allowing more predicates
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The Information Manifold works with non-equivalent (contained) 
rewritings.
• What are other scenarios that you can imagine where you would 

want to use contained rewritings (maximally contained or 
otherwise)?

Example:
• Language translations → some words or combinations have different 

meanings.
• Approximate query → maybe no need to write all information
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Information Manifold was highly influential:

• Became known as the Local-as-View approach
• Easy to accommodate new sources
• More precise source descriptions

• Sparked research into:
• Describing sources – expressive power, tractability, binding patterns 

restrictions, etc.
• Certain answers – model incomplete information

• Answering queries using views got more attention
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• Generating schema mappings automatically
• Using ML to make mappings

• Reference reconciliation
• Adaptive query processing
• Extension towards XML
• Model management

• Algebra for manipulating schemas and mappings
• Peer-to-peer
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• Enterprise Information Integration (EII)
• Provide tools for integrating from many sources without central warehouse

• High demand for data integration
• Research matured
• More data sharing (XML)
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• Scaling/performance
• Getting people to share data
• Data uncertainty, inconsistency, lineage
• Leveraging human attention
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The "Data Integration: The Teenage Years" was written in response to 
the the original "Querying Heterogeneous Information Sources using 
Source Descriptions" paper wining the VLDB 10-years Best Paper 
Award.
• What are some important things to consider when reading a test-of-

time award papers?
• What kinds of things would you want the authors to do?
• What kinds of things can you hope to get out of them?
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Two applications/formalisms of answering queries using views:
1. Query Optimization

• How to build a query plan using views
• Find equivalent rewriting

2. Data Integration
• How to integrate multiple data sources into one uniform interface
• Find maximally-contained rewriting (incomplete sources)
• Data integration saw significant growth in industry and research
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