
Alon Y. Halevy, Anand Rajaraman, Joann J. Ordille

Presentation: Haley Li
Discussion: Daniel Long

Slides adapted from Jeffrey Niu, Nalin Munshi, Rachel Pottinger



Main Papers:
1. Alon Y. Levy, Anand Rajaraman, Joann J. Ordille: Querying 

Heterogeneous Information Sources Using Source Descriptions. 
VLDB 1996: 251-262

2. Alon Y. Halevy, Anand Rajaraman, Joann J. Ordille: Data Integration: 
The Teenage Years. VLDB 2006: 9-16.

Survey for background:
1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The 

VLDB 2001: 270–294.

2



A view is a stored query. It can be saved and reused.

In SQL:

Taken from Jeffrey Niu’s, Nalin Munshi’s slides 3

Product(Name, Price, Category, Manufacturer)
Company(Cname, StockPrice, Country)

CREATE VIEW JapaneseProducts AS
SELECT Name, Price, Category, Manufacturer
FROM Product, Company
WHERE Product.Manufacturer=Company.Cname 

AND Company.Country = 'Japan'



Can rewrite queries using views (datalog):

Taken from Jeffrey Niu’s, Nalin Munshi’s slides 4

q(code) :- Airport(code, city), Feature(city, POI)

feature-code(code, POI) :- Airport(code, city), 
   Feature(city, POI)

q(code) :- feature-code(code, POI)

Query:

View definition:

Rewriting using view:



1. Query Optimization 
• Build query plan using views

2. Data Integration 
• Query from multiple heterogeneous sources

5



Goal:
• Use views alongside base relations to answer a query

• Reuse materialized view
• Rewrite with views should yield same answer as original query
• Maintain physical data independence

• Only need to work with views
• Views do not change when modifying storage schema [1]

Taken from Jeffrey Niu’s, Nalin Munshi’s slides
1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 6



Query 𝑄! is contained in 𝑄" (𝑄! ⊆ 𝑄") if for any database 𝐷, 

𝑄! 𝐷 ⊆ 𝑄"(𝐷)

In other words, the tuples returned from running 𝑄! on 𝐷 are a subset 
of running 𝑄" on 𝐷.

7



8

q1(code) :- Airport(code, city)

Query 𝑄!:

q2(code) :- Airport(code, “New York”)

Query 𝑄":



9

q1(code) :- Airport(code, city)

Query 𝑄!:

q2(code) :- Airport(code, “New York”)

Query 𝑄":

Code
JFK
LGA

Code
JFK
LGA
YVR
YYZ
…

𝑄! 𝐷 : 𝑄" 𝐷 :

Hence, we have 𝑄" ⊆ 𝑄!



Given query 𝑄 and views 𝐕 = 𝑉!, … , 𝑉' , a query 𝑄′ is an equivalent 
rewriting of 𝑄 using 𝐕 if 𝑄 and 𝑄′ are contained within each other [1] 
(return the exact same answers).

1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294.
Taken from Jeffrey Niu’s, Nalin Munshi’s slides 10



Given query 𝑄 and views 𝐕 = 𝑉!, … , 𝑉' , a query 𝑄′ is an equivalent 
rewriting of 𝑄 using 𝐕 if 𝑄 and 𝑄′ are contained within each other [1] 
(return the exact same answers).

1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294.
Taken from Jeffrey Niu’s, Nalin Munshi’s slides 11

q(code) :- Airport(code, city), Feature(city, POI)

feature-code(code, POI) :- Airport(code, city),
    Feature(city, POI)

q(code) :- feature-code(code, POI)

Query:

View 𝑉!:

Equivalent rewrite 
using 𝑉!	:



Given query 𝑄 and views 𝐕 = 𝑉!, … , 𝑉' , a query 𝑄′ is an equivalent 
rewriting of 𝑄 using 𝐕 if 𝑄 and 𝑄′ are contained within each other [1] 
(return the exact same answers).

1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294.
Taken from Jeffrey Niu’s, Nalin Munshi’s slides 12

q(code) :- Airport(code, city), Feature(city, POI)

Beach-code(code) :- Airport(code, city),
   Feature(city, "Beach")

q(code) :- Beach-code(code)

Query:

View 𝑉":

Non-equivalent 
rewrite using 𝑉"	:

Only gets “Beach” results from Feature



Goal: 
• Provide a uniform query interface to many heterogeneous data 

sources over the internet
• Free the user from having to find the data sources relevant to a query
• Easy to add and delete sources
• Find the maximal set of answers available from the sources

• Each source only has some of the tuples we want

Paper: Information Manifold (IM) provides uniform access to over 100 
heterogeneous sources

13



Taken from Jeffrey Niu’s, Nalin Munshi’s slides 14

Beach
🏖

Good weather
🔆

Cheap flight
✈

Lonely Planet Weather.ca AccuWeather

Booking.com Expedia Travelocity



Taken from Jeffrey Niu’s, Nalin Munshi’s slides 15

Beach
🏖

Good weather
🔆

Cheap flight
✈

Lonely Planet

Booking.com Expedia Travelocity

Weather.ca AccuWeather



Taken from Jeffrey Niu’s, Nalin Munshi’s slides 16

Beach
🏖

Good weather
🔆

Cheap flight
✈

Lonely Planet

Booking.com Expedia Travelocity

AccuWeatherWeather.ca



Given the example of Data Integration and its use of incomplete 
sources.
• What are some other modern domains that require the use of 

incomplete sources?
• Can you think of any real-world scenarios (perhaps in your own 

research) where assuming complete data from a single source could 
be advantageous compared to the assumption of incomplete data?

17



Challenges:

Incomplete data
• View is sound but not complete
• Assume data is correct, but not all data 

relevant to view is in the view

Different local schemas all over the web
• Need to identify how to bind variables to 

create execution plans

18

Uniform Query 
Interface

Local Source 
(view)

Local Schema



Data Integration faces the challenges of different local schemas over 
the web.
• How important is standardization (data formats, APIs, etc.) in the 

evolution of data integration? 
• Can you identify areas where lack of standardization is still a 

significant barrier?

19



Given query 𝑄, views 𝐕 = 𝑉!, … , 𝑉' , a query language ℒ, a query 𝑄′ is a 
maximally-contained rewriting of 𝑄 using 𝐕 with respect to ℒ if [1]:

• 𝑄′ is a query in ℒ that refers only to views in 𝐕
• 𝑄* ∪ 𝐕 is contained in 𝑄
• 𝑄′ is the query that obtains the most answers from 𝐕

Finding maximally-contained plan computes all certain answers [2]

1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294.
2. Bertossi, L., Bravo, L. 2005. Consistent Query Answers in Virtual Data Integration Systems. In: Bertossi, L., Hunter, A., Schaub, T. (eds) Inconsistency Tolerance. Lecture Notes in 

Computer Science, vol 3300. Springer, Berlin, Heidelberg. 
20



Taken from Jeffrey Niu’s, Nalin Munshi’s slides 21

Dest(code) :- Airport(code, city), Feature(city, 
     "Beach")

Expedia-Air(code, city) :- Airport(code, city)

Dest(code) :- Expedia-Air(code, city),
          LonelyPlanet(city, "Beach")

Query:

Views:

Rewriting:

LonelyPlanet(city, POI) :- Feature(city, POI)

At best maximally contained. Rewriting gives as many answers as it can to query given the 
views.



Given a query 𝑄 .𝑋 ← 𝑅! .𝑋! , … , 𝑅' .𝑋' , 𝐶+:

CreateBucket:
create an empty bucket for every subgoal 𝑅,
for every subgoal 𝑅,:

for each view 𝑉 .𝑌 ⊆ 𝑆! .𝑌! , … , 𝑆- .𝑌- , 𝐶.
for every class 𝑆/:

if 𝑅, and 𝑆/ are non-disjoint:
map variables between 𝑅, and 𝑆/

if union of 𝑄 and the mappings is satisfiable:
add mapped 𝑉 to bucket 𝑖

do containment check over cartesian product of buckets

22



Given a query 𝑄 .𝑋 ← 𝑅! .𝑋! , … , 𝑅' .𝑋' , 𝐶+:

CreateBucket:
create an empty bucket for every subgoal 𝑅,
for every subgoal 𝑅,:

for each view 𝑉 .𝑌 ⊆ 𝑆! .𝑌! , … , 𝑆- .𝑌- , 𝐶.
for every class 𝑆/:

if 𝑅, and 𝑆/ are non-disjoint:
map variables between 𝑅, and 𝑆/

if union of 𝑄 and the mappings is satisfiable:
add mapped 𝑉 to bucket 𝑖

do containment check over cartesian product of buckets

23

Not in paper



1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 24

V1(student,number,year) :- Registered(student,course,year), 
 Course(course,number),number≥500,year≥1992

V2(student,dept,course) :-Registered(student,course,year), 
   Enrolled(student,dept)

q(S,D) :- Enrolled(S,D),Registered(S,C,Y),Course(C,N), 
 N≥300,Y≥1995.

View definitions:

Query:

V3(student,course) :- Registered(student,course,year), 
   year ≤ 1990



1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 25

Enrolled(S,D) Registered(S,C,Y) Course(C,N) 

V2(S,D,C’)

V2 has the Enrolled subgoal
S → student
D → dept

V1(student,number,year) Registered(student,course,year),Course(course,number),number≥500,year≥1992

V2(student,dept,course) Registered(student,course,year),Enrolled(student,dept)

V3(student,course) Registered(student,course,year),year ≤ 1990

q(S,D) Enrolled(S,D),Registered(S,C,Y),Course(C,N),N≥300,Y≥1995

Buckets



1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 26

Enrolled(S,D) Registered(S,C,Y) Course(C,N) 

V2(S,D,C’) V1(S,N’,Y)

V2(S,D’,C)

V1,V2,V3 have Registered
S → student
C → course
Y → year

V3 predicate does not match in 
year so it is not included

V1(student,number,year) Registered(student,course,year),Course(course,number),number≥500,year≥1992

V2(student,dept,course) Registered(student,course,year),Enrolled(student,dept)

V3(student,course) Registered(student,course,year),year ≤ 1990

q(S,D) Enrolled(S,D),Registered(S,C,Y),Course(C,N),N≥300,Y≥1995



1. Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB Journal 10, 4 (December 2001), 270–294. 27

Enrolled(S,D) Registered(S,C,Y) Course(C,N) 

V2(S,D,C’) V1(S,N’,Y) V1(S’,N,Y’)

V2(S,D’,C)

V1 has Course
C → course
N → number

V1(student,number,year) Registered(student,course,year),Course(course,number),number≥500,year≥1992

V2(student,dept,course) Registered(student,course,year),Enrolled(student,dept)

V3(student,course) Registered(student,course,year),year ≤ 1990

q(S,D) Enrolled(S,D),Registered(S,C,Y),Course(C,N),N≥300,Y≥1995



• Checks if the plan is executable
• Sets bindings in execution plan
• Adds appropriate inputs to subsequent subgoals
• Removes unnecessary outputs

28



Creating executable plan is polynomial in size of 𝑄′
• NP-complete if more than 1 capability record possible per source

NP-complete overall
• Cartesian product over buckets for CreateExecutablePlan

Becomes much worse once we start allowing more predicates

29



The Information Manifold works with non-equivalent (contained) 
rewritings.
• What are other scenarios that you can imagine where you would 

want to use contained rewritings (maximally contained or 
otherwise)?

Example:
• Language translations → some words or combinations have different 

meanings.
• Approximate query → maybe no need to write all information

30



Information Manifold was highly influential:

• Became known as the Local-as-View approach
• Easy to accommodate new sources
• More precise source descriptions

• Sparked research into:
• Describing sources – expressive power, tractability, binding patterns 

restrictions, etc.
• Certain answers – model incomplete information

• Answering queries using views got more attention

31



• Generating schema mappings automatically
• Using ML to make mappings

• Reference reconciliation
• Adaptive query processing
• Extension towards XML
• Model management

• Algebra for manipulating schemas and mappings
• Peer-to-peer

32



• Enterprise Information Integration (EII)
• Provide tools for integrating from many sources without central warehouse

• High demand for data integration
• Research matured
• More data sharing (XML)

33



• Scaling/performance
• Getting people to share data
• Data uncertainty, inconsistency, lineage
• Leveraging human attention

34



The "Data Integration: The Teenage Years" was written in response to 
the the original "Querying Heterogeneous Information Sources using 
Source Descriptions" paper wining the VLDB 10-years Best Paper 
Award.
• What are some important things to consider when reading a test-of-

time award papers?
• What kinds of things would you want the authors to do?
• What kinds of things can you hope to get out of them?

35



Two applications/formalisms of answering queries using views:
1. Query Optimization

• How to build a query plan using views
• Find equivalent rewriting

2. Data Integration
• How to integrate multiple data sources into one uniform interface
• Find maximally-contained rewriting (incomplete sources)
• Data integration saw significant growth in industry and research

36


