Relational Databases for Querying
XML Documents:
Limitations and Opportunities

Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang, David DeWitt, Jeffrey Naughton

Department of Computer Sciences
University of Wisconsin-Madison

Presentation: Chris (Xiangyu Shi)
Discussion: Kaiyun Guo
Slides adapted from Pei Lee, Modified by Rachel Pottinger

What is XML?

Definition of XML
e XML stands for Extensible Markup Language.
e |tis a markup language and file format for data.

e ltis a subset of Standard Generalized Markup Language (SGML), similar to
HTML.

HTML vs. XML

e HTML has a primary purpose of displaying data.
e XML describes data itself.

Purpose of XML

e Serialization; Designed to store, transmit, and represent data on the Internet.

C
o
0

Motivation

XML quickly became the standard format to transmit information through the WWW.

C
o
0

Database point of view: Challenge lies in effectively querying the data stored in XML
documents.

Traditional Approach
e Use of semi-structured query languages: XML-QL, Lorel, UnQL, XQL.

Innovative Methodology
e Proposes leveraging existing relational database technology.
e Convert XML documents to relational structures, enabling the use of SQL for
queries and reformatting the query outcomes back into XML.
e The key is Document Type Descriptors(DTD).

C
w
(@)

Discussion (Group of 4)

While there are many semi-structured data methods, the paper prefers to

adapt XML to relational database systems.

Would you rather create an XML database and query processing
system from scratch, or use a relational backend. Why? If it depends,
what does it depend on?

In a more broad sense, what are the pros and cons of leveraging
mature technology to solve a different problem versus providing a

dedicated solution to the new problem from scratch?

XML DTD

e Self-describing, consists of nested e Schema for XML.: it describes the
element structures, starting with a root structure of XML documents by
element. specifying the names of its

e Element data can be in the form of sub-elements and attributes.
attributes or sub-elements. e E.qQ.

e E.Q o [*]=zeroormore
<student> o [+]=oneormore
<name>John</name> o [?]=zeroorone
[<phone>604xxxxxxxx</§hone>
[<phone>778xxxxxxxx</phone>] <'ELEMENT student(n@
|</student> J phone+ Jfax*)p

Four steps - General idea of approach

First, we process a DTD to generate a relational schema.

Second, we parse XML documents conforming to DTDs and load them
into tuples of relational tables in a standard commercial DBMS.

Third, we translate semi-structured queries over XML documents into
SQL queries over the corresponding relational data.

Finally, we convert the results back to XML

C
o
0

STEP 1 - Process a DTD

« DTDs can be very complex which is a problem

» Three initial simplification transformations

C
o
0

(e1, ez)* 9 e1*’ ez* e1* 2 €1 s PO W (R 3 [
1, ©2) 18, ©2°¢ * D e, * 9 * SDa
€17 e1 g B gy Wy wueF Ay
(e1le2) > €47, €7 e?? > eq? ., a? ..,a? ..>aY ..
- O T .
Flattenin] cee e Groupin
9 Simplification ping
Transformations) Transformations
Transformations

Convert a nested definition
into a flat representation

“n

(i.e. “,” and “|” do not appear inside
any operator)

Groups sub-elements

having the same name
(i.e. two a* sub-elements
are grouped into one a*)

Reduce many unary
operators to a single unary
operator.

STEP 2 - DTD to a relational schema

e Creating relational schemas based on a structured data model like the
Entity-Relationship(ER) model - quite straightforward.
e XML DTDs don’t have a correspondence to the ER model.
e Directly mapping elements to relations can lead to excessive fragmentations of
the documents.
e Three Techniques
o The Basic Inlining Technique
o The Shared Inlining Technique
o The Hybrid Inlining Technique

C
o
0

STEP 2 - Basic Inlining Technique

e Create relations for every element.

e To solve the fragmentation problem by inlining as many descendants of an

element as possible into a single relation.

o Set-valued attributes and Recursion

<book>
<booktitle> The Selfish Gene </booktitle>
<author id = “dawkins”>
<name>
<firstname> Richard </firsthname>
<lastname> Dawkins </lastname>
</name>
<address>
<city> Timbuktu </city>
<zip> 99999 </zip>
</address>
</author>
</book>

XML document

C
o]
0

book

/

booktitle

article monograph,

contactauthor

authorlD

author

o e
a \

address authorid
firstname lastname

DTD graph

g editor

| ™

* name

|

monograph

title

author

/\.\»

name address authorid
?
W

firstname lastname

Element graph for
editor

STEP 2 - Basic Inlining Technique

book (booklD: integer, book.booktitle : string, book.author.name.firstname: string, book.author.name.lastname: string,
book.author.address: string, author.authorid: string)

booktitle (booktitlelD: integer, bookitle: string)
article (articlelD: integer, article.contactauthor.authorid: string, article.itle: string)

article.author (article.authorlD: integer, article.author.parentID: integer, article.author.name.firstname: string,
article.author.name.lastname: string, article.author.address: string, article.author.authorid: string)

contactauthor (contactauthorlD: integer, contactauthor.authorid: string)
title (titlelD: integer, title: string)

monograph (monographiD: integer, monograph.parentlD: integer, monograph.itle: string, monograph.editor.name: string,
monograph.author.name.firstname: string, monograph.author.name.lastname: string,
monograph.author.address: string, monograph.author.authorid: string)

editor (editorlD: integer, editor.parentlD: integer, editor.name: string)

editor.monograph (editor.monographiD: integer, editor.monograph.parentID: integer, editor.monograph.title: string,
editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string,
editor.monograph.author.address: string, editor.monograph.author.authorid: string)

author (authorID: integer, author.name.firstname: string, author.name.lastname: string, author.address: string,
author.authorid: string)

name (namelD: integer, name firstname: string, name.lastname: string)
firstname (firstnamelD: integer, firstname: string)
lastname (lastnamelD: integer, lastname: string)

address (addressID: integer, address: string)

Example relational schema of a DTD

E.g. Book relation to tuple:

(1, The Selfish Gene, Richard, Dawkins,
<city>Timbuktu</city><zip>99999</zip>, dawkins)

Pros:

O

C
o]
0

Good for certain type of queries
Such as “List all authors of books".

Cons:

(@)

Large number of relations.

Inefficient for queries such as “list all
authors having first name Jack” .
Complicated to handle DTD recursion.
Separated schema for each root
element.

High resource consumption for

schema translation.
10

STEP 2 - Shared Inlining Technique

Avoid the drawbacks of Basic tech.

Ensure an element node is represented in exactly one relation.

Identify the element nodes that are represented in multiple relations in Basic

C
o]
0

and share them by creating separating relations (element nodes with in-degree

greater than one).

book (bookID: integer, book.booktitle : string, book.author.name firstname: string, book.author.name.lastname: string,
book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)
article (articlelD: integer, article.contactauthor.authorid: string, article.title: string)

article.author (article.authorlID: integer, article.author.parentID: integer, article.author.name.firstname: string,
article.author.name.lastname: string, article.author.address: string, article.author.authorid: string)

contactauthor (contactauthorlD: integer, contactauthor.authorid: string)
title (titlelD: integer, title: string)

monograph (monographlD: integer, monograph.parentID: integer, monographt.title: string, monograph.editor.name: string,

monograph.author.name firstname: string, monograph.author.name.lastname: string,
monograph.author.address: string, monograph.author.authorid: string)

editor (editorID: integer, editor.parentID: integer, editor.name: string)

editor.monograph (editormonographiD: integer, editor.monograph.parentID: integer, editor.monographdtitle: string,
editor.monograph.author.name.firstname: string, editor.monograph.author.name.lastname: string,
editor.monograph.author.address: string, editor.monograph.author.authorid: string)

author (authorlD: integer, author.name.firstname: string, author.name.lastname: string, author.address: string,
author.authorid: string)

name (namelD: integer, name firstname: string, name.lastname: string)
firstname (firstnamelD: integer, firstname: string)

lastname (lastnamelD: integer, lastname: string)

address (addresslID: integer, address: string)

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle : string)
article (articlelD: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string)

monograph (monographiD: integer,monograph.parentID: integer, monograph.parentCODE: integer,
monograph.editor.isroot: boolean, monograph.editor.name: string)

title (titlelD: integer, title.parentID: integer, title.parentCODE: integer, title: string)

author (authorlD: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean,
author.name.firstname.isroot: :boolean, author.name.firstname: string, author.name.lastname.isroot: boolean,
author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.authorid: string)

11

STEP 2 - Shared Inlining Technique

e Pros:
o Reduced relations through shared elements

o Good for certain type of queries (e.g. list all authors having first name Jack)

e Cons:
o Inefficient when comparing to Basic Inlining

(increased no. of joins starting at a particular node)

e Hybrid!

C
o]
0

12

STEP 2 - Hybrid Inlining Technique

e Combine Basic and Shared (Join reduction + Sharing).
e Based on Shared inlining.
e Additionally inline elements with in-degree greater than one that are not

recursive or reached through a “*” node. (E.g. author is inlined with book and monograph;
monograph and editor are represented exactly once.)

book (bookID: integer, book.booktitle.isroot: boolean, book.booktitle : string, author.name.firstname: string,
author.name.lastname: string, author.address: string, author.authorid: string)

article (articlelD: integer, article.contactauthor.isroot: boolean, article.contactauthor.authorid: string,
article title.isroot: boolean, article.title: string)

monograph (monographlD: integer, monograph.parentID: integer, monograph.parentCODE: integer,
monographd.title: string, monograph.editor.isroot: boolean, monograph.editor.name: string,
author.name.firstname: string, author.name.lastname: string, author.address: string, author.authorid: string)

author (authorlD: integer, author.parentID: integer, author.parentCODE: integer, author.name.isroot: boolean,
author.name.firstname.isroot: boolean, author.name.firstname: string, author.name.lastname.isroot: boolean,
author.name.lastname: string, author.address.isroot: boolean, author.address: string, author.authorid: string)

e It reduces number of joins but increases number of SQL queries.

C
o
0

13

Evaluation and Conclusion

e Qualitative Evaluation of Basic, Shared and Hybrid Tech
o Using 37 DTDs from Roin Cover’s SGML/XML Web page
o Metric: the average num of SQL joins required to process path expressions of a
certain length.
e Evaluation Results
o Basic tech ran out of virtual memory, too many relations!
o Hybrid generally reduces the number of join per query(offset by an increase in
the number of SQL queries required)
o Hybrid vs. Shared: Hybrid tech more efficient in certain scenarios but heavily
depends on the specific structure of the DTDs
e Summary
o Potential advantages: leveraging established tech and high-performance
system; Seamless XML and relational data queries.
o Handle most queries on XML, barring certain types of complex recursion

C
o
0

14

C
w
(@)

Discussion (Group of 2)

Their evaluation metric (given in section 3.6.1) is:
"the average number of SQL joins required to process path expressions of a
certain length N"

e Do you think this is a good idea? Why or why not?

e \What could be a better choice?

Indexing XML Data Stored in a
Relational Database

Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo Giakoumakis, Vasili Zolotov

Microsoft Corporation

Background

e Trend: Increasing use of XML in enterprise applications
o (i.e. Modeling data: semi-structured/unstructured/highly-variable
structure/not known a priori)
e Shredding approach: generate XML from a set of tables based on an XML
schema definition and to decompose XML instances into such tables.
o DB uses the full power of the relational engine.
o Suitable for a well-defined structured of XML data.
o Difficulties:
m XML data is hierarchical and may have recursive structures.
m Relational data is unordered vs. XML has the document order.
m Need large number of joins in the query processing. (Very very
expensive)

C
w
0

|

17

Motivation

e XML Data Type
o Introduced by Microsoft SQL Server 2005.
o Stored XML values as large binary objects(BLOB).

C
w
0

|

Create table DOCS (ID int primary key, XDOC xml)

e XQuery
o Embedded within SQL statements.
o Processes each XML instance at runtime.
o Indexing XML instances to speed up queries.

18

C
w
0O

|

Discussion (Group of 3)

We have seen two approaches in processing XML data:
e Decomposing XML into relational tables

e Storing XML as BLOBSs with different indexing

Can you come up with some use-cases where one would work better than
the other?

Can these method be extend to other unstructured data formats (like

JSON)?

Node Labeling

e ORDPATH
o Mechanism for labeling nodes in ORDPATH Node Label E—;&E
an XML tree.

o Preserves structural fidelity.

o Allows insertion of nodes
anywhere without re-labeling.

o Independent of XML schemas
typing XML instances.

o Encodes the parent-child

relationship by extending parent’s
ORDPATH with a labeling
component for child. o0

C
w
0O

|

Discussion (Group of 2)

Only positive odd integers are assigned during an initial load;

even-numbered and negative integer component values are reserved for

later insertions into an existing tree.

e The authors leave all negative and even integers out from their

numbering on the ORDPATH. Does this seem like enough? Too

much?

Primary XML IndeXx

e The B+ tree that that
materializes the Infoset
content of each XML instance
in the XML column.

e Useful for query optimization
but introduces redundancy.

e Index benefits from using the
SQL type system.

e Optimizations (i.e.single-row
storage for simple elements
and prefix compression)

1 (BOOK)

(SECTION)
| 4 (TITLE) |

4 (TITLE)

3
10 (TEXT)
5
(FIGURE)
6
(CAPTION)
15 3
(SECTION)

4 (TITLE)

i

7 (BOLD)
10 (TEXT)

NODE _
TYPE

1 (Element)
2 (Attribute)
1 (Element)

1 (Element)
4 (Value)

1 (Element)
2 (Attribute)
|1 (Element)

1 (Element)
4 (Value)

|1 (Element)
4 (Value)

VALUE PATH
ID
N

'1-55860-438-3'

#4#3#1
"Nobody loves #10#3#1
Bad bugs.'

'Sample bug #6#3#1

#4#341

'All right-thinking| #10#3#1
people

L]
'tree frogs' #10#3#1

C
v)
(@)

|

22

Query Compilation and Execution

e XQuery expressions are translated into relational operations on an Infoset table.
o ldentifying rows in the Infoset table that correspond to the elements specified in
the XQuery expression.

C
w
0

|

o Reassembling these rows into an XML result.

e Execute query by shredding XML blobs at runtime vs. to operate on XML indexes
o Queries that retrieve the whole XML instance, its cheaper to retrieve the XML
blobs.

o Re-assembly cost outweighs the cost of parsing the XML blobs, then chose XML
blobs.

23

Secondary XML indexes

e Created on the primary XML index to speed up different type of query:
o PATH and PATH_VALUE

C
w
0

|

o PROPERTY
o VALUE
o CONTENT

e Help with button-up evaluation
o After the qualifying XML nodes have been found in the secondary XML indexes,
a back join with the primary XML index enables continuation of query execution
with those nodes.
o This yields significant performance gains. (Can reduce the time and resources
needed to execute complex queries.)

24

Secondary XML indexes

e PATH and PATH_VALUE
o Helps evaluation of path expression.
o Built on the columns PATH_ID, ID(primary key of the base table) and
ORDPATH
o The cost is relatively independent of the path length.
e PROPERTY
o Property lookup for objects
o (ID, PATH_ID, VALUE and ORDPATH)
e VALUE
o Value-based queries.
o (VALUE, PATH_ID, ID and ORDPATH)
e Content
o Full text index
o Word break

C
w
0

|

25

XML indexes’ Query performance

e XMark is an XML query benchmark that models an auction scenario.
o 20 queries for testing different functionalities(i.e.exact match, ordered access,

C
w
0

|

regular path expressions)
e Comparisons:

o Primary XML index better in ordered access query but for reference chasing
query is slower than the execution on XML blob.

o PATH_VALUE index much faster for exact match query and gain large
performance in regular path expression query.

o PROPERTY index gains pronounced compared to the other XML index types in
construction of complex result query.

o VALUE index performs very well in exact match query.

26

C
w
0O

|

Discussion (Group of 4)

We have read theory papers, method papers, and 10-year award papers.
This is the first industrial session paper we’ve read so far.
How is the focus of industrial session paper differ from others?

e Authorship

e Target Audience

e Content and Structure

Conclusions

e Indexing XML instances stored in a relational database in an undecomposed form.
e B+ tree-based primary XML index

e Secondary indexes

e Performance measurements using the XMark benchmark

C
w
0

|

28

