
Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang, David DeWitt, Jeffrey Naughton
Department of Computer Sciences

University of Wisconsin-Madison

Presentation: Chris (Xiangyu Shi)
Discussion: Kaiyun Guo
Slides adapted from Pei Lee, Modified by Rachel Pottinger

Relational Databases for Querying
XML Documents:
Limitations and Opportunities

2

Definition of XML

● XML stands for Extensible Markup Language.

● It is a markup language and file format for data.

● It is a subset of Standard Generalized Markup Language (SGML), similar to

HTML.

HTML vs. XML

● HTML has a primary purpose of displaying data.

● XML describes data itself.

Purpose of XML

● Serialization; Designed to store, transmit, and represent data on the Internet.

What is XML?

3

XML quickly became the standard format to transmit information through the WWW.

Database point of view: Challenge lies in effectively querying the data stored in XML
documents.

Traditional Approach
● Use of semi-structured query languages: XML-QL, Lorel, UnQL, XQL.

Innovative Methodology
● Proposes leveraging existing relational database technology.
● Convert XML documents to relational structures, enabling the use of SQL for

queries and reformatting the query outcomes back into XML.
● The key is Document Type Descriptors(DTD).

Motivation

Discussion (Group of 4)

While there are many semi-structured data methods, the paper prefers to

adapt XML to relational database systems.

● Would you rather create an XML database and query processing

system from scratch, or use a relational backend. Why? If it depends,

what does it depend on?

● In a more broad sense, what are the pros and cons of leveraging

mature technology to solve a different problem versus providing a

dedicated solution to the new problem from scratch?

5

XML DTD
● Schema for XML: it describes the

structure of XML documents by

specifying the names of its

sub-elements and attributes.

● E.g.

○ [*] = zero or more

○ [+] = one or more

○ [?] = zero or one

● Self-describing, consists of nested

element structures, starting with a root

element.

● Element data can be in the form of

attributes or sub-elements.

● E.g.

6

● First, we process a DTD to generate a relational schema.

● Second, we parse XML documents conforming to DTDs and load them

into tuples of relational tables in a standard commercial DBMS.

● Third, we translate semi-structured queries over XML documents into

SQL queries over the corresponding relational data.

● Finally, we convert the results back to XML

Four steps - General idea of approach

7

Grouping
Transformations

Groups sub-elements
having the same name

(i.e. two a* sub-elements
are grouped into one a*)

Simplification
Transformations

Reduce many unary
operators to a single unary

operator.

Flattening
Transformations

Convert a nested definition
into a flat representation

(i.e. “,” and “|” do not appear inside
any operator)

• DTDs can be very complex which is a problem

• Three initial simplification transformations

STEP 1 - Process a DTD

8

● Creating relational schemas based on a structured data model like the

Entity-Relationship(ER) model - quite straightforward.

● XML DTDs don’t have a correspondence to the ER model.

● Directly mapping elements to relations can lead to excessive fragmentations of

the documents.

● Three Techniques

○ The Basic Inlining Technique

○ The Shared Inlining Technique

○ The Hybrid Inlining Technique

STEP 2 - DTD to a relational schema

9

● Create relations for every element.

● To solve the fragmentation problem by inlining as many descendants of an

element as possible into a single relation.

○ Set-valued attributes and Recursion

STEP 2 - Basic Inlining Technique

DTD graph
Element graph for

editorXML document

10

● E.g. Book relation to tuple:

● Pros：
○ Good for certain type of queries

Such as “List all authors of books“.
● Cons:

○ Large number of relations.
○ Inefficient for queries such as “list all

authors having first name Jack” .
○ Complicated to handle DTD recursion.
○ Separated schema for each root

element.
○ High resource consumption for

schema translation.

STEP 2 - Basic Inlining Technique

Example relational schema of a DTD

11

● Avoid the drawbacks of Basic tech.

● Ensure an element node is represented in exactly one relation.

● Identify the element nodes that are represented in multiple relations in Basic

and share them by creating separating relations (element nodes with in-degree

greater than one).

STEP 2 - Shared Inlining Technique

12

STEP 2 - Shared Inlining Technique
● Pros：

○ Reduced relations through shared elements

○ Good for certain type of queries (e.g. list all authors having first name Jack)

● Cons:

○ Inefficient when comparing to Basic Inlining

(increased no. of joins starting at a particular node)

● Hybrid!

13

● Combine Basic and Shared (Join reduction + Sharing).
● Based on Shared inlining.
● Additionally inline elements with in-degree greater than one that are not

recursive or reached through a “*” node. (E.g. author is inlined with book and monograph;
monograph and editor are represented exactly once.)

STEP 2 - Hybrid Inlining Technique

● It reduces number of joins but increases number of SQL queries.

14

● Qualitative Evaluation of Basic, Shared and Hybrid Tech
○ Using 37 DTDs from Roin Cover’s SGML/XML Web page
○ Metric: the average num of SQL joins required to process path expressions of a

certain length.
● Evaluation Results

○ Basic tech ran out of virtual memory, too many relations!
○ Hybrid generally reduces the number of join per query(offset by an increase in

the number of SQL queries required)
○ Hybrid vs. Shared: Hybrid tech more efficient in certain scenarios but heavily

depends on the specific structure of the DTDs
● Summary

○ Potential advantages: leveraging established tech and high-performance
system; Seamless XML and relational data queries.

○ Handle most queries on XML, barring certain types of complex recursion

Evaluation and Conclusion

Discussion (Group of 2)

Their evaluation metric (given in section 3.6.1) is:

"the average number of SQL joins required to process path expressions of a

certain length N"

● Do you think this is a good idea? Why or why not?

● What could be a better choice?

Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo Giakoumakis, Vasili Zolotov

Microsoft Corporation

Indexing XML Data Stored in a
Relational Database

17

● Trend: Increasing use of XML in enterprise applications
○ (i.e. Modeling data: semi-structured/unstructured/highly-variable

structure/not known a priori)
● Shredding approach: generate XML from a set of tables based on an XML

schema definition and to decompose XML instances into such tables.
○ DB uses the full power of the relational engine.
○ Suitable for a well-defined structured of XML data.
○ Difficulties:

■ XML data is hierarchical and may have recursive structures.
■ Relational data is unordered vs. XML has the document order.
■ Need large number of joins in the query processing. (Very very

expensive)

Background

18

● XML Data Type
○ Introduced by Microsoft SQL Server 2005.
○ Stored XML values as large binary objects(BLOB).

● XQuery
○ Embedded within SQL statements.
○ Processes each XML instance at runtime.
○ Indexing XML instances to speed up queries.

Motivation

Discussion (Group of 3)

We have seen two approaches in processing XML data:

● Decomposing XML into relational tables

● Storing XML as BLOBs with different indexing

Can you come up with some use-cases where one would work better than

the other?

Can these method be extend to other unstructured data formats (like

JSON)?

20

● ORDPATH
○ Mechanism for labeling nodes in

an XML tree.
○ Preserves structural fidelity.
○ Allows insertion of nodes

anywhere without re-labeling.
○ Independent of XML schemas

typing XML instances.
○ Encodes the parent-child

relationship by extending parent’s
ORDPATH with a labeling
component for child.

Node Labeling

ORDPATH Node Label

Discussion (Group of 2)

Only positive odd integers are assigned during an initial load;

even-numbered and negative integer component values are reserved for

later insertions into an existing tree.

● The authors leave all negative and even integers out from their

numbering on the ORDPATH. Does this seem like enough? Too

much?

22

● The B+ tree that that
materializes the Infoset
content of each XML instance
in the XML column.

● Useful for query optimization
but introduces redundancy.

● Index benefits from using the
SQL type system.

● Optimizations (i.e.single-row
storage for simple elements
and prefix compression)

Primary XML Index

23

● XQuery expressions are translated into relational operations on an Infoset table.
○ Identifying rows in the Infoset table that correspond to the elements specified in

the XQuery expression.
○ Reassembling these rows into an XML result.

● Execute query by shredding XML blobs at runtime vs. to operate on XML indexes
○ Queries that retrieve the whole XML instance, its cheaper to retrieve the XML

blobs.
○ Re-assembly cost outweighs the cost of parsing the XML blobs, then chose XML

blobs.

Query Compilation and Execution

24

● Created on the primary XML index to speed up different type of query:
○ PATH and PATH_VALUE
○ PROPERTY
○ VALUE
○ CONTENT

● Help with button-up evaluation
○ After the qualifying XML nodes have been found in the secondary XML indexes,

a back join with the primary XML index enables continuation of query execution
with those nodes.

○ This yields significant performance gains. (Can reduce the time and resources
needed to execute complex queries.)

Secondary XML indexes

25

● PATH and PATH_VALUE
○ Helps evaluation of path expression.
○ Built on the columns PATH_ID, ID(primary key of the base table) and

ORDPATH
○ The cost is relatively independent of the path length.

● PROPERTY
○ Property lookup for objects
○ (ID, PATH_ID, VALUE and ORDPATH)

● VALUE
○ Value-based queries.
○ (VALUE, PATH_ID, ID and ORDPATH)

● Content
○ Full text index
○ Word break

Secondary XML indexes

26

● XMark is an XML query benchmark that models an auction scenario.
○ 20 queries for testing different functionalities(i.e.exact match, ordered access,

regular path expressions)
● Comparisons:

○ Primary XML index better in ordered access query but for reference chasing
query is slower than the execution on XML blob.

○ PATH_VALUE index much faster for exact match query and gain large
performance in regular path expression query.

○ PROPERTY index gains pronounced compared to the other XML index types in
construction of complex result query.

○ VALUE index performs very well in exact match query.

XML indexes’ Query performance

Discussion (Group of 4)

We have read theory papers, method papers, and 10-year award papers.

This is the first industrial session paper we’ve read so far.

How is the focus of industrial session paper differ from others?

● Authorship

● Target Audience

● Content and Structure

● …

28

● Indexing XML instances stored in a relational database in an undecomposed form.

● B+ tree-based primary XML index
● Secondary indexes
● Performance measurements using the XMark benchmark

Conclusions

