
An Adaptive Query Execution
Engine for Data Integration

Zachary Ives, Daniela Florescu, Marc

Friedman, Alon Levy, Daniel S. Weld

University of Washington

Slides by Peng Li, Modified by Rachel Pottinger

Presentation: Jonas Tai

Discussion: Dorna Dehghani

What makes Data Integration Systems (DIS) more
challenging than traditional DB Systems?

• Query Reformulation

• The construction of wrapper programs

• Query optimizers and efficient query execution

engines

Characteristics of DISs

• Unreliable or missing data statistics

• Unpredictable data transfer rates

• Unreliable, overlapping sources

• Want initial results quickly

• Network bandwidth generally constrains the
data sources to be “small”

System needs to be adaptive

Tukwila Architecture

Adaptivity through interleaving of planning
and execution

Novel characteristics of Tukwila:

• The optimizer can create a partial plan if essential

statistics are missing or uncertain

• The optimizer generates operator trees and

appropriate event-condition-action rules

• Optimizer conserves the state of its search space

when it calls the execution engine

• Dynamic collector operator to work with multiple

sources

Discussion 1: Overlapping data sources

Tukwila handles data sources with overlaps, though the

paper doesn't delve into the reasons for its significance.

What challenges might arise due to overlapping data, and

what are potential approaches to address them?

Discuss in groups of two.

Query Plan Execution

Query plan represented as data-flow tree:

• Control flow

• Iterator (top-down)

• Used by Tukwila

• Data-driven (bottom-up)

SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read

Orders

Read

UPS

“Show which orders have

been delivered”

Tukwila Query Plan Structure

• A plan includes a partially-

ordered set of fragments and a

set of global rules

• A fragment consists of a fully

pipelined tree of physical

operators and a set of local

rules.

• Key mechanism for adaptivity:

At the end of each fragment,

the rest of the plan can be re-

optimized or rescheduled

SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read

Orders

Read

UPS

(1) (2)

(3)

Implementation of Adaptivity: Rules

• Reoptimization

• Reinvoke optimizer if cardinality estimates of results

differ significantly

• Contingent planning

• The execution engine checks properties of the result

to select the next fragment

• Rescheduling

• Reschedule if a source times out

• Adaptive operators

Tukwila Plans & Execution

When event if condition then actions

When closed(frag1)

 if card(join1)>2*est_card(join1)

 then replan

On event trigger, the rules are checked

When(closed(1)):

if size_of(Orders) > 1000

then reoptimize {2, 3}

SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read

Orders

Read

UPS

(1) (2)

(3)

Discussion 2: Tukwila’s motivations

Consider one of the following motivating situations of Tukwila:

1. Absence of statistics

2. Unpredictable data arrival characteristics

3. Overlap and redundancy among sources

4. Optimizing the time to initial answers

Answer these questions:

Q1: Can you give some examples where the chosen topic

matters?

Q2: If you are a member of Tukwila team, what rules or policy

would you have to deal with the problem?

Discuss in groups of 4, half system. half non-system.

Adaptive Query Operators
Why not conventional Joins?

Unpredictable Data Transfers

• Sort merge joins & indexed joins

• Slow transfer blocks execution

• Nested loops joins and hash joins

• Slow transfer of inner relationship, hard to
choose inner relationship

Solution: Double Pipelined Hash Join

Double Pipelined Hash Join

• Proposed for parallel main-memory databases
(Wilschut 1990)
• One hash table per source

• Add to hash table and probe opposite table as
stream

Advantages:
• Data-driven: Results as soon as tuples are received

• Symmetric

• Can process faster data source while waiting for the
slower source

UPS

OrderNo

1234

1235

1399

……

TrackNo

01-23-45

02-90-85

02-90-85

 ……

TrackNo

01-23-45

02-90-85

03-99-10

 ……

Status

In Transit

Delivered

Delivered

 ……

Orders
Hash Table

(Orders)

01-23-45

Hash Table

(UPS)

JoinOrders.TrackNo = UPS.TrackNo (Orders, UPS)

Example

Add

Probe

No match!

UPS

OrderNo

1234

1235

1399

……

TrackNo

01-23-45

02-90-85

02-90-85

 ……

TrackNo

01-23-45

02-90-85

03-99-10

 ……

Status

In Transit

Delivered

Delivered

 ……

Orders Hash Table

(Orders)

01-23-45

Hash Table

(UPS)

01-23-45

JoinOrders.TrackNo = UPS.TrackNo (Orders, UPS)

Example

Probe

Add
(01-23-45, 1234,

In Transit)

Output Match

Memory Overflow

• Memory heavy: May not be able to fit both hash tables

in RAM

• Strategies

• Incremental Left Flush: Slowly degrade to hybrid

hash join by flushing buckets of one source

• Incremental Symmetrical Flush: Flush

corresponding buckets of both sources

• Set strategy through rules

Discussion 3: Tukwila

Would the adaptive behaviour of Tukwila be

beneficial in general database systems? Would it

boost efficiency?

What could be some advantages and

disadvantages of applying the same methods to

general database systems?

Discuss in groups of 2.

Summary

• Modified query optimizer to account for the

unique characteristics of DISs

• Adaptivity through interleaving of optimization

and execution

• Event-condition-action rule system

• Adaptive double pipelined hash join and

collector

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

