
Charles Lamb, Gordon Landis, Jack A. Orenstein, Daniel Weinreb

Presenter: Kaiyun
Discussion Lead: Chris

Slides adapted from Clint Morgan, modified by Rachel Pottinger

The ObjectStore Database System

2

Commercial DBMS targeting large datasets with intrinsic
structure
● Provide a uniform programmatic interface to both persistent and

transient data

● Shrink the impedance mismatch
○ Discrepancy between application code and database code
○ Object–relational mapping

Motivation

3

Persistent data
Affects the global monitoring environment.
Do not update the structure in-place, but yield a new updated structure.
Always preserves the previous version of itself when it is modified

Transient data
Only affects the current monitor session

The 2 Data Types

4

● Ease of learning
● No translation code

○ persistent data is treated like transient data.
● Expressive power

○ general purpose language (as apposed to SQL)
● Reusability
● Conversion
● Type checking
● Temporal/Spatial locality

○ the next user of a data portion will be the same as the previous user.
● Fine interleaving

○ 'fetching an object’/dereferencing a pointer as fast as possible

Why Choose C++

5

Consider the listed motivations of choosing C++, which features do
you think are the most/least important in a query language? Please
rank these features in order of importance.

Discussion 1 (Group of 2)

Ease of learning
No translation code
Expressive power
Reusability

Ease of conversion
Type checking
Temporal/Spatial locality
Fine interleaving

6

Three programming interfaces:
● C library interface
● C++ library interface
● Extened C++ interface for query & relationship facilities

Differ from C++ and most DBSMS:
● A collection facility (sets, lists, and so on)
● A way to express bidirectional relationships
● Support for groupware based on versioned data

ObjectStore add features

7

● Object class library
● Abstract structures which resemble tables in relational structures
● A variety of behaviors

○ Ordered collections (lists), collections w/o duplicates (bags/sets)

● Performance-tuning facilities:
○ Replacing data structure
○ Policy

● Relationship facility:
○ A pair of inverse pointers guarantes referential integrity
○ One-to-one, one-to-many, many-to-many relationships

Collections

8

● Query syntax [: :] - C++ extension

● An expression operates one or more collections and

produces a collection/reference to an object

● Any collection can be queried

● Current form: only semi-joins, not full joins

Queries

9

Guaranteed to be transaction consistent and recoverable in the
event of system failure

○ All-or-none update semantics

Once the target object has been retrieved from the database,
subsequent references should be just as fast as dereferencing an
ordinary pointer in the language.

1. No access to pages when accessing a non-fetched persistent object
2. Upon fault, retrieve page into client’s cache
3. Subsequent access is a normal pointer dereference

Accessing to Persistent Data

10

● Collections are not known by name
○ multiple strategies, with the final selection left until the moment the

collection being queried is known

● Join optimization is less of a problem
○ paths can be viewed as precomputed joins

● Optimization - index selection
● Index maintenance is more of a problem

○ declare potential index keys
○ series of single-step indexes

Query optimizations?

11

ObjectStore is closely integrated into the programming language,
which is opposite to the separation of programming language and
database in relational database management systems.

Do you think it is a beneficial innovation, or does it complicate
development(good/bad idea)? Would you prefer such DBMS or the
one that is independent, but is less powerful (e.g. SQL)? What are
some features that SQL does not have, but you think are necessary
to have?

Discussion 2 (Group of 4)

12

Traversal Test

13

Designed for use in applications that perform complex manipulations on
large databases of objects with intricate structure.
● Ease of use
● Expressive power
● Reusable code base
● Tight integration with the host environment

Conclusion

Of Objects and Databases:
A Decade of Turmoil

M.J. Carey, D.J DeWitt

VLDB 10 year award for "Object and File Management in the EXODUS Extensible
Database System" in VLDB 1986.

15

● Extended relational database systems

● Persistent programming languages

● Object-oriented database systems (OODBMSs)

● Database system toolkits/components .

4 Areas of Research

16

● Allow for new, user-defined abstract data types (ADT)
● ADTs are implemented in an external language.
● After being registered with the database

○ can be use as built-in type
○ functions can be used in queries

Extended relational database systems

17

● Add data persistency and atomic program execution to OO
programming languages.

● Benefit from losing impedance mismatch
● Problems addressed:

○ Orthogonality
○ Persistence models.
○ Binding and namespace management for persistent roots.
○ Type systems and type safety.
○ Alternative implementation techniques for supporting transparent navigation,

maintenance, & garbage collection of persistent data structures.

Persistent Programming Languages

18

● Major motivation: remove impedance mismatch
● Focus on support for queries, indexing & navigation
● Addressing the version management needs of engineering

applications
● Early years: No agreement on the details of

○ data model
○ query model/language
○ version management features

Object-oriented Database Systems

19

● No type of DMBS can meet requirement on next-generation
applications

● DBMS extendable at almost any level
○ using mostly kernel facilities plus additional tools that help

building domain-appropriate DBMS.

● EXODUS
○ Storage manager for objects
○ E: a persistent Prog. Language.
○ Query optimizer generator

Database System Toolkits/Components

20

System toolkits & persistent programming languages
Some interesting results, failure from commercial scene

OO database systems
Not org. commercial expectations

NEW: Language-specific object wrappers for relational databases
Important for building OO, client side apps

NEW: Object-Relational DBMS
Renamed from extended RDBS
Emerge as winner for providing objects for enterprise DB apps.

What happened in 1996

21

After the initial explosion of objects in the database field, many
interesting approaches and results occurred but were not
commercially viable and therefore died off. What if an
area/tech/approach lacks commercial value but still has
academic/engineering value? Can you give some examples of
database research that may not be commercially viable but
provide critical value?

Discussion 3 (Group of 2)

22

Require a lot of expertise users
End up in being inflexible, awkward or incomplete.
OO and O-Relational database systems provide enough extensibility

○ not worthy to start from scratch

● Companies use EXODUS to implement their own object servers
○ The storage client/server architecture - unwanted level of indirection

● E programming language:
○ Database implementors: want control over low-level details
○ Application-oriented programmers: too low-level

● Inefficient query optimizer

Failure of Exodus

23

OODBMS MUST Support

1. Complex objects.
2. Object identity.
3. Encapsulation.
4. Inheritance and substitutability.
5. Late binding.
6. Computationally complete methods.

7. Extensible type system.
8. Persistence.
9. Secondary storage management.

10. Concurrency control.
11. Recovery.
12. Ad hoc queries.

24

● Multiple inheritance
● Type checking (static vs. dynamic up to you)
● Distribution (client/server)
● Long xacts
● Version management

Optional
● Programming paradigm.
● Exact details of the type system.
● Degree of fanciness of the type system.
● Degree of uniformity of the object model.

OODBMS May Support

25

● Impossible to gain complete agreements of standards.
● OODBMS behind RDBMS

○ No view facility
○ Robustness, scalability & fault-tolerance

● Painful schema evolution
● Tight coupling OODBMS & single application programming

Language
● Low availability of application development tools/user env

○ Few end-user tool avaliable

Problems with OODB

26

The inability to agree on standards has been cited as one of the
main reasons for the failure of object-oriented database systems.
Do you know any other areas that suffer from a lack of
standardization? How can researchers agree on a standard in areas
with multiple approaches? Who should set up standards?

Discussion 4 (Group of 3)

27

● Provide support for richer object structures and rules
● Subsume second generation (i.e., relational) DBMSs
● Be open to other subsystems

● A rich type system, inheritance, functions & encapsulation, optional unique
ids, and rules/triggers;

● A highlevel query-based interface, stored & virtual collections, updatable
views, and separation of data model and performance features;

● Accessibility from multiple languages, layered persistence-oriented language
bindings, SQL support, and a query-shipping client/server interfaoe.

ORDBMSs Must Support

28

● Start with relational model and its query language
● Provide support for objects:

○ ADTs
○ Row types
○ Multi-valued attributes

ORDBMS

29

Fully support for OO ADTs (inheriency, adaptbility), OO row types
Support for middle-tier and desktops applications

Provide a development environment where the same object model will
describe the DB in all levels, both for querying and navigational
programming.

Methods (and queries will be run on cached data on servers or
clients depending on where’s faster.

Fully Integrated Solution in 2006

30

● Server functionality and performance
○ query-processing, path indices, extensible access ADTs

● Client integration
○ querying over the cache + database

● Parallelization
○ parallelize object-relatrional queries

● Legacy data sources
○ make all the data available through a common query interface

● Standards
○ third-party data type of ADTs has own defining & interface

Leftover challenges for 2006

31

This paper makes some predictions for the future, based on current

applications/approaches, which areas do you think are headed in

the right/wrong direction? It is interesting to note that these

predictions are about commercial database products, they avoid

predicting future research, what do you think is the reason? Predict

anything in the database area for the next 5 years (products, trends

......).

Discussion 5 (Group of 4)

32

● Look back 1986
● Massive change in 1996

○ lasting impact on the shape of the highly integrated, client/server,
object-relational database solutions

● Look forward 2006
○ object-relational database systems will begin taking over the

enterprise

… And where we are

Conclusion

