

Access Path Selection in a
Relational DBMS

Original Slides by

Presentation: Stephen Ingram

Modified by: Rachel Pottinger

Why bother to optimize?

• Queries must be executed and execution
takes time

• There are multiple execution plans for
most queries

• Some plans cost less than others

Simple Example

• SELECT * FROM A,B,C WHERE A.n =
B.n AND B.m = C.m

• A = 100 tuples

• B = 50 tuples

• C = 2 tuples

• Which plan is cheaper?
– Join(C, Join(A, B))
– Join(A, Join(B, C))

How did we find the right one?

1. Measure the cost of each query

2. Enumerate possibilities

3. Pick the least expensive one

• Is that all?

But the search space is too big

• Just for this simple join example, we have
a factorial search space (n!)

• Just to remind you,
– 20! = 2,432,902,008,176,640,000

• So now what do we do?

Use Statistics

• For each relation keep track of
– Cardinality of tuples

– Cardinality of pages
– Etc.

• Use these statistics in conjunction with
– Predicates
– Interesting Orders

Predicates

• Predicates like =, >, NOT, etc. reduce the
number of tuples

• THUS: Evaluate predicates as early as
possible

Interesting Orders

• GROUP BY and ORDER BY or sort-
merge joins generate interesting orders

• We must consider WHEN we generate the
interesting order into the cost of a plan

• Ordering it first may be cheaper than
sorting later even though it is initially
cheaper to leave it unsorted

But…

• Statistics alone cannot save us
– Expensive to compute

– Can’t keep track of all joint statistics

• Compromise on statistics
– Periodically update stats for each relation

• Compromise on search
– Dynamic programming approach

Dynamic programming (Wikipedia)

• Optimal substructure means that optimal
solutions of subproblems can be used to find
the optimal solutions of the overall problem.

1. Break the problem into smaller subproblems.

2. Solve these problems optimally using this
three-step process recursively.

3. Use these optimal solutions to construct an
optimal solution for the original problem.

Optimal Substructure in Joins

• An N-Join is really just a sequence of 2-Joins
– 2-join becomes a single composite relation

• Important fact: The method to join to composite
is independent of the ordering of the composite

• Find the cheapest join of a subset of the N
tables and store (memoization)

• This costs 2n , which is << n!

From the Top

• Enumerate access paths to each relation
– Sequential scans
– Interesting orders

• Enumerate access paths to join a second
relation to these results (if there is a predicate to
do so)
– Nested loop (unordered)
– Merge (interesting order)

• Compare with equivalent solutions found so far
but only keep the cheapest

Example Schema

Example Query

Example Initial Access Paths

Example Search Tree

2 Relations Nested Loop

2 Relations Merge Join

Prune and 3 Relations

Major Contributions of Paper

• Cost based optimization
– Statistics

– CPU utilization (for sorts, etc.)

• Dynamic programming approach

• Interesting Orders

Discussion

• The authors mention that one of the key contributions of
their path selector is the inclusion of CPU utilization into
the cost formulas. With the current advancements in
technology concerning processors, storage and storage
systems, would this concern be changed now and how
would this affect the cost function?

• How does understanding access path selection affect
how we think about interpreting/understanding databses,
data management or how we interact with data? What
do you think is the value of understanding this beyond a
precursory understanding?

	Access Path Selection in a Relational DBMS
	Why bother to optimize?
	Simple Example
	How did we find the right one?
	But the search space is too big
	Slide 6
	Predicates
	Interesting Orders
	But…
	Dynamic programming (Wikipedia)
	Optimal Substructure in Joins
	From the Top
	Example Schema
	Example Query
	Example Initial Access Paths
	Example Search Tree
	2 Relations Nested Loop
	2 Relations Merge Join
	Prune and 3 Relations
	Major Contributions of Paper
	Slide 21

