
Query Evaluation
Techniques for Large

Databases
Presented by: Sampoorna Biswas

Adapted from slides by: Daniela Stasa

Purpose

To survey practical query evaluation
techniques for executing “complex
queries” over “large databases”

● Complex query: Combination of
query processing algorithms

● Large DB: MBs to TBs

Query Execution

Query Execution

● Parse into an internal form
● Validate query to ensure referenced objects

exist
● Expand macros, views
● Map query to an optimized plan
● Convert execution plan to machine code
● Compile and execute query

Techniques

Discussed:
● Query execution architectures
● Parallelism
● Hashing vs. sorting
● Algorithms, execution costs etc.
Not discussed:
● Recursive queries, optimization

Techniques

Discussed:
● Query execution architectures
● Parallelism
● Hashing vs. sorting
● Algorithms, execution costs etc.
Not discussed:
● Recursive queries, optimization

Query Execution Architecture

Focus on useful mechanisms for processing
sets of items

● Records
● Tuples
● Entities
● Objects

Physical Algebra

● Algorithms as algebra operators consuming
input and and producing some output

● Physical Algebra - Query processing
algorithms as a whole

Physical vs. Logical Algebra

● Logical algebra: related to data model and
defines what queries can be expressed in
data model
○ Example: Relational algebra

● Physical algebra: system specific
○ Different systems may implement the same data

model and the same logical algebra but may use
different physical algebras

○ Example: Loops joins vs. hash joins

Physical vs. Logical Algebra

● Cost functions are associated with physical
operators only
○ Need to map logical operators to physical to

determine cost
○ Query Optimization: mapping from logical to physical
○ Mapping process is guided by meta-data

Issues While Mapping

● Binding
○ Whether to bind at start-up or compile time

● Synchronization and data transfer between
operators
○ Temporary files vs. IPC
○ Rule-based translation programs
○ Schedule all operators in a single operating system

process => iterators

Iterators

Prepare an operator for producing data
● Open
Produce an item
● Next
Perform final housekeeping
● Close

Iterators

● Entire query plan executed in a single
process

● Operators produce an item at a time on
request

● Items never wait in a temporary file or buffer
(pipelining)

Iterators

● Efficient in time-space-product memory cost
● Can schedule any type of trees including

bushy trees
○ Operators expressed as trees/DAGs

● No operator affected by the complexity of the
whole plan

Sorting vs. Hashing

● Purpose of many query-processing algorithms
is to perform some kind of matching
○ Indexing, joins, aggregation, parallelization

● Two approaches
○ Sorting
○ Hashing
○ Both are memory-intensive

Sorting: Design Issues

● Implemented as sorted runs
○ Merge sorted runs until all data is sorted

● Implement as iterator
○ Interfaces well with other operators

● Input is also an iterator
○ Can come from a scan or a complex query plan

● If data fits in memory, can use quicksort
○ Usually, exploit duality between mergesort &

quicksort

Sorting: Details

● Sorting large DBs
○ Sorting within main memory
○ Managing subsets of data on disk/tape

● Typically used - Physical dividing and logical
combining

● Creating initial runs => level 0 runs
○ In-memory sort algo like quicksort
○ Or, replacement selection

Quicksort vs. Replacement Selection

● Run files
○ Larger than memory in RS; size of the memory in QS

● Reads and writes:
○ RS alternates between both; QS does them in bursts

● Memory management
○ More complex in RS
○ Advantage of fewer runs must be balanced with the

different I/0 pattern and the disadvantage of complex
memory management

Hashing: Design Issues

● Alternative to sorting
● Expected complexity of hashing algorithms

is O(N) while for sorting, it is O(N log N)
● In-memory hash table

○ If entire table fits, hash-based algos are easy to
design, understand, and implement

○ For binary operations, only one input needs to fit
○ If hash table is larger => hash overflow occurs

Hashing: Hash Overflow

● Managing hash overflow
○ Avoidance
○ Resolution
○ Both involve partitioning

● Partitions are processed
independently and
concatenated to get final
result

Aggregation

● Important for summarizing data
● Aggregate functions: min, max, sum, etc.
● Duplicate removal is similar

○ Data needs to be compared before removal
● In many systems, aggregation and duplicate

removal is based on sorting

Nested Loops Join

● For each item in one input, scan entire other
input to find matches

● Performance is poor; because inner input is
scanned often

● Tricks to improve performance
○ Larger input should be the outer one
○ If possible, use an index on the attribute to be

matched in the inner input
○ Scan inner input once for each ‘page’ of outer input

Merge Join

● Requires both inputs sorted on the join
attribute

● Requires keeping track of interesting
orderings

● Hybrid join (used by IBM for DB2), uses
elements from index nested-loop joins and
merge join, and techniques joining sorted
lists on index leaf entries

Hash Join

● Based on in-memory hash table on one input
(smaller one, called ‘build input’), and
probing this table using items from the other
input (called ‘probe input’)

● Very fast if build input fits into memory,
regardless of size of probe input

● Overflow avoidance methods needed for
larger build inputs

Hash Join

● Both inputs partitioned using same
partitioning function. Final join result formed
by concatenating join results of pairs of
partitioning files

● Recursive partitioning may be used for both
inputs

● More effective when the two input sizes are
very different (smaller being the build input)

Universal Quantification

● Algorithms for relational division
● Can be easily replaced by aggregation
● Methods for universal quantification

○ Direct using sort
○ Direct using hash
○ Aggregation using sort
○ Aggregation using hash

Summary

The choice of Hash based or Sort based
should be based on relative sizes of inputs
and the danger of performance loss due to
skewed data or hash value distribution.

