
The ObjectStore Database

System

Charles Lamb

Gordon Landis

Jack Orenstein

Dan Weinreb

Slides based on those by Clint Morgan

Overall Problem

• Impedance mismatch between application

code and database code (eg, C++ and

SQL)

• Need a programmatic interface to both

persistent and transient data.

Motivations: add persistence to

C++ (1/2)
• Ease of learning: C++ plus a little extra.

• No translation code: persistent data is treated
like transient data.

• Expressive power: general purpose language
(as apposed to SQL)

• Reusability: same code can operate on
persistent or transient data

• Ease of conversion: data operations are
syntactically the same for persistent and
transient data.

Motivations: add persistence to

C++ (2/2)
• Type checking: same static type-checking

from C++ works for persistent data.

• Temporal/Spatial locality: take advantage

of common access patterns.

• Fine interleaving: low overhead to allow

frequent, small database operations

• Performance: do it all with good

performance compared to RDBMSs

Discussion in pairs

Assumption: Everyone here has used an OO programming

language and has used a relational database with it. Try to

draw from your experience to answer this question.

The following goals are given as motivation for

ObjectStore:
– No translation between query and program code

– Reusability

– Ease of use

– Expressiveness

- Do you feel that ObjectStore satisfies all of these goals

better than a RDBMS? Explain.

- Is language mismatch a problem you encountered?

~5 minutes

Application Interface

• Three programming interfaces: libraries for
C and C++, and an extended C++
language. We focus on language
extension.

• Keyword persistent. Used when declaring
variables

• A few other keywords (inverse_member,
indexable) for defining how objects in the
DB relate.

main()

{

database *db = database::open(“/company/records”);

persistent<db> department* engineering_department;

transaction::begin();

employee *emp = new(db) employee(“Fred”);

engineering_department->add_employee(emp);

emp->salary = 1000;

transaction::commit();

}

Collections

• Similar to arrays in PL or tables in DBMSs

• Allow performance tuning: developers

specify access patterns and an

appropriate data structure is chosen

• Similar to using collection interfaces in

modern libraries (Java, C#)

• Elements may be selected from collections

with queries (more on this to come).

Relationships
(this can be skimmed or skipped as needed)

• Pairs of inverse pointers which are
maintained by the system.

• One-to-one, one-to-many, and many-to-
many are supported.

• Syntactically, relationships are C++ data
members, however, updating causes its
inverse to be updated.

• How does this work for the library
interface?

Queries

• Selection predicates can be applied to collections.

• Special syntax: [: predicate :]

• Eg.

employees [: salary >= 10000 :]

• Queries may be nested…. But no real joins; only

semijoins (i.e., can find which tuples match other tuples,

but not say what matches what). Example from

Wikipedia:

Accessing persistent data

• Overhead is a major concern.

• Once objects have been retrieved, subsequent

references should be as fast as an ordinary

pointer dereference.

• Similar goals as a virtual memory system-- use

VM system in OS for solution:

– Set flags so that accessing a non-fetched persistent

object causes page fault.

– Upon fault, retrieve object.

– Subsequent access is a normal pointer dereference

Query optimizations

Some RDBMS query optimization

techniques don’t work or make sense

• Collections are not known by name

• Join optimization is less of a problem

– paths can be viewed as precomputed joins

– optimization is index selection

– “true joins” are rare… or at least not

supported

• Index maintenance is more of a problem

Discussion in groups of 4-5

• Do you feel the following features are limiting or

improving the usefulness of OODBs:

– Tied to C++ (or other PLs).

– Pre-computed joins (references).

– Caching commonly used variables.

• Can you think of an application that is better

suited for OODBMSs than RDBMSs? Would the

above features help or hinder the development

of such an application?

7-10 minutes

How caching helps (note: bars are backwards)

Conclusion

• Performance experiments show caching and

virtual memory-mapping architecture work.

• Small case study shows productivity benefits

• ObjectStore provides

– Ease of use

– Expressive power

– Tight integration with host environment

– High performance due to VM mapping architecture

Of Objects and

Databases: A Decade

of Turmoil
Carey, M.J.; DeWitt, D.J.

(1996)

Slides based on slides by Ricardo Pedrosa

http://cs.ubc.ca/~rap/teaching/504/2005/readings/objects.pdf

Objects and Databases. Major types of systems:

• Extended relational database systems.

• Persistent programming languages.

• Object-oriented database systems.

• Database system toolkits/components.

Areas of research

 Allow the addition of new, user-defined abstract data types
(ADTs).

 ADTs are implemented in an external language.

 After being registered with the database, ADT’s functions can be
used in queries.

 Projects:

 Ingres

 Postgres

 Query optimizers with ADT’s properties and functions awareness.

 Support for storing and querying complex data types.

Extended relational database systems

Areas of research

 Add data persistency and atomic program execution to
traditional object-oriented programming languages.

 Problems addressed:

 Orthogonality.

 Persistence models.

 Binding and namespace management for persistent roots.

 Type systems and type safety.

 Alternative implementation techniques for supporting transparent
navigation, maintenance, and garbage collection of persistent data
structures.

 Projects: various PL vendors

Persistent Programming Languages

Areas of research

 Combine all of the features of a modern database system
with those of an object-oriented programming language,
yielding an object-oriented database (OODB) system.

 Focused on:

 Support for querying, indexing and navigation.

 Addressing version management needs of engineering apps.

 Projects:

 Gemstone (Smalltalk).

 Vbase (CLU-like language).

 Orion (CLOS).

Object-Oriented Database Systems

Areas of research

 Provide a DBMS that can be extended at almost any level,
using mostly kernel facilities plus additional tools that help
building domain-appropriate DBMS.

 Projects:

EXODUS.

 Storage manager for objects

 E: a persistent Prog. Language.

 Query optimizer generator.

Starburst.

 Clean architectural model that facilitates storage and indexing
extensions.

 Rule-based extensible query subsystem.

Database system toolkits/components

What happened?

 System toolkits & persistent programming languages:

 In spite of some interesting results these were a failure from a
commercial point of view.

 OO database systems:

 Many results from the academic point of view. Not expanded
commercially as expected by its developers.

 Language-specific object wrappers for relational databases:

 New approach that appears to be important for building OO, client
side apps.

 Extended relational DBS:

 Renamed as Object-Relational DBMS. Appears to be settling in
terms of providing objects for enterprise DB apps.

Objects and databases in 1996

Casualties.

 Require a lot of expertise.

 End up in being inflexible, awkward or incomplete.

 As OO and O-Relational database systems provide enough
extensibility, it's not worthy to start from scratch even given
a toolkit to help in the process.

The Database Toolkit approach problem.

Casualties.

 The client/server architecture introduced an unwanted level
of indirection when users tried to use EXODUS to implement
their own object servers.

 E programming language: Too general for skilled database
implementors and too low-level for application-oriented
programmers.

 The query optimizer was inefficient and hard to use.

Why EXODUS failed?

Was all that bad after all?

 Interesting research by-products relevant to OODBMS and
ORDBMS.

Discussion in pairs

~5

Minutes
• Are you surprised by the death of Exodus?

Why/why not?

• Do you think Starburst faced the same

challenge? Would you classify it as a

toolkit or extended RDBMSs? What about

Volcano?

Casualties.

 No commercial implementation of such a language.

 Still active as a research area in academia.

 Work on this area has had a significant impact and has
been transferred to OODBMS.

 Navigational programming interfaces.

 Persistence models.

 Garbage collection schemes for persistent data.

Persistent Programming Language

Object-Oriented Database Systems (OODBMS)

What must OODBMS support?
 Complex objects.

 Object identity.

 Encapsulation.

 Inheritance and substitutability.

 Late binding.

 Computationally complete methods.

 Extensible type system.

 Persistence.

 Secondary storage management.

 Concurrency control.

 Recovery.

 Ad hoc queries.

What might OODBMS support?
 Multiple (vs. single) inheritance.

 Static (vs. dynamic) type checking.

 Distribution.

 Long transactions.

 Version management.

Optional issues.
 Programming paradigm.

 Exact details of the type system.

 Degree of fanciness of the type system.

 Degree of uniformity of the object model.

Players on this game.
 ObjectStore

 Ontos

 O2

 Versant

 Objectivity

 GemStone

 Poet

Object-Oriented Database Systems (OODBMS)

 Lack of standards.

 OODBMS products are behind RDBMS in some terms (eg.
no view facilities).

 Painful schema evolution.

 Tight coupling between an OODBMS and its application
programming Language.

 Low availability of application development tools.

What went wrong with OODMS?

Object-Relational Database Systems (ORDBMS)

Main tenets for ORDBMS

 Provide support for richer object structures.

 Subsume RDBMS.

 Be open to other subsystems (tools and multidatabase
middleware products).

What ORDBMS should provide?

 A rich type system, inheritance, functions and
encapsulation, optional unique ids and rules/triggers.

 A high-level query based interface, stored and virtual
collections, updatable views and separation of data model
and performance features.

 Accessibility from multiple languages, layered persistence-
oriented language bindings, SQL support and a query-
shipping client/server interface.

A vision from 1996 of databases in 2006

Fully integrated solution

Object relational servers will provide:

 Support for OO ADTs. (not fully)

 Inheritance among ADTs.

 ADT implementation in various programming languages.

 Full OO support for row types. (no)

 Support for middle-tier and desktops applications. (no)

 Provide a development environment where the same object model
will describe the DB in all levels, both for querying and navigational
programming.

 Methods and queries will be run on cached data on servers or
clients depending on where’s faster. (no)

 OODBMSs will be niche solutions (yes, modulo XML)

A vision from 1996 of databases in 2006

Research Challenges

 Server functionality and performance

 Client integration

 Parallelization

 Legacy data sources

 Standards

Discussion in groups of 4-5

7-10 Minutes
The authors list a set of predictions for 2006 and how
things are going to look then for objects and databases.
The list again:

 Support for ADTs with inheritance

 Full OO support for row types.

 The same object model will describe the DB in all levels.

 Intelligent use of cache on servers or clients.

• Do you feel these predictions were reasonable given the
state of the research presented in the paper? Explain.

• Any factors you believe the authors failed to consider?

• Would anyone like to add to these predictions? Perhaps
something you noticed becoming a trend of late that can
be fulfilled by 2026?

