The ObjectStore Database
System

Charles Lamb
Gordon Landis
Jack Orenstein
Dan Weinreb
Slides based on those by Clint Morgan

Overall Problem

* Impedance mismatch between application
code and database code (eg, C++ and
SQL)

* Need a programmatic interface to both
persistent and transient data.

Motivations: add persistence to
C++ (1/2)

Ease of learning: C++ plus a little extra.

No translation code: persistent data is treated
like transient data.

Expressive power: general purpose language
(as apposed to SQL)

Reusabllity: same code can operate on
persistent or transient data

Ease of conversion: data operations are
syntactically the same for persistent and
transient data.

Motivations: add persistence to
C++ (2/2)

Type checking: same static type-checking

from C++ works for persistent data.

Temporal/Spatial locality: take advantage
of common access patterns.

Fine interleaving: low overhead to allow
frequent, small database operations

Performance: do it all with good
performance compared to RDBMSs

~5 minutes

Discussion In pairs

Assumption: Everyone here has used an OO programming
language and has used a relational database with it. Try to
draw from your experience to answer this question.

The following goals are given as motivation for
ObjectStore:

— No translation between query and program code
— Reusability

— Ease of use

— EXxpressiveness

- Do you feel that ObjectStore satisfies all of these goals
better than a RDBMS? Explain.

- Is language mismatch a problem you encountered?

Application Interface

* Three programming interfaces: libraries for
C and C++, and an extended C++
language. We focus on language
extension.

« Keyword persistent. Used when declaring
variables

« Afew other keywords (inverse_member,
Indexable) for defining how objects in the
DB relate.

main ()

{
database *db = database: :open(“/company/records”) ;
persistent<db> department* engineering department;
transaction: :begin() ;
employee *emp = new(db) employee (“Fred”)
engineering department->add employee (emp) ;

emp->salary = 1000;

transaction: :commit () ;

Collections

Similar to arrays in PL or tables in DBMSs

Allow performance tuning: developers
specify access patterns and an
appropriate data structure is chosen

Similar to using collection interfaces In
modern libraries (Java, C#)

Elements may be selected from collections
with queries (more on this to come).

Relationships

(this can be skimmed or skipped as needed)

Pairs of inverse pointers which are
maintained by the system.

One-to-one, one-to-many, and many-to-
many are supported.
Syntactically, relationships are C++ data

members, however, updating causes Its
Inverse to be updated.

How does this work for the library
Interface?

Queries

Selection predicates can be applied to collections.

Special syntax: [:

Eg.
employees

Wikipedia:

predicate :]

[: salary >= 10000 :]

Queries may be nested.... But no real joins; only
semijoins (i.e., can find which tuples match other tuples,
but not say what matches what). Example from

Employee

Name Empld DeptName

Harry 3415
Sally 2241
George 3401
Harriet 12202

Finance
Sales
Finance

Production

Dept Employee X Dept
DeptName Manager Name |[Empld DeptName
Sales Bob Sally 2241 |Sales
Sales Thomas Harriet | 2202 Production

Production Katie

Production |Mark

Accessing persistent data

« Overhead Is a major concern.

* Once objects have been retrieved, subsequent
references should be as fast as an ordinary
pointer dereference.

« Similar goals as a virtual memory system-- use
VM system in OS for solution:

— Set flags so that accessing a non-fetched persistent
object causes page fault.

— Upon fault, retrieve object.
— Subsequent access is a normal pointer dereference

Query optimizations

Some RDBMS query optimization
techniques don’t work or make sense

» Collections are not known by name

 Join optimization Is less of a problem
— paths can be viewed as precomputed joins
— optimization is index selection

— “true joins” are rare... or at least not
supported

* Index maintenance is more of a problem

7-10 minutes

Discussion In groups of 4-5

* Do you feel the following features are limiting or
Improving the usefulness of OODBSs:
— Tied to C++ (or other PLS).
— Pre-computed joins (references).
— Caching commonly used variables.

« Can you think of an application that is better
suited for OODBMSs than RDBMSs? Would the
above features help or hinder the development
of such an application?

bars are backwards)

How caching helps (note

-

o

7

S R
R A
e et
e b
EREERE ey

o
A

94

b
’r

wlh L e gt R R
e e e ety S el ot bt

Yr.r.erw] M e
ol

i

et ..5........
e e e
e e S

N T

.....f.........r..... =R Ww.r ...
......u_..n =y
R R R e B R R R B R e e

ey e
o e,
e b
e e

e e e e ﬁ .
.“.......r.......r.r.r.....r.r....r.f....r...wvu_u_..nM_

17

L =

18

Pl B At B B
s o e
ﬂ.r."Mn.ww....

B e R
i)

R
R
B

13

o

S

prois

Jl=ie e o e e e

o

Y

P
o

W

27

s

o it et e e
A)

R

e N aal e
B

et

100

80 -

o

index

rdbms1

codbd

bbjactamre oodb3

o1

System

Conclusion

« Performance experiments show caching and
virtual memory-mapping architecture work.

« Small case study shows productivity benefits

* ObjectStore provides
— Ease of use
— EXpressive power
— Tight integration with host environment
— High performance due to VM mapping architecture

Of Objects and
Databases: A Decade

of Turmoll

Carey, M.J.; DeWitt, D.J.
(1996)

Slides based on slides by Ricardo Pedrosa

http://cs.ubc.ca/~rap/teaching/504/2005/readings/objects.pdf

Objects and Databases. Major types of systems:

« Extended relational database systems.
« Persistent programming languages.

* Object-oriented database systems.

« Database system toolkits/components.

Areas of research

Extended relational database systems

= Allow the addition of new, user-defined abstract data types
(ADTSs).
ADTs are implemented in an external language.
After being registered with the database, ADT’s functions can be
used in queries.

= Projects:

= Query optimizers with ADT’s properties and functions awareness.
= Support for storing and querying complex data types.

Areas of research

Persistent Programming Languages

= Add data persistency and atomic program execution to
traditional object-oriented programming languages.

= Problems addressed:
Orthogonality.
Persistence models.
Binding and namespace management for persistent roots.
Type systems and type safety.

Alternative implementation techniques for supporting transparent
navigation, maintenance, and garbage collection of persistent data
structures.

= Projects: various PL vendors

Areas of research

Object-Oriented Database Systems

= Combine all of the features of a modern database system
with those of an object-oriented programming language,
yielding an object-oriented database (OODB) system.

= Focused on:
Support for querying, indexing and navigation.
Addressing version management needs of engineering apps.
= Projects:
(Smalltalk).
(CLU-like language).
(CLOS).

Areas of research

Database system toolkits/components

= Provide a DBMS that can be extended at almost any level,
using mostly kernel facilities plus additional tools that help
building domain-appropriate DBMS.

= Projects:

Storage manager for objects
E: a persistent Prog. Language.
Query optimizer generator.

Clean architectural model that facilitates storage and indexing
extensions.

Rule-based extensible query subsystem.

Objects and databases in 1996

What happened?

= System toolkits & persistent programming languages:

In spite of some interesting results these were a failure from a
commercial point of view.

= OO database systems:

Many results from the academic point of view. Not expanded
commercially as expected by its developers.

= Langquage-specific object wrappers for relational databases:

New approach that appears to be important for building OO, client
side apps.

s Extended relational DBS:

Renamed as Object-Relational DBMS. Appears to be settling in
terms of providing objects for enterprise DB apps.

Casualties.

The Database Toolkit approach problem.

= Require a lot of expertise.
= End up in being inflexible, awkward or incomplete.

= As OO and O-Relational database systems provide enough
extensibility, it's not worthy to start from scratch even given
a toolkit to help in the process.

Casualties.

Why EXODUS failed?

= The client/server architecture introduced an unwanted level

of indirection when users tried to use EXODUS to implement
their own object servers.

= E programming language: Too general for skilled database

implementors and too low-level for application-oriented
programmers.

= The query optimizer was inefficient and hard to use.

Was all that bad after all?

= Interesting research by-products relevant to OODBMS and
ORDBMS.

DISCuUSSION In palrs
~D
- Minutes
* Are you surprised by the death of Exodus?
Why/why not?
* Do you think Starburst faced the same

challenge”? Would you classify it as a
toolkit or extended RDBMSs? What about

Volcano?

Casualties.

Persistent Programming Language

= No commercial implementation of such a language.
s Still active as a research area in academia.

= Work on this area has had a significant impact and has
been transferred to OODBMS.
Navigational programming interfaces.

Persistence models.
Garbage collection schemes for persistent data.

Object-Oriented Database Systems (OODBMS)

What must OODBMS support?

Complex objects. m
Object identity. N
Encapsulation. O
Inheritance and substitutability. 0
Late binding. o

Computationally complete methods. =

Extensible type system.
Persistence.

Secondary storage management.
Concurrency control.

Recovery.

Ad hoc queries.

What might OODBMS support?

Multiple (vs. single) inheritance. O
Static (vs. dynamic) type checking. o
Distribution.

Optional issues.

Programming paradigm.
Exact details of the type system.
Degree of fanciness of the type system.

Degree of uniformity of the object model.

Long transactions.
Version management.

Players on this game.
ObjectStore = Objectivity

= Ontos = GemStone
= 02 = Poet
= Versant

Object-Oriented Database Systems (OODBMS)

What went wrong with OODMS?

s Lack of standards.

= OODBMS products are behind RDBMS in some terms (eq.
no view facilities).

= Painful schema evolution.

= Tight coupling between an OODBMS and its application
programming Language.

= Low availability of application development tools.

Object-Relational Database Systems (ORDBMS)

Main tenets for ORDBMS

Provide support for richer object structures.
Subsume RDBMS.

Be open to other subsystems (tools and multidatabase
middleware products).

What ORDBMS should provide?

A rich type system, inheritance, functions and
encapsulation, optional unique ids and rules/triggers.

A high-level query based interface, stored and virtual
collections, updatable views and separation of data model
and performance features.

Accessibility from multiple languages, layered persistence-
oriented language bindings, SQL support and a query-
shipping client/server interface.

A vision from 1996 of databases in 2006

Fully integrated solution

Support for OO ADTs. (not fully)
= Inheritance among ADTs.
= ADT implementation in various programming languages.
Full OO support for row types. (no)
Support for middle-tier and desktops applications. (no)

= Provide a development environment where the same object model
will describe the DB in all levels, both for querying and navigational
programming.

Methods and queries will be run on cached data on servers or
clients depending on where’s faster. (no)

= OODBMSs will be niche solutions (yes, modulo XML)

A vision from 1996 of databases in 2006

Research Challenges

= Server functionality and performance
= (lient integration

= Parallelization

= Legacy data sources

= Standards

Discussion In groups of 4-5
/-10 Minutes

The authors list a set of predictions for 2006 and how
things are going to look then for objects and databases.
The list again:

= Support for ADTs with inheritance

= Full OO support for row types.

* The same object model will describe the DB in all levels.

* |ntelligent use of cache on servers or clients.

Do you feel these predictions were reasonable given the
state of the research presented in the paper? Explain.

« Any factors you believe the authors failed to consider?

* Would anyone like to add to these predictions? Perhaps
something you noticed becoming a trend of late that can
be fulfilled by 20267

