
Principles of Dataspace Systems

Alon Halevy
Google Inc.

Mountain View, CA
halevy@google.com

Michael Franklin
UC Berkeley
Berkeley, CA

franklin@cs.berkeley.edu

David Maier
Portland State University

Portland, Oregon
maier@cs.pdx.edu

ABSTRACT
The most acute information management challenges today stem
from organizations relying on a large number of diverse, interre-
lated data sources, but having no means of managing them in a con-
venient, integrated, or principled fashion. These challenges arise
in enterprise and government data management, digital libraries,
“smart” homes and personal information management. We have
proposed dataspaces as a data management abstraction for these
diverse applications and DataSpace Support Platforms (DSSPs) as
systems that should be built to provide the required services over
dataspaces. Unlike data integration systems, DSSPs do not require
full semantic integration of the sources in order to provide useful
services. This paper lays out specific technical challenges to real-
izing DSSPs and ties them to existing work in our field. We focus
on query answering in DSSPs, the DSSP’s ability to introspect on
its content, and the use of human attention to enhance the semantic
relationships in a dataspace.

Categories and Subject Descriptors
H.1 [Models and principles]; H.2.5 [Heterogeneous Databases]

General Terms
Algorithms, Human Factors, Languages, Management

Keywords
dataspaces, personal information management, information retrieval
and databases, data integration

1. INTRODUCTION
Most data management scenarios today rarely have a situation in

which all the data can be fit nicely into a conventional relational
DBMS, or into any other single data model or system. Instead,
users and developers are often faced with a set of loosely con-
nected data sources and thus must individually and repeatedly ad-
dress low-level data management challenges across heterogeneous
collections. The first set of challenges are user-facing functions,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0006 ...$5.00.

and include locating relevant data sources, providing search and
query capability, and tracing lineage and determining accuracy of
the data. The second set of challenges, on the administration side,
include enforcing rules, integrity constraints and naming conven-
tions across a collection, providing availability, recovery and access
control, and managing the evolution of data and metadata.

Such challenges are ubiquitous – they arise in enterprises (large
or small), within and across government agencies, in large science-
related collaborations, libraries (digital or otherwise), in battlefields,
in “smart” homes, in search for structured content on the WWW,
and even on one’s PC desktop or other personal devices. In each
of these scenarios, however, there is some identifiable scope and
control across the data and underlying systems, and hence one can
identify a space of data, which, if managed in a principled way, will
offer significant benefits to the enterprise.

We recently introduced dataspaces as a new abstraction for data
management in such scenarios, and proposed the design and devel-
opment of DataSpace Support Platforms (DSSPs) as a key agenda
item for the data management field [24]. In a nutshell, a DSSP
offers a suite of interrelated services and guarantees that enables
developers to focus on the specific challenges of their applications,
rather than on the recurring challenges involved in dealing con-
sistently and efficiently with large amounts of interrelated but dis-
parately managed data. In particular, a DSSP helps to identify
sources in a dataspace and inter-relate them, offers basic query
mechanisms over them, including the ability to introspect about the
contents. A DSSP also provides some mechanisms for enforcing
constraints and some limited notions of consistency and recovery.

Traditionally, data integration and data exchange systems [36]
have aimed to offer many of the purported services of dataspace
systems. In fact, DSSPs can be viewed as the next step in the evo-
lution of data integration architectures, but are distinct from current
data integration systems in the following way. Data integration sys-
tems require semantic integration before any services can be pro-
vided. Hence, although there is not a single schema to which all
the data conforms and the data resides in a multitude of host sys-
tems, the data integration system knows the precise relationships
between the terms used in each schema. As a result, significant up-
front effort is required in order to set up a data integration system.

Dataspaces are not a data integration approach; rather, they are
more of a data co-existence approach. The goal of dataspace sup-
port is to provide base functionality over all data sources, regardless
of how integrated they are. For example, a DSSP can provide key-
word search over all of its data sources, similar to that provided
by existing desktop search systems. When more sophisticated op-
erations are required, such as relational-style queries, data mining,
or monitoring over certain sources, then additional effort can be
applied to more closely integrate those sources in an incremental,

1

“pay-as-you-go” fashion. Similarly, in terms of traditional database
guarantees, initially a DSSP can only provide weaker guarantees
of consistency and durability. As stronger guarantees are desired,
more effort can be put into making agreements among the various
owners of data sources, and opening up certain interfaces (e.g., for
commit protocols). In a sense, the dataspace approach postpones
the labor-intensive aspects of data integration until they are abso-
lutely needed.

The following properties distinguish DSSPs from traditional databases
and data integration systems:

• A DSSP must deal with data and applications in a wide vari-
ety of formats accessible through many systems with differ-
ent interfaces. A DSSP is required to support all the data in
the dataspace rather than leaving some out, as with DBMSs.

• Although a DSSP offers an integrated means of searching,
querying, updating, and administering the dataspace, often
the same data may also be accessible and modifiable through
an interface native to the system hosting the data. Thus, un-
like a DBMS, a DSSP is not in full control of its data.

• Queries to a DSSP may offer varying levels of service, and
in some cases may return best-effort or approximate answers.
For example, when individual data sources are unavailable,
a DSSP may be capable of producing the best results it can,
using the data accessible to it at the time of the query.

• A DSSP must offer the tools and pathways to create tighter
integration of data in the space as necessary.

Much of the ongoing work in our community is already very rel-
evant to the development of DSSPs. The goal of this paper is to
describe several specific challenges to building DSSPs, put them
in the context of existing recent work, and propose a set of prin-
ciples to underly this body of work. This paper is slightly biased
towards problems of theoretical nature, and does not attempt to be
comprehensive in its coverage of the challenges, and certainly not
in its coverage of existing work. The original vision for DSSPs and
a description of its proposed components appear elsewhere [24].

Section 2 sets the stage by motivating dataspaces with a few ex-
amples. The subsequent sections describe the challenges. Section 3
describes challenges concerning query answering in DSSPs. Sec-
tion 4 describes the need for a DSSP to introspect on its content and
coverage, and Section 5 outlines how a DSSP should benefit from
users’ actions on dataspaces and reuse them.

2. EXAMPLES
We begin by describing several motivating applications for DSSPs
that illustrate some of the main requirements from such systems.

Personal Information Management: The goal of Personal Infor-
mation Management (PIM) [21, 23, 26, 47] is to offer easy access
and manipulation of all of the information on a person’s desktop,
with possible extension to mobile devices, personal information on
the Web, or even all the information accessed during a person’s
lifetime.

Recent desktop search tools are an important first step for PIM,
but are limited to keyword queries. Our desktops typically contain
some structured data (e.g., spreadsheets) and there are important
associations between disparate items on the desktop. Hence, the
next step for PIM is to allow the user to search the desktop in more
meaningful ways. For example, “find the list of juniors who took

my database course last quarter,” or “compute the aggregate bal-
ance of my bank accounts.” We would also like to search by asso-
ciation, e.g., “find the email that John sent me the day I came back
from Hawaii,” or “retrieve the experiment files associated with my
SIGMOD paper this year.” Finally, we would like to query about
sources, e.g., “find all the papers where I acknowledged a particu-
lar grant,” “find all the experiments run by a particular student,” or
“find all spreadsheets that have a variance column.”

The principles of dataspaces in play in this example are that (1) a
PIM tool must enable accessing all the information on the desktop,
and not just an explicitly or implicitly chosen subset, and (2) while
PIM often involves integrating data from multiple sources, we can-
not assume users will invest the time to integrate. Instead, most
of the time the system will have to provide best-effort results, and
tighter integrations will be created only in cases where the benefits
will clearly outweigh the investment.

Scientific data management: Consider a scientific research group
working on environmental observation and forecasting, such as the
CORIE System1. They may be monitoring a coastal ecosystem
through weather stations, shore- and buoy-mounted sensors and
remote imagery. In addition they could be running atmospheric
and fluid-dynamics models that simulate past, current and near-
future conditions. The computations may require importing data
and model outputs from other groups, such as river flows and ocean
circulation forecasts. The observations and simulations are the in-
puts to programs that generate a wide range of data products, for
use within the group and by others: comparison plots between ob-
served and simulated data, images of surface-temperature distribu-
tions, animations of salt-water intrusion into an estuary.

Such a group can easily amass millions of data products in just a
few years. While it may be that for each file, someone in the group
knows where it is and what it means, no one person may know
the entire holdings nor what every file means. People accessing
this data, particularly from outside the group, would like to search
a master inventory that had basic file attributes, such as time pe-
riod covered, geographic region, height or depth, physical variable
(salinity, temperature, wind speed), kind of data product (graph,
isoline plot, animation), forecast or hindcast, and so forth. Once
data products of interest are located, understanding the lineage is
paramount in being able to analyze and compare products: What
code version was used? Which finite element grid? How long was
the simulation time step? Which atmospheric dataset was used as
input?

Soon, such groups will need to federate with other groups to cre-
ate scientific dataspaces of regional or national scope. They will
need to easily export their data in standard scientific formats, and
at granularities (sub-file or multiple file) that don’t necessarily cor-
respond to the partitions they use to store the data. Users of the
federated dataspace may want to see collections of data that cut
across the groups in the federation, such as all observations and
data products related to water velocity, or all data related to a cer-
tain stretch of coastline for the past two months. Such collections
may require local copies or additional indices for fast search.

This scenario illustrates several dataspace requirements, includ-
ing (1) a dataspace-wide catalog, (2) support for data lineage and
(3) creating collections and indexes over entities that span more
than one participating source.

Structured queries and content on the WWW: While the WWW
is dominated by unstructured content, there are also significant and
growing opportunities for posing structured queries and obtaining

1http://www.ccalmr.ogi.edu

2

structured content on the web. The deep web, the collection of
content residing behind hundreds of thousands of forms, is known
to contain a huge amount of very high-quality content. A more
recent source of structured data has recently been introduced by
GoogleBase [28]. With GoogleBase, anyone can provide content
in structured form through a feed interface. The provider supplies
a set of offers and specifies the class of the offers (e.g., cars, clin-
ical trials, movie reviews, recipes). Each class has (at best) a set
of suggested attributes, but providers are free to invent their own
classes and attributes. The result is an extremely heterogeneous
database about everything. Completely reconciling heterogeneity is
not even conceivable in this context. The key challenge is to incor-
porate structured data and queries into the mainstream web-search
experience. These web-search challenges highlight two aspects of
DSSPs: (1) the need for powerful search mechanisms that accept
keyword queries and select relevant structured sources that may an-
swer them, and (2) the ability to combine answers from structured
and unstructured data in a principled way.

3. QUERY ANSWERING
The first set of challenges we consider has to do with searching

and querying dataspaces. As a background for our discussion, we
briefly recount the logical components of dataspaces and the modes
in which we expect users to interact with them.

Dataspace participants and relationships: A dataspace should
contain all of the information relevant to a particular organization
or entity regardless of its format and location, and model a rich
collection of relationships between data repositories. Hence, we
model a dataspace as a set of participants and relationships.

The participants in a dataspace are the individual data sources:
they can be relational databases, XML repositories, text files, web
services and software packages. They can be stored or streamed
(managed locally by data stream systems), or even be sensor de-
ployments. We use the terms participants and sources interchange-
ably.

Some participants may support expressive query languages, while
others are opaque and offer only limited interfaces for posing queries
(e.g., structured files, web services, or other software packages).
Some sources will support traditional updates, while others may
be append-only (for archiving purposes), and still others may be
immutable.

A dataspace should be able to model any kind of relationship be-
tween two (or more) participants. On the more traditional end, we
should be able to model that one participant is a view or a replica of
another, or to specify a schema mapping between two participants.
We would, however, like to model a much broader set of relation-
ships such as, that source A was manually curated from sources
B and C, or that sources E and F were created independently, but
reflect the same physical system (e.g., mouse DNA). Relationships
may be even less specific, such as that two datasets came from the
same source at the same time.

Queries: We expect to see queries in a variety of languages. Most
activities would probably begin with keyword queries over the datas-
pace, but it will also be common to see queries resulting from filling
forms (which lead to queries with multiple selection predicates).
When users interact more deeply with certain data sources, they
may pose more complex queries, which may lead to more complex
SQL or XQuery queries.

Unless explicitly specified, users typically expect the query to
consider all relevant data in the dataspace, regardless of the data
model in which it is stored or the schema (if any) along which it
is organized. Hence, when a user poses a query in terms of some

schema of a particular source (e.g., fields in a form), the expectation
is that the system still try to obtain data from other sources as well.
Obtaining additional answers will require transformations both on
the schema and on the data model.
Answers: There are several ways in which answers to queries
posed over dataspaces differ from traditional ones:

• Ranked: answers to queries will typically be ranked similar
to answers from an IR engine or web-search engine. Rank-
ing is necessary not only for keyword queries, but also for
structured queries when the translations to other data sources
may be approximate.

• Heterogeneous: answers will come from multiple sources
and will be in different data models and schemas. The rank-
ing needs to handle heterogeneity gracefully.

• Sources as answers: in addition to returning actual ground
answers to a query, (e.g., documents or tuples), a DSSP can
also return sources, i.e., pointers to places where additional
answers can be found.

• Iterative: Interactions with a dataspace are not typically com-
prised of posing a single query and retrieving an answer. In-
stead, the user has an information finding task that requires
posing a sequence of queries, each being a refinement or
modification of the previous ones.

• Reflection: we expect a DSSP to reflect on the complete-
ness of its coverage and the accuracy of its data as part of its
answers. We postpone these issues to Section 4.

• In-situ: Our usual notion of a query answer is that it is a
copy of data from a source. However, in asking exploratory
queries in a database, we may want “in-situ answers”, which
are references to, rather than copies of, answer elements.
These elements could then be viewed in their original setting,
and serve as anchor points for access to surrounding infor-
mation. The mark and context mechanisms of the SPARCE
model [45], for example, could serve as a platform for in-situ
answers.

3.1 Query answering model
As a first step in addressing the query answering challenges in

dataspaces we need a new formal model of queries and answers.
The model needs to account for all the aspects of answers men-
tioned above.

Some work has already been done on ranking answers in the con-
text of keyword queries over relational databases and over XML
documents [3, 4, 9, 30, 33], and on finding relevant information
sources in large collections of formally described sources [41]. The
reader is referred to [13] for a thought provoking paper on combin-
ing DB and IR technologies. However, these works need to be
generalized considerably to cases where we do not have semantic
mappings of sources and where the data models of the sources dif-
fer.

The general challenge we pose is the following:

CHALLENGE 1. Develop a formal model for studying query
answering in dataspaces. 2

The following specific challenge is a first step in this direction:

SUB-CHALLENGE 1.1. Develop an intuitive semantics for an-
swering a query that takes into consideration a sequence of earlier
queries leading up to it.

3

In fact, one can go further and postulate that a single query is
actually not the right level of granularity to be considering. Users
are typically engaged in tasks that involve posing several queries
as well as other actions (e.g., browsing, creating content). The fol-
lowing challenge attempts to formalize this notion:

SUB-CHALLENGE 1.2. Develop a formal model of information
gathering tasks that include a sequence of lower-level operations
on a dataspace.

We will argue in Section 5 that if we are able to recognize tasks
from individual queries, we can develop automatic methods for cre-
ating better semantic integration between sources in a dataspace.

Users will interact with a dataspace using a combination of struc-
tured and unstructured queries. The following challenges address
some of the issues that arise because of that.

SUB-CHALLENGE 1.3. Develop algorithms that given a key-
word query and a large collection of data sources, will rank the
data sources according to how likely they are to contain the an-
swer.

SUB-CHALLENGE 1.4. Develop methods for ranking answers
that are obtained from multiple heterogeneous sources (even when
semantic mappings are not available).

3.2 Obtaining answers
The most significant challenge to answering queries in datas-

paces arises from data heterogeneity. It is inevitable that when
data sources are authored by different individuals and organiza-
tions, they will use different terms to model the same aspects of
a domain. Heterogeneity exists both at the schema level and the
data level.

A data integration system relies on semantic mappings to refor-
mulate queries from one schema to another. Significant amount of
research has focused on developing efficient techniques for refor-
mulation and for understanding how the complexity of reformula-
tion depends on the expressive power of the language used for se-
mantic mappings [31, 36, 39]. However, dataspaces being loosely
coupled, DSSPs will typically not have semantic mappings, and
even when mappings exist, they may be partial or approximate.
Hence, to answer queries in a dataspace we need to shift the at-
tention away from semantic mappings. Specifically, we pose the
following challenge, followed by a set of specific proposals on how
to approach it.

CHALLENGE 2. Develop methods for answering queries from
multiple sources that do not rely solely on applying a set of correct
semantic mappings. 2

Recall that the goal here is best-effort query answering, rather
that providing exact answers. The following are examples of how
to pursue this challenge.

SUB-CHALLENGE 2.1. Develop techniques for answering queries
based on the following ideas, or combinations thereof:

• apply several approximate or uncertain mappings and com-
pare the answers obtained by each,

• apply keyword search techniques to obtain some data or some
constants that can be used in instantiating mappings.

• examine previous queries and answers obtained from data
sources in the dataspace and try to infer mappings between

the data sources. Whenever we have access to queries that
span multiple data sources, try to infer from them how the
sources are related (e.g., the join attributes should provide
some hint of common domains).

In general, one can approach Challenge 2 by observing the way
people would go about searching for information in complex in-
formation spaces, and trying to generalize from these patterns and
automate them. For example, the following is an illustration of
the second bullet of Challenge 2.1, and could be a generalization
of real interactions. Suppose we are searching for a particular per-
son’s address in a large collection of databases. We begin by posing
a keyword query over the dataspace with the person’s name as in-
put. The result will point us to tuples in structured sources that
include the person’s name, and may show us which attributes ap-
pear in those tuples. We can then analyze these attribute names and
find which are similar or related to address (using schema matching
techniques). Finally, we can pose a specific structured query on the
corresponding data source with the appropriate attribute names.

In parallel with developing new query-answering algorithms, we
need to devise ways to measure their accuracy. Specifically, we
face the following challenges:

SUB-CHALLENGE 2.2. Develop a formal model for approxi-
mate semantic mappings and for measuring the accuracy of an-
swers obtained with them.

Even when there is no heterogeneity, or there is very little of it,
we still need to perform mappings between data stored in differing
models. For example, multiple data sets may be using essentially
the same terminology, but one is stored in XML while another in a
relational database or in plain text. Hence, we face the following
challenge:

SUB-CHALLENGE 2.3. Given two data sets that use the same
terminology but different data models, develop automatic best-effort
methods for translating a query over one data set onto the other.

The typical example of Challenge 2.3, which has been consid-
ered in several works [1, 3, 33] is translating keyword queries onto
relational databases. However, there are many other variants of this
problem, such as the inverse of the above. Specifically, it is often
the case that when users pose a structured query over databases,
they also want the system to explore less structured information to
obtain related data. Hence an interesting problem to consider is
to try to extract from a SQL query a keyword query to pose to an
IR-style engine.

4. DATASPACE INTROSPECTION
By its very nature, data in a dataspace will be uncertain and of-

ten inconsistent. The aforementioned best-effort query answering
mechanisms will introduce additional uncertainty to query answers.
Furthermore, answers may differ depending on which level of ser-
vice we require in terms of latency and completeness. Hence, it is
crucial that a DSSP be able to introspect on the answers it presents
to its users, and specify the assumptions and lineage underlying
them. This section describes several challenges concerning datas-
pace introspection. We begin in Section 4.1 by discussing intro-
spection with respect to uncertainty, inconsistency and lineage, and
then describe introspection more generally in Section 4.2.

While our emphasis here is on introspection for DSSPs, we argue
that it is crucial for traditional database systems. In fact, some of
the topics we discuss below have initially been investigated in the
context of traditional databases. The difference is, however, that
while in a traditional database introspection is a feature that is nice
to have, in DSSPs it becomes a necessity.

4

4.1 Lineage, uncertainty and inconsistency
The main point we make in this section is that lineage, uncer-

tainty and inconsistency are highly related to each other and that
a DSSP should have a single mechanism that models all three.
Specifically, it is often the case that inconsistencies lead to a very
particular kind of uncertainty: which of a set of conflicting data
values is correct. Both uncertainty and inconsistency need to be
ultimately resolved, and lineage is often the only way of doing so.

Our point is not at all a completely new one. The relationship be-
tween uncertainty and lineage has recently formed the foundation
for the Trio Project [7, 51], and the need to manage inconsistency
along with lineage is one of the main ideas underlying the Orches-
tra Project [35, 49].

We briefly recall the main concepts proposed for modeling un-
certainty, inconsistency and lineage. We then discuss some of the
challenges that arise in modeling them as in a single formalism. In
what follows we refer to the ability of a DSSP to introspect about
lineage, uncertainty and inconsistency as LUI introspection.2

4.1.1 Uncertain databases
Uncertainty arises in data management applications because the

exact state of the world is not known. The goal of an uncertain
database is to represent a set of possible states of the world, typi-
cally referred to as possible worlds. Each possible world represents
a complete state of the database. Hence, a traditional database rep-
resents a single state of the world.

Several formalisms have been proposed for uncertain databases [2,
6, 18, 29, 34, 38]). We briefly illustrate three such formalisms that
will highlight some of the challenges we address later. We illustrate
the formalisms with an example where structured data is extracted
from unstructured text, one of the common sources of uncertain
data in practice.

A very simple formalism for modeling uncertainty is a-tuples.
An a-tuple differs from an ordinary tuple in two ways. First, in-
stead of having a single value for an attribute, it may have several
values. (For now, we will consider only a finite number of values).
Second, the tuple may be a maybe-tuple. As an example, consider
the following two tuples:

(Karina Powers, { 345-9934 345-9935})
(George Flowers, 674-9912) ?

The first tuple states that the phone number of Karina Powers is
one of two values, whereas the second tuple is not sure whether
George Flowers has a phone number (but if he does, the number is
certain). Hence, these two tuples represent four possible states of
the world.

A-tuples are easy to comprehend and to visualize. When un-
certainty is limited to values of certain attributes, a-tuples capture
it well. However, a-tuples are not closed under relational opera-
tors [18]. For example, the result of the join of two relations with
a-tuples cannot necessarily be represented by a set of a-tuples.

A slightly more general formalism is x-tuples (recently stud-
ied [7]). An x-tuple is simply a set of ordinary tuples, meant to
describe different possible states, and they too can be marked as
maybe-tuples. As an example, consider the following x-tuple, where
the second column is the person’s work phone and the third is the
work fax:

(Karina Powers, 345-9934, 345-9935)
(Karina Powers, 345-9935, 345-9934)

2LUI stands for Lineage, Uncertainty and Inconsistency.

The x-tuple represents the fact that we’re not sure which number
is the work phone and which is the fax, and represents two possible
states of the world. While x-tuples are more powerful than a-tuples,
they are still not closed under relational operators.

Finally, we illustrate c-tables [2] with the following example.

Karina Powers 456-3214 x = 1

Karina Powers 654-1234 x 6= 1

Karina Powers 456-4444 x 6= 1

C-tables rely on assignments to variables to determine the pos-
sible worlds of the database. Intuitively, the variables correspond
to different decisions about the state of the world. Any consistent
assignment of the variables yields a possible world. In the exam-
ple above, there are two worlds, depending on the value of x. If
x = 1, then only the first tuple is in the database. If x 6= 1, then the
second and third tuples are in. Hence, we can model a constraint
saying that if a particular tuple is not in the database, then two other
ones must be.

C-tables are closed under relational operators. In fact, c-tables
can be shown to be complete. That is, given any set of possi-
ble worlds S of a schema R, there exists a database of c-tables
DS whose possible worlds are precisely S. The disadvantage of
c-tables is that they are a bit harder to understand as a user. Fur-
thermore, checking whether a set of tuples I is a possible world of
Ds is known to be NP-complete.

4.1.2 Inconsistencies in databases
Inconsistent databases are meant to handle situations in which

the database contains conflicting data. The most common type of
inconsistency is disagreement on single-valued attributes of a tuple.
For example, a database storing the salary of an employee may
have two different values for the salary, each coming from different
sources.

The key idea underlying inconsistent databases is to consider the
different possible repairs of the database [5]. A repair is a mini-
mal change that results in a consistent database. For example, if
we have two tuples specifying the salary of an employee, then re-
moving either of them will result in a consistent database. Hence,
a database may have multiple repairs.

Herein lies the close relationship between uncertainty and in-
consistency. Inconsistency can be viewed as being uncertain about
which of the conflicting values is correct. The set of possible worlds
corresponds to the different repairs of the database. In the exam-
ple of disagreement on non-key attributes, the uncertainty can be
expressed as a-tuples.

4.1.3 Modeling data lineage
The lineage of a tuple explains how the tuple was derived to be

a member of a particular set. We distinguish internal lineage from
external lineage. Internal lineage applies to tuples in answers to
queries – the lineage specifies how a tuple was derived from other
tuples in the database. External lineage applies to tuples that were
inserted into the database – the lineage refers to the external sources
or processes by which they were inserted.

For internal lineage, there is often a rather obvious definition
of lineage, which can be defined in terms of the proof tree of a
tuple. For example, for conjunctive queries (or even datalog queries
without recursion) there is a unique proof tree for every resulting
tuple under multi-set semantics. The lineage function maps a tuple
to the tuples in the leaves of its proof tree.

For union queries under set semantics the representation of a
proof tree is more complicated because it includes OR nodes, but
it is still possible to define a natural lineage function. However,

5

for queries with negation or aggregation, there is no single obvious
definition of lineage. (For discussions of possible lineage functions
in previous literature see [8, 11, 14, 15, 40].)

4.1.4 LUI Introspection
A DSSP should provide a single unified mechanism for modeling

uncertainty, inconsistency and lineage. Broadly, the challenge is
the following:

CHALLENGE 3. Develop formalisms that enable modeling un-
certainty, inconsistency and lineage in a unified fashion. 2

We now outline some more specific challenges in this vein.
The relationship between uncertainty and inconsistency is fairly

obvious: inconsistency often boils down to being uncertain about
which state of the world is the correct one. Hence a specific chal-
lenge is the following:

SUB-CHALLENGE 3.1. Develop formalisms that capture uncer-
tainty about common forms of inconsistency in dataspaces.

Ideally, existing formalisms or minor variations on them will be
appropriate. Furthermore, since inconsistency leads to a very spe-
cial type of uncertainty (guided by the set of repairs of the database),
the uncertainty formalism should be able to leverage that special
structure. A particular challenge here will be to understand the
kinds of LUI that arise in highly heterogeneous environments.

We claim that lineage plays an important role in resolving uncer-
tainty and inconsistency. The formalisms for representing uncer-
tainty only tell us what are the possible states of the world, and will
sometimes assign probabilities to each possible world. However,
in many cases the only way to resolve the uncertainty is to know
where the data came from or how it was derived.

Our goal is that a single formalism should be able to specify all
of the following statements:

• Joe’s age is either 42 or 43

• The probability that Joe is 42 is 0.6 and that he is 43 is 0.4

• According to source A, Joe is 42, and according to source B

he is 43

• According to source A, whose probability of being correct is
0.6, Joe is 42, and according to source B, whose probability
of being correct is 0.4, he is 43.

In fact, web-search engines already unify uncertainty and lin-
eage in a simple way. Answers returned by the engine are ranked
in some way (corresponding to uncertainty about the relevance and
the quality of the answer), but they invariably provide the URL of
the answers and a snippet, corresponding to the lineage informa-
tion. Users take into consideration both the ranking and the URL
when they decide which links to follow.

One of the main reasons we want to unify lineage and uncer-
tainty is to reason about relationships between external sources and
their effects on answers. To achieve that, we have the following
challenge:

SUB-CHALLENGE 3.2. Develop formalisms for representing and
reasoning about external lineage.

As an example, we would like to represent when different data
sources are independent or not, and consider that when processing
queries, to distinguish reinforcement from redundancy.

To combine uncertainty and lineage, we have the following chal-
lenge, initially addressed in [7]:

SUB-CHALLENGE 3.3. Develop a general technique to extend
any uncertainty formalism with lineage, and study the representa-
tional and computational advantages of doing so.

Knowledge of lineage may constrain the set of possible worlds
of a database, and therefore may affect the complexity of query an-
swering (hopefully in a positive way, but that’s only a conjecture).

The key aspect of achieving Challenge 3.3 is that the object to
which we attribute uncertainty must match the one to which we
attribute lineage. Lineage is typically associated with individual
tuples in the database or entire data sources, and hence, as shown
in [7], it is fairly natural to extend x-tuples with lineage informa-
tion. A-tuples, however, associate uncertainty with attribute values,
and therefore the associated lineage needs to be attached to attribute
values. In the case of c-tables, the situation is trickier, since vari-
ables create complex dependencies among the tuples. Hence, lin-
eage should capture values of variables and dependencies between
sets of variables.

Uncertainty on views
Challenge 3.3 leads to a more general issue with modeling uncer-
tainty. Currently, uncertainty formalisms associate uncertainty with
a single schematic construct: tuples in the case of x-tuples, and
attribute values in the case of a-tuples. Therefore, the choice of
database schema and normalization limits the kinds of uncertainty
we can express. Consider the example of extracting the tuple from
unstructured data.

(Karina Powers, 123 Main St., 345-9934)

Suppose we want to associate a probability of 0.7 with this tuple,
given our confidence in the extraction. However, suppose we are
more confident of our name extraction, and would like to attach a
probability of 0.9 to the first attribute of the tuple. There is currently
no way of associating different levels of uncertainty with different
parts of the tuple.

We propose to attach uncertainty with tuples in views. In our
example, we would be able to associate a higher probability with
the projection of the tuple on the first attribute. Note that the views
need not be materialized. The challenge can be summarized as
follows.

SUB-CHALLENGE 3.4. Develop formalisms where uncertainty
can be attached to tuples in views and view uncertainty can be used
to derive uncertainty of other view tuples.

An excellent first step towards this challenge is described in [17].
Beyond the basic results, we need to identify more tractable cases
for such query answering. In addition, views can be used to model
probabilistic integrity constraints that induce a probability distribu-
tion on the data. Reasoning with such views is an exciting chal-
lenge. Several AI formalisms (e.g., probabilistic relational models
(PRMs) [27, 37]) were developed to model probabilistic constraints
on collections of objects and relationships between them. We need
a good understanding of the spectrum of formalisms between prob-
abilistic views to probabilistic relational models.

4.2 Finding the right answers
The ability to introspect about data and query answers raises the

next natural question: given all the dimensions along which an-
swers can vary, what are good answers to a query?

Candidate answers can differ along multiple dimensions, includ-
ing:

• relevance to the query,

6

• certainty of the answer (or whether it contradicts another)

• completeness and precision requested by the user,

• maximum latency required in answering the query.

Hence, broadly, we face the following challenge:

CHALLENGE 4. Define metrics for comparing the quality of
answers and answer sets over dataspaces, and efficient query pro-
cessing techniques. 2

The concept of minimal repairs for inconsistent databases [5] is a
limited version of this challenge. It is unlikely that there is a general
theory that trades off all these factors in an application independent
manner. In many cases, the particular context in which queries are
being posed will offer more guidance on these tradeoffs. To enable
specifying such preferences, we pose the following challenge:

SUB-CHALLENGE 4.1. Develop query-language extensions and
their corresponding semantics that enable specifying preferences
on answer sets along the dimensions of completeness and preci-
sion, certainty and inconsistency, lineage preferences and latency.

Note that while we expect users to express these preferences with
some GUI, we still need a language for expressing these prefer-
ences on the backend.

Along with mechanisms for specifying preferences on answer
sets, we need methods for reasoning about sets of answers so we
can compare among them. Traditionally, sets of queries were com-
pared by query containment [12]. A query Q1 is said to contain
Q2 if the answer of Q1 is always a superset of the answer to Q2

on any given database instance. The following challenge extends
query containment to the context of dataspaces:

SUB-CHALLENGE 4.2. Define notions of query containment that
take into consideration completeness and precision, uncertainty
and inconsistency and lineage of answers, and efficient algorithms
for computing containment.

As a specific challenge that ties together Section 4.1 and our cur-
rent discussion, consider the following:

SUB-CHALLENGE 4.3. Develop methods for efficient process-
ing of queries over uncertain and inconsistent data that conserve
the external and internal lineage of the answers. Study whether
existing query processors can be leveraged for this goal.

This challenge is already under investigation by several proj-
ects [16, 17, 25, 35, 51]. The challenge is to extend these tech-
niques to formalisms that model lineage, uncertainty and inconsis-
tency, and to incorporate sophisticated ranking algorithms as part
of query processing.

5. REUSING HUMAN ATTENTION
The key tenet underlying DSSPs is that they should provide some

level of service on a dataspace from the very beginning. Over time
the dataspace should evolve by forming more tight semantic inte-
gration between disparate sources as needed.

This section turns the attention to how the dataspace can evolve,
and argues that leveraging users’ attention as they interact with a
dataspace is a crucial and under-utilized element to success in this
endeavor. In a nutshell, every time a user performs some operation
on the dataspace, she is telling us something about its semantic con-
tent or about the relationships between its disparate data sources.

Users (of varying levels) perform a multitude of actions on datas-
paces, such as: asking and refining queries, browsing semantically
related data items, creating electronic workspaces that aggregate
related data, and even lower-level actions, such as copying val-
ues from one column of a spreadsheet to another. At a more so-
phisticated level, the act of creating a schema (however precise) or
schema mappings is also one we can learn from. Human attention
is very scarce, and hence it is crucial that DSSPs be able to leverage
actions that users perform as a side-effect of their daily activities.

Broadly speaking the challenge we put forth in this section is the
following:

CHALLENGE 5. Develop methods that analyze users’ activities
when interacting with a dataspace and create additional meaning-
ful relationships between sources in a dataspace or other enhance-
ments to the dataspace. 2

Interestingly, some works argue that human attention is not scarce
and that spare human cycles can be harnessed in interesting ways.
For example, von Ahn et al. [50] create an entertaining online game,
the side-result of which is massive annotation of images on the web.
Despite the differences in opinion concerning human productivity,
the same principles are at play in both contexts.

There have been several recent successful examples of learn-
ing from human activities to further semantic integration, focused
mostly on learning semantic mappings between data sources. The
LSD System [20] showed how to learn to map schemas, where the
training examples are a set of mappings from data sources to a me-
diated schema. LSD generalized from these examples and was able
to predict with high accuracy mappings of other sources into that
mediated schema. Dong et al. [22], Chang and He [32], and Mad-
havan et al. [42] showed how to analyze large numbers of schemas
or web services to learn properties that enabled their systems to
automatically guess mappings between unseen sources. McCann
et al. [44] took the idea further and proposed collaboration among
large sets of users to create semantic integration. All of these works
offer only one instance of the general principle we advocate here:
they all learn from collections of schemas and mappings to produce
better schema matching systems.

The following specific challenge argues that we can learn from
users posing queries:

SUB-CHALLENGE 5.1. Develop techniques that examine col-
lections of queries over data sources and their results to build new
mappings between disparate data sources.

In Section 3 we described the notion of a task that captures sev-
eral actions on the dataspace that have a common goal. A user may
interact with multiple sources while fulfilling a task, and examining
the specific actions is likely to reveal interesting semantic relation-
ships between them. Hence, as a first step towards Challenge 5.1
we have the following recognition problem:

SUB-CHALLENGE 5.2. Develop algorithms for grouping actions
on a dataspace into tasks.

Recall that semantic mappings are only one kind of relationship
we may have between sources in a dataspace. Hence, our goal here
is to go beyond the reuse of human attention for creating semantic
mappings. Any process that creates new semantically meaningful
relationships between data sources is valuable, including approxi-
mate mappings or even clustering data sources together so a human
can later decide whether it is worth investing additional effort to
create more precise mappings.

7

In addition to leveraging users’ actions, the system can also take
a more proactive approach to soliciting useful semantic information
from users:

SUB-CHALLENGE 5.3. Develop facilities for explicit enhance-
ment of dataspace information that give high return on the invest-
ment of human attention.

It won’t always be necessary to leverage human attention implic-
itly. There will be cases where it is reasonable to expect people to
augment a dataspace with explicit labels, links, annotations, classi-
fications, and so forth. In most instances, however, humans will not
make such efforts unless there is personal payoff for their activities.
The goal is to give immediate and incremental leverage from any
enhancements made. One approach is to support superimposing in-
formation [43] over dataspace sources, which can be used to over-
lay structure on subsets of dataspace information [10, 19], which
can in turn support new navigation paths for query in the datas-
pace [46]. Another example of this approach was taken in [48],
where the system used an active learning method to carefully se-
lect questions that helped the system reconcile different references
to the same real-world object.

Finally, we have the following theoretical challenge:

SUB-CHALLENGE 5.4. Develop a formal framework for learn-
ing from human attention in dataspaces.

The formal framework needs to include at least the following
components:

• A definition of the specific learning problem. For example,
we may try to learn a semantic mapping between two specific
data sources, or we may try to learn rules for mapping any
pair of sources in a particular domain. (In [20] the goal was
to learn rules for mapping an arbitrary source into a fixed
mediated schema).

• In either of the cases above, we need a formalism for describ-
ing approximate semantic mappings and distances between
semantic mappings (i.e., the distance metric for determining
the quality of proposed mappings).

• We need to spell out the space of possible mappings the
learning problem will consider.

• Finally, we need a way of interpreting our training examples,
i.e., a mapping between training examples and constraints on
the space. In the simple case, a training example is exactly a
semantic mapping in the search space. However, suppose a
user writes a pair of queries over two data sources, but uses
the same constant in both queries. How do we turn that in-
formation into some form of a training example?

As with most theoretical analyses of learning problems that pro-
vide generous upper bounds on the complexity of learnability, we
also need to understand which constraints on the domain and on the
training examples making learning easier in practice.

6. CONCLUSIONS
We described a broad research agenda for building dataspace

support platforms that involves a range of theoretical and practical
challenges. There are, of course, several areas we did not touch on
that also pose important challenges, the primary ones being: sup-
porting relaxed notions of transactions and recovery and consider-
ing privacy and security of data.

We conclude with a few remarks on how to approach this agenda
as a community. We believe research on DSSPs should be mostly
bottom-up and exemplar driven, even when the contributions are
of theoretical nature. This orientation has several consequences for
interested researchers. First, we should start by addressing the sub-
challenges and addressing the bigger challenges as experience is
gained. Second, we should build an infrastructure into which re-
searchers can connect components of DSSPs as they build them.
In fact, interoperability and interchangeability of multiple compo-
nents is key to the success of DSSPs.

Finally, we should quickly establish one or more public ”data-
space sandboxes” in which researchers can play. Each sandbox
should have a significant number of distinct data sources, along
with appropriate management systems or ancilliary programs for
accessing them. Ideally, there would also be a corpus of search,
query and task descriptions that represent realistic uses of the datas-
pace. While there might be an ”entry-level” sandbox that a research
group can download and install locally, to present dataspace prob-
lems in their full generality, a sandbox should include some mas-
sive sources and some sources that are being actively updated (and
possibly have new sources joining from time to time). Such a sand-
box should thus provide local hosting for DSSP components under
test. Hopefully, some premier web search companies and scien-
tific research groups can create such sample dataspaces for public
consumption.

Acknowledgments
We would like to thank Serge Abiteboul, Roberto Bayardo, Phil
Bernstein, Mike Carey, David DeWitt, AnHai Doan, Laura Haas,
Zack Ives, Donald Kossmann, Mike Stonebraker, Dan Suciu, Jeff
Ullman, Gerhard Weikum, and Stan Zdonik for useful advice and
feedback on previous versions of this paper. We would like to thank
the members of the Trio Project, and especially Omar Benjelloun,
Anish Das Sarma and Jennifer Widom for many discussions re-
garding management of uncertain data and lineage. The work was
funded the following grants: NSF IIS-0534762, IIS-9985114 and
IIS-0415175.

7. REFERENCES
[1] Shaul Dar aand Gadi Entin, Shai Geva, and Eran Palmon.

DTL’s dataspot: Database exploration using plain language.
In Proc. of VLDB, pages 645–649, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das.
Dbxplorer: A system for keyword-based search over
relational databases. In Proc. of ICDE, pages 5–16, 2002.

[4] Sihem Amer-Yahia, Nick Koudas, Amlie Marian, Divesh
Srivastava, and David Toman. Structure and content scoring
for xml. In Proc. of VLDB, pages 361–372, 2005.

[5] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent
Query Answers in Inconsistent Databases. In Proc. of ACM
PODS, 1999.

[6] D. Barbará, H. Garcia-Molina, and D. Porter. The
Management of Probabilistic Data. IEEE Trans. Knowl. Data
Eng., 1992.

[7] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage.
http://dbpubs.stanford.edu/pub/2005-39, 2005.

[8] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya. An
annotation management system for relational databases.
Proc. of VLDB, 2004.

8

[9] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, and S. Sudarshan. Keyword searching and
browsing in databases using BANKS. In Proc. of ICDE,
pages 431–440, 2002.

[10] Shawn Bowers, Lois M. L. Delcambre, and David Maier.
Superimposed schematics: Introducing e-r structure for
in-situ information selections. In ER, pages 90–104, 2002.

[11] P. Buneman, S. Khanna, and W. Tan. Why and where: A
charaterization of data provenance. Proc. of ICDT, 2001.

[12] A.K. Chandra and P.M. Merlin. Optimal implementation of
conjunctive queries in relational databases. In Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing,
pages 77–90, 1977.

[13] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard
Weikum. Integrating db and ir technologies: what is the
sound of one hand clapping. In Proc. of CIDR, 2005.

[14] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations. VLDB Journal, 2003.

[15] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of
view data in a warehousing environment. ACM TODS, 2000.

[16] N. Dalvi and D. Suciu. Efficient Query Evaluation on
Probabilistic Databases. In Proc. of VLDB, 2004.

[17] N. Dalvi and D. Suciu. Answering Queries from Statistics
and Probabilistic Views. In Proc. of VLDB, 2005.

[18] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working Models for Uncertain Data. In Proc. of ICDE, April
2006.

[19] Lois M. L. Delcambre, David Maier, Shawn Bowers,
Mathew Weaver, Longxing Deng, Paul Gorman, Joan Ash,
Mary Lavelle, and Jason Lyman. Bundles in captivity: An
application of superimposed information. In Proc. of ICDE,
pages 111–120, 2001.

[20] Anhai Doan, Pedro Domingos, and Alon Halevy.
Reconciling schemas of disparate data sources: a machine
learning approach. In Proc. of SIGMOD, 2001.

[21] Xin Dong and Alon Halevy. A Platform for Personal
Information Management and Integration. In Proc. of CIDR,
2005.

[22] Xin (Luna) Dong, Alon Y. Halevy, Jayant Madhavan, Ema
Nemes, and Jun Zhang. Similarity search for web services.
In Proc. of VLDB, 2004.

[23] S. T. Dumais, E. Cutrell, J. J. Cadiz E., G. Jancke, R. Sarin,
and D. C. Robbins. Stuff i’ve seen: A system for personal
information retrieval and re-use. In SIGIR, 2003.

[24] M. Franklin, A. Halevy, and D. Maier. From databases to
dataspaces: A new abstraction for information management.
Sigmod Record, 34(4):27–33, 2005.

[25] Ariel Fuxman, Elham Fazli, and Renee J. Miller. Conquer:
efficient management of inconsistent databases. In Proc. of
SIGMOD, pages 155–166, New York, NY, USA, 2005. ACM
Press.

[26] Jim Gemmell, Roger Lueder, and Gordon Bell. Living with a
lifetime store. In Workshop on Ubiquitous Experience
Media, 2003.

[27] Lise Getoor and John Grant. Prl: A logical approach to
probabilistic relational models. Machine Learning Journal,
62, 2006.

[28] Google.com. Google base. base.google.com, 2005.
[29] G. Grahne. Dependency Satisfaction in Databases with

Incomplete Information. In Proc. of VLDB, 1984.
[30] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel

Shanmugasundaram. XRANK: Ranked keyword search over
XML documents. In Proc. of SIGMOD, pages 16–27, 2003.

[31] Alon Y. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4), 2001.

[32] Bin He and Kevin Chen-Chuan Chang. Statistical schema
integration across the deep web. In Proc. of SIGMOD, 2003.

[33] Vagelis Hristidis, Luis Gravano, and Yannis
Papakonstantinou. Efficient ir-style keyword search over
relational databases. In Proc. of VLDB, pages 850–861, 2003.

[34] T. Imielinski and W. Lipski Jr. Incomplete Information in
Relational Databases. Journal of the ACM, 1984.

[35] Z. G. Ives, N. Khandelwal, A. Kapur, and M. Cakir.
Orchestra: Rapid, collaborative sharing of dynamic data. In
Proc. of CIDR, 2005.

[36] Phokion Kolaitis. Schema mappings, data exchange, and
metadata management. In Proc. of ACM PODS, pages
61–75, 2005.

[37] D. Koller and A. Pfeffer. Probabilistic frame-based systems.
In Proceedings of the Fifteenth National Conference on
Artificial Intelligence, pages 580–587, Madison, WI, 1998.
AAAI Press.

[38] L. V. S. Lakshmanan, N. Leone, R. Ross, and V.S.
Subrahmanian. ProbView: A Flexible Probabilistic Database
System. ACM TODS, 1997.

[39] Maurizio Lenzerini. Data integration: A theoretical
perspective. In Proc. of PODS, 2002.

[40] A. Y. Levy, R. E. Fikes, and S. Sagiv. Speeding up inferences
using relevance reasoning: A formalism and algorithms.
Artificial Intelligence, 1997.

[41] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille.
Querying heterogeneous information sources using source
descriptions. In Proc. of VLDB, pages 251–262, Bombay,
India, 1996.

[42] Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and
Alon Halevy. Corpus-based schema matching. In Proc. of
ICDE, pages 57–68, 2005.

[43] David Maier and Lois M. L. Delcambre. Superimposed
information for the internet. In WebDB, pages 1–9, 1999.

[44] R. McCann, A. Doan, A. Kramnik, and V. Varadarajan.
Building data integration systems via mass collaboration. In
Proc. of the SIGMOD-03 Workshop on the Web and
Databases (WebDB-03), 2003.

[45] Sudarshan Murthy, Lois M. L. Delcambre, David Maier, and
Shawn Bowers. Putting integrated information in context:
Superimposing conceptual models with sparce. In APCCM,
pages 71–80, 2004.

[46] Sudarshan Murthy, David Maier, and Lois M. L. Delcambre.
Querying bi-level information. In WebDB, pages 7–12, 2004.

[47] Dennis Quan, David Huynh, and David R. Karger. Haystack:
a platform for authoring end user semantic web applications.
In ISWC, 2003.

[48] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In SIGKDD, 2002.

[49] Nicholas E. Taylor and Zachary G. Ives. Reconciling while
tolerating disagreement in collaborative data sharing. In
Proc. of SIGMOD, 2006.

[50] Luis von Ahn and Laura Dabbish. Labeling images with a
computer game. In Proceedings of ACM CHI, Vienna,
Austria, 2004.

[51] J. Widom. Trio: A System for Integrated Management of
Data, Accuracy, and Lineage. In Proc. of CIDR, 2005.

9

