
Fast Algorithms for Mining Association Rules

Rakesh Agrawal Ramakrishnan S&ant*

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

Abstract
We consider the problem of discovering association rules
between items in a large database of sales transactions.
We present two new algorithms for solving thii problem
that are fundamentally different from the known algo-
rithms. Empirical evaluation shows that these algorithms
outperform the known algorithms by factors ranging from
three for small problems to more than an order of mag-
nitude for large problems. We also show how the best
features of the two proposed algorithms can be combined
into a hybrid algorithm, called AprioriHybrid. Scale-up
experiments show that AprioriHybrid scales linearly with
the number of transactions. AprioriHybrid also has ex-
cellent scale-up properties with respect to the transaction
size and the number of items in the database.

1 Introduction

Progress in bar-code technology has made it possi-
ble for retail organizations to collect and store mas-
sive amounts of sales data, referred to as the basket
data. A record in such data typically consists of the
transaction date and the items bought in the trans-
action. Successful organizations view such databases
as important pieces of the marketing infrastructure.
They are interested in instituting information-driven
marketing processes, managed by database technol-
ogy, that enable marketers to develop and implement
customized marketing programs and strategies [S].

The problem of mining association rules over basket
data was introduced in [4]. An example of such a
rule might be that 98% of customers that purchase

*Visiting from the Department of Computer Science, Uni-
versity of Wisconsin, Madison.

Permission to copy without fee all or part of this material
is granted provided that the copies are not made OT distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and itr date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copq otherwise, or to republish, nquins
a fee and/or special permisrion from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

tires and auto accessories also get automotive services
done. Finding all such rules is valuable for cross-
marketing and attached mailing applications. Other
applications include catalog design, add-on sales,
store layout, and customer segmentation based on
buying patterns. The databases involved in these
applications are very large. It is imperative, therefore,
to have fast algorithms for this task.

The following is a formal statement of the problem
[4]: Let Z = {ir,iz, . . . , im} be a set of literals,
called items. Let 2) be a set of transactions, where
each transaction T is a set of items such that T c
Z. Associated with each transaction is a unique
identifier, called its TID. We say that a transaction
T contains X, a set of some items in Z, if X c T.
An association rzle is an implication of the form
X q Y, where X C Z, Y c 2, and X rl Y = 0.
The rule X a Y holds in the transaction set ‘D with
confidence c if c% of transactions in D that contain
X also contain Y. The rule X _ Y has support s
in the transaction set V if s% of transactions in V
contain X U Y. Our rules are somewhat more general
than in [4] in that we allow a consequent to have more
than one item.

Given a set of transactions ‘D, the problem of min-
ing association rules is to generate all association rules
that have support and confidence greater than the
user-specified minimum support (called minsup) and
minimum confidence (called minconf) respectively.
Our discussion is neutral with respect to the repre-
sentation of V. For example, V could be a data file,
a relational table, or the result of a relational expres-
sion.

An algorithm for finding all association rules,
henceforth referred to as the AIS algorithm, was pre-
sented in [4]. Another algorithm for this task, called
the SETM algorithm, has been proposed in [13]. In
this paper, we present two new algorithms, Apriori
and AprioriTid, that differ fundamentally from these
algorithms. We present experimental results showing

487

that the proposed algorithms always outperform the
earlier algorithms. The performance gap is shown to
increase with problem size, and ranges from a fac-
tor of three for small problems to more than an or-
der of magnitude for large problems. We then dis-
cuss how the best features of Apriori and Apriori-
Tid can be combined into a hybrid algorithm, called
AprioriHybrid. Experiments show that the Apriori-
Hybrid has excellent scale-up properties, opening up
the feasibility of mining association rules over very
large databases.

The problem of finding association rules falls within
the purview of database mining [3] [12], also called
knowledge discovery in databases [21]. Related, but
not directly applicable, work includes the induction
of classification rules [S] [ll] [22], discovery of causal
rules [19], learning of logical definitions [18], fitting
of functions to data [15], and clustering [9] [lo]. The
closest work in the machine learning literature is the
KID3 algorithm presented in [20]. If used for finding
all association rules, this algorithm will make as many
passes over the data as the number of combinations
of items in the antecedent, which is exponentially
large. Related work in the database literature is
the work on inferring functional dependencies from
data [16]. Functional dependencies are rules requiring
strict satisfaction. Consequently, having determined
a dependency X + A, the algorithms in [16] consider
any other dependency of the form X + Y + A
redundant and do not generate it. The association
rules we consider are probabilistic in nature. The
presence of a rule X + A does not necessarily mean
that X + Y + A also holds because the latter may
not have minimumsupport. Similarly, the presence of
rules X -+ Y and Y + Z does not necessarily mean
that X -+ Z holds because the latter may not have
minimum confidence.

There has been work on quantifying the “useful-
ness” or “interestingness” of a rule [20]. What is use-
ful or interesting is often application-dependent. The
need for a human in the loop and providing tools to
allow human guidance of the rule discovery $rocess
has been articulated, for example, in [7] [14]. We do
not discuss these issues in this paper, except to point
out that these are necessary features of a rule discov-
ery system that may use our algorithms as the engine
of the discovery process.

1.1 Problem Decomposition and Paper
Organization

The problem of discovering all association rules can
be decomposed into two subproblems [4]:

1. Find all sets of items (itemseis) that have transac-
tion support above minimum support. The support

2.

for an itemset is the number of transactions that
contain the itemset. Itemsets with minimum sup-
port are called large itemsets, and all others small
itemsets. In Section 2, we give new algorithms,
Apriori and AprioriTid, for solving this problem.

Use the large itemsets to generate the desired rules.
Here is a straightforward algorithm for this task.
For every large itemset 1, find all non-empty subsets
of 1. For every such subset a, output a rule of
the form a =+ (1 - a) if the ratio of support(l)
to support(a) is at least minconf We need to
consider all subsets of 1 to generate rules with
multiple consequents. Due to lack of space, we do
not discuss this subproblem further, but refer the
reader to [5] for a fast algorithm.

In Section 3, we show the relative performance
of the proposed Apriori and AprioriTid algorithms
against the AIS [4] and SETM [13] algorithms.
To make the paper self-contained, we include an
overview of the AIS and SETM algorithms in this
section. We also describe how the Apriori and
AprioriTid algorithms can be combined into a hybrid
algorithm, AprioriHybrid, and demonstrate the scale-
up properties of this algorithm. We conclude by
pointing out some related open problems in Section 4.

2 Discovering Large Itemsets

Algorithms for discovering large itemsets make mul-
tiple passes over the data. In the first pass, we count
the support of individual items and determine which
of them are large, i.e. have minimumsupport. In each
subsequent pass, we start with a seed set of itemsets
found to be large in the previous pass. We use this
seed set for generating new potentially large itemsets,
called candidate itemsets, and count the actual sup
port for these candidate itemsets during the pass over
the data. At the end of the pass, we determine which
of the candidate itemsets are actually large, and they
become the seed for the next pass. This process con-
tinues until no new large itemsets are found.

The Apriori and AprioriTid algorithms we propose
differ fundamentally from the AIS [4] and SETM [13]
algorithms in terms of which candidate itemsets are
counted in a pass and in the way that those candidates
are generated. In both the AIS and SETM algorithms,
candidate itemsets are generated on-the-fly during the
pass as data is being read. Specifically, after reading
a transaction, it is determined which of the itemsets
found large in the previous pass are present in the
transaction. New candidate itemsets are generated by
extending these large itemsets with other items in the
transaction. However, as we will see, the disadvantage

488

is that this results in unnecessarily generating and
counting too many candidate itemsets that turn out
to be small.

The Apriori and AprioriTid algorithms generate
the candidate itemsets to be counted in a pass by
using only the itemsets found large in the previous
pass - without considering the transactions in the
database. The basic intuition is that any subset
of a large itemset must be large. Therefore, the
candidate itemsets having k items can be generated
by joining large itemsets having k - 1 items, and
deleting those that contain any subset that is not
large. This procedure results in generation of a much
smaller number of candidate itemsets.

The AprioriTid algorithm has the additional prop-
erty that the database is not used at all for count-
ing the support of candidate itemsets after the first
pass. Rather, an encoding of the candidate itemsets
used in the previous pass is employed for this purpose.
In later passes, the size of this encoding can become
much smaller than the database, thus saving much
reading effort. We will explain these points in more
detail when we describe the algorithms.

Notation We assume that items in each transaction
are kept sorted in their lexicographic order. It is
straightforward to adapt these algorithms to the case
where the database 2, is kept normalized and each
database record is a <TID, item> pair, where TID is
the identifier of the corresponding transaction.

We call the number of items in an itemset its size,
and call an itemset of size k a k-itemset. Items within
an itemset are kept in lexicographic order. We use
the notation c[l] . c[2] c[k] to represent a k-
itemset c consisting of items c[l], c[2], . . .c[k], where
c[l] < c[2] < . . . < c[k]. If c = X + Y and Y
is an m-itemset, we also call Y an m-eziension of
X. Associated with each itemset is a count field to
store the support for this itemset. The count field is
initialized to zero when the itemset is first created.

We summarize in Table 1 the notation used in the
algorithms. The set i?k is used by AprioriTid and will
be further discussed when we describe this algorithm.

2.1 Algorithm Apriori

Figure 1 gives the Apriori algorithm. The first pass
of the algorithm simply counts item occurrences to
determine the large l-item&s. A subsequent pass,
say pass k, consists of two phases. First, the large
itemsets Lk-i found in the (k-1)th pass are used to
generate the candidate itemsets ck, using the apriori-
gen function described in Section 2.1.1. Next, the
database is scanned and the support of candidates in
ck is counted. For fast counting, we need to efficiently
determine the candidates in ck that are contained in a

Table 1: Notation

k-item& An itemset having k items.
Set of large k-items&

Lk (those with miniium support).
Each member of this set haa two fields:
i) itemset and ii) support count.
Set of candidate k-item&s

ck (potentiahy large itemsets).
Each member of this set has two fields:
i) itemset and ii) support count.

1 Set of candidate k-itemsets when the TIDs
of the generating transactions are kept
associated with the candidates.

given transaction t. Section 2.1.2 describes the subset
function used for this purpose. See [5] for a discussion
of buffer management.

1) L1 = {large 1-itemsets};
2) for (k = 2; Lk-1 # 0; k++) do begin

3) ck = apIiO&geu(&l); // New candidates
4) forall transactions 1 E 2) do begin
5) C* = S&S&(&, t); // Candidatea COntahd in t

6) forall candidates c E Cr do

7) c.count++;

8) end

9) Lk = {C E ck 1 C.count 2 minsup}
10) end
11) Answer = Uk Lk;

Figure 1: Algorithm Apriori

2.1.1 Apriori Candidate Generation
The apriori-gen function takes as argument Lk-1,
the set of all large (k - 1)-itemsets. It returns a
superset of the set of all large k-item&s. The
function works as follows. ’ First, in the join step,
we join Lk-1 with Lk-1:

S&!Ct p.iteml, p.item2, p.iteIUk-1, q.itemk-1

from Lk-1 PI Lk-1 !I

where p.iteml = q.iteml, . . ., phemk-2 = q.iteXUk-2,

phmk-1 < q.iteIIIk-1;

Next, in the prune step, we delete all itemsets c E ck
such that some (k-1)-subset of c is not in Lk-1:

‘Concurrent to our work, the following two-step candidate
generation procedure has been proposed in [17)

C~={XuX’IX,X’~Lk-l,(XnX’(=k-2}

ck = {x E CL Ix COntdM k membm of &-I}

These two steps are similar to our join and pruue steps
respectively. However, in general, step 1 would produce a
supemet of the candidates produced by our join step.

489

forall itemsets c E Ck do
forall (k-l)-subsets s of c do

if (s fZ LI-1) then
delete c from ck;

Example Let Ls be ((1 2 31, (1 2 4}, (1 3 4}, (1
3 5}, (2 3 4)). After the join step, Cd will be { { 1 2 3
4}, (13 4 5) }. Th e p rune step will delete the itemset
(1 3 4 5) because the itemset (1 4 5) is not in LB.
We will then be left with only (1 2 3 4) in Cd.

Contrast this candidate generation with the one
used in the AIS and SETM algorithms. In pass k
of these algorithms, a database transaction t is read
and it is determined which of the large itemsets in
Lk-i are present in t. Each of these large itemsets
I is then extended with all those large items that
are present in t and occur later in the lexicographic
ordering than any of the items in 1. Continuing with
the previous example, consider a transaction (1 2
3 4 5). In the fourth pass, AIS and SETM will
generate two candidates, { 1 2 3 4) and { 1 2 3 5},
by extending the large itemset (1 2 3). Similarly, an
additional three candidate itemsets will be generated
by extending the other large itemsets in LB, leading
to a total of 5 candidates for consideration in the
fourth pass. Apriori, on the other hand, generates
and counts only one itemset, { 1 3 4 5}, because it
concludes a priori that the other combinations cannot
possibly have minimum support.

Correctness We need to show that Ck _> Lk.
Clearly, any subset of a large itemset must also
have minimum support. Hence, if we extended each
itemset in Lk-i with all possible items and then
deleted all those whose (k - 1)-subsets were not in
Lk-1, we would be left with a superset of the itemsets
in Lk.

The join is equivalent to extending Lk-1 with each
item in the database and then deleting those itemsets
for which the (k-1)-itemset obtained by deleting the
(h-1)th item is not in L&l. The condition p.itemk.,i
< q.itemk-i simply ensures that no duplicates are
generated. Thus, after the join step, ck _> Lk. By
similar reasoning, the prune step, where we delete
from CA! all itemsets whose (k- 1)-subsets are not in
Lk-1, also does not delete any itemset that could be
in Lk.

Variation: Counting Candidates of Multiple
Sizes in One Pass Rather than counting only
candidates of size k in the kth paas, we can also
count the candidates Ci+i, where Ci,, is generated
from Ck, etc. Note that CL,, > ck+r since ck+i is
generated from La. This variation can pay off in the

later passes when the cost of counting and keeping in
memory additional Ci+r - ck+r candidates becomes
less than the cost of scanning the database.
2.1.2 Subset Function

Candidate itemsets Ck are stored in a hash-tree. A
node of the hash-tree either contains a list of itemsets
(a leaf node) or a hash table (an interior node). In an
interior node, each bucket of the hash table points to
another node. The root of the hash-tree is defined to
be at depth 1. An interior node at depth d points to
nodes at depth d+ 1. Itemsets are stored in the leaves.
When we add an itemset c, we start from the root and
go down the tree until we reach a leaf. At an interior
node at depth d, we decide which branch to follow
by applying a hash function to the dth item of the
itemset. All nodes are initially created as leaf nodes.
When the number of itemsets in a leaf node exceeds
a specified threshold, the leaf node is converted to an
interior node.

Starting from the root node, the subset function
finds all the candidates contained in a transaction
t aa follows. If we are at a leaf, we find which of
the itemsets in the leaf are contained in t and add
references to them to the answer set. If we are at an
interior node and we have reached it by hashing the
item i, we hash on each item that comes after i in t
and recursively apply this procedure to the node in
the corresponding bucket. For the root node, we hash
on every item in t.

To see why the subset function returns the desired
set of references, consider what happens at the root
node. For any itemset c contained in transaction t, the
first item of c must be in t. At the root, by hashing on
every item in t, we ensure that we only ignore itemsets
that start with an item not in t. Similar arguments
apply at lower depths. The only additional factor is
that, since the items in any itemset are ordered, if we
reach the current node by hashing the item i, we only
need to consider the items in t that occur after i.

2.2 Algorithm AprioriTid

The AprioriTid algorithm, shown in Figure 2, also
uses the apriori-gen function (given in Section 2.1.1)
to determine the candidate itemaets before the pass
begins. The interesting feature of this algorithm is
that the database V is not used for counting support
after the first pass. Rather, the set ck is used
for this purpose. Each member of the set ck is
of the form < TID, {&} >, where each x1; is a
potentially large k-item& present in the transaction
with identifier TID. For k = 1, ??r corresponds to
the database V, although conceptually each item i
is replaced by the itemset (i}. For k > 1, ck is
generated by the algorithm (step 10). The member

490

of ck corresponding to transaction t is <t.TID,
{c E Ck IC contained in t)>. If a transaction does
not contain any candidate Ic-itemset, then ??k will
not have an entry for this transaction. Thus, the
number of entries in Ek may be smaller than the
number of transactions in the database, especially for
large values of k. In addition, for large values of Ic,
each entry may be smaller than the corresponding
transaction because very few candidates may be
contained in the transaction. However, for small
values for L, each entry may be larger than the
corresponding transaction because an entry in Ck
includes all candidate k-itemsets contained in the
transaction.

In Section 2.2.1, we give the data structures used
to implement the algorithm. See [5] for a proof of
correctness and a discussion of buffer management.

1) L1 = {large l-item&s};

2) G = database V;
3) for (k = 2; Lkel # 8; k++) do begin
4) Ck = apriori-gen(Lk-1); // New candidates
5) Ek = B;

6) forall entries t E Ek-1 do begin
7) // determine candidate itemsets in Ck contained

// in the transaction with identifier L.TID
Ct = {c E Ck 1 (c - c[k]) E ‘kset-of-itemsets A

(c - c[k - 11) E &set-of-itemsets};

8) forall candidates c E Ct do
9) c.count++;
10) if (C, # 0) then ck += < t.TID, Ct >;
11) end
12) Lk = {c E ck 1 c.count 2 minsup}
13) end
14) Answer = uk Lk;

Figure 2: Algorithm AprioriTid

Example Consider the database in Figure 3 and
assume that minimum support is 2 transactions.
Calling apriori-gen with L1 at step 4 gives the
candidate itemsets Cs. In steps 6 through 10, we
count the support of candidates in Cz by iterating over
the entries in cl and generate ea. The first entry in
Cl is { (11 (31 (41 1, corresponding to transaction
100. The Ct at step 7 corresponding to this entry t
is { { 1 3) }, because { 1 3) is a member of C2 and
both ((1 3) - (1)) and ((1 3) - (3)) are members of
t.set-of-item&s.

Calling apriori-gen with Lp gives C3. Making a pass
over the data with c2 and C3 generates Es. Note that
there is no entry in Es for the transactions with TIDs
100 and 400, since they do not contain any of the
itemsets in Cs. The candidate (2 3 5) in C3 turns
out to be large and is the only member of LB. When

we generate C4 using L3, it turns out to be empty,
and we terminate.

Database

Ll
Itemset Support

(11 2

77

I:; 3 3

(5) 3

1

pjjpri& , ,

1 I ,

1
2
Support

1
2
1
2
3
2

*,

Figure 3: Example
2.2.1 Data Structures

We assign each candidate itemset a unique number,
called its ID. Each set of candidate itemsets Ck is kept
in an array indexed by the IDS of the itemsets in CA?.
A member of Ek is now of the form < TID, {ID} >.
Each i?‘, is stored in a sequential structure.

The apriori-gen function generates a candidate k-
itemset Ck by joining two large (k - I)-itemsets. We
maintain two additional fields for each candidate
itemset: i) generators and ii) edensions. The
generators field of a candidate itemset Ck stores the
IDS of the two large (k - 1)-itemsets whose join
generated CI: . The extensions field of an itemset
Cg stores the IDS of all the (6 + 1)-candidates that
are extensions of ck. Thus, when a candidate ck is
generated by joining Ii-1 and Ziel, we save the IDS
of I:-1 and IiD1 in the generators field for ck. At the
same time, the ID of ck is added to the extensions
field of Zisl.

491

We now describe how Step 7 of Figure 2 is
implemented using the above data structures. Recall
that the t.set-of-itemsets field of an entry t in ck-1
gives the IDS of all (k - 1)-candidates contained in
transaction t.TID. For each such candidate ck-i the
extensions field gives Tk, the set of IDS of all the
candidate b-item&s that are extensions of c&i. For
each Ck in Tk, the generators field gives the IDS of
the two itemsets that generated ck. If these itemsets
are present in the entry for t.set-of-itemsets, we can
conclude that ck is present in transaction t.TID, and
add c) to Ct.

3 Performance
To assess the relative performance of the algorithms
for discovering large sets, we performed several
experiments on an IBM RS/SOOO 530H workstation
with a CPU clock rate of 33 MHz, 64 MB of main
memory, and running AIX 3.2. The data resided in
the AIX file system and was stored on a 2GB SCSI
3.5” drive, with measured sequential throughput of
about 2 MB/second.

We first give an overview of the AIS [4] and SETM
[13] algorithms against which we compare the per-
formance of the Apriori and AprioriTid algorithms.
We then describe the synthetic datasets used in the
performance evaluation and show the performance re-
sults. Finally, we describe how the best performance
features of Apriori and AprioriTid can be combined
into an AprioriHybrid algorithm and demonstrate its
scale-up properties.

3.1 The AIS Algorithm

Candidate itemsets are generated and counted on-
the-fly as the database is scanned. After reading a
transaction, it is determined which of the itemsets
that were found to be large in the previous pass are
contained in this transaction. New candidate itemsets
are generated by extending these large itemsets with
other items in the transaction. A large itemset 1 is
extended with only those items that are large and
occur later in the lexicographic ordering of items than
any of the items in 1. The candidates generated
from a transaction are added to the set of candidate
itemsets maintained for the pass, or the counts of
the corresponding entries are increased if they were
created by an earlier transaction. See [4] for further
details of the AIS algorithm.

3.2 The SETM Algorithm

The SETM algorithm [13] was motivated by the desire
to use SQL to compute large itemsets. Like AIS,
the SETM algorithm also generates candidates on-
the-fly based on transactions read from the database.

It thus generates and counts every candidate itemset
that the AIS algorithm generates. However, to use the
standard SQL join operation for candidate generation,
SETM separates candidate generation from counting.
It saves a copy of the candidate itemset together with
the TID of the generating transaction in a sequential
structure. At the end of the pass, the support count
of candidate itemsets is determined by sorting and
aggregating this sequential structure.

SETM remembers the TIDs of the generating
transactions with the candidate itemsets. To avoid
needing a subset operation, it uses this information
to determine the large itemsets contained in the
transaction read. zk s ??k and is obtained by deleting
those candidates that do not have minimum support.
Assuming that the database is sorted in TID order,
SETM can easily find the large itemsets contained in a
transaction in the next pass by sorting & on TID. In
fact, it needs to visit every member of & only once in
the TID order, and the candidate generation can be
performed using the relational merge-join operation
[131*

The disadvantage of this approach is mainly due
to the size of candidate sets ck. For each candidate
itemset, the candidate set now has as many entries
as the number of transactions in which the candidate
itemset is present. Moreover, when we are ready to
count the support for candidate itemsets at the end
of the pass, i?k is in the wrong order and needs to be
sorted on itemsets. After counting and pruning out
small candidate itemsets that do not have minimum
support, the resulting set &! needs another sort on
TID before it can be used for generating candidates
in the next pass.

3.3 Generation of Synthetic Data

We generated synthetic transactions to evaluate the
performance of the algorithms over a large range of
data characteristics. These transactions mimic the
transactions in the retailing environment. Our model
of the “real” world is that people tend to buy sets
of items together. Each such set is potentially a
maximal large itemset. An example of such a set
might be sheets, pillow case, comforter, and ruffles.
However, some people may buy only some of the
items from such a set. For instance, some people
might buy only sheets and pillow case, and some only
sheets. A transaction may contain more than one
large itemset. For example, a customer might place an
order for a dress and jacket when ordering sheets and
pillow cases, where the dress and jacket together form
another large itemset. Transaction sizes are typically
clustered around a mean and a few transactions have
many items. Typical sizes of large itemsets are also

492

clustered around a mean, with a few large itemsets
having a large number of items,

To create a dataset, our synthetic data generation
program takes the parameters shown in Table 2.

Table 2: Parameters

ITI Average size of the transactions
111 Average size of the maximal potentially

I,1
IL1 Number of maximal potentially large itemsets

We first determine the size of the next transaction.
The size is picked from a Poisson distribution with
mean p equal to ITI. Note that if each item is chosen
with the same probability p, and there are N items,
the expected number of items in a transaction is given
by a binomial distribution with parameters N and p,
and is approximated by a Poisson distribution with
mean Np.

We then assign items to the transaction. Each
transaction is assigned a series of potentially large
itemsets. If the large itemset on hand does not fit in
the transaction, the itemset is put in the transaction
anyway in half the cases, and the itemset is moved to
the next transaction the rest of the cases.

Large itemsets are chosen from a set I of such
itemsets. The number of itemsets in ‘T is set to
ILj. There is an inverse relationship between IL1 and
the average support for potentially large itemsets.
An itemset in T is generated by first picking the
size of the itemset from a Poisson distribution with
mean ~1 equal to III. Items in the first itemset
are chosen randomly. To model the phenomenon
that large itemsets often have common items, some
fraction of items in subsequent itemsets are chosen
from the previous itemset generated. We use an
exponentially distributed random variable with mean
equal to the correlation level to decide this fraction
for each itemset. The remaining items are picked at
random. In the datasets used in the experiments,
the correlation level was set to 0.5. We ran some
experiments with the correlation level set to 0.25 and
0.75 but did not find much difference in the nature of
our performance results.

Each itemset in 1 has a weight associated with
it, which corresponds to the probability that this
itemset will be picked. This weight is picked from
an exponential distribution with unit mean, and is
then normalized so that the sum of the weights for all
the itemsets in 7 is 1. The next itemset to be put
in the transaction is chosen from 7 by tossing an ILI-
sided weighted coin, where the weight for a side is the

probability of picking the associated itemset.
To model the phenomenon that all the items in

a large itemset are not always bought together, we
assign each itemset in I a corruption level c. When
adding an itemset to a transaction, we keep dropping
an item from the itemset as long as a uniformly
distributed random number between 0 and 1 is less
than c. Thus for an itemset of size 1, we will add 1
items to the transaction 1 - c of the time, I- 1 items
c(1 - c) of the time, I- 2 items c2(1 - c) of the time,
etc. The corruption level for an itemset is fixed and
is obtained from a normal distribution with mean 0.5
and variance 0.1.

We generated datasets by setting N = 1000 and IL]
= 2000. We chose 3 values for ITI: 5, 10, and 20. We
also chose 3 values for 111: 2,4, and 6. The number of
transactions was to set to 100,000 because, as we will
see in Section 3.4, SETM could not be run for larger
values. However, for our scale-up experiments, we
generated datasets with up to 10 million transactions
(838MB for T20). Table 3 summarizes the dataset
parameter settings. For the same ITI and 101 values,
the size of datasets in megabytes were roughly equal
for the different values of 111.

Table 3: Parameter settings

Name I ITI 1 111 I 101 1 Size in Megabytes
T5.12.DlOOK 1 5 1 2 1 1OOK 1 2.4

3.4 Relative Performance

Figure 4 shows the execution times for the six
synthetic datasets given in Table 3 for decreasing
values of minimum support. As the minimum support
decreases, the execution times of all the algorithms
increase because of increases in the total number of
candidate and large itemsets.

For SETM, we have only plotted the execution
times for the dataset T5.12.DlOOK in Figure 4. The
execution times for SETM for the two datasets with
an average transaction size of 10 are given in Table 4.
We did not plot the execution times in Table 4
on the corresponding graphs because they are too
large compared to the execution times of the other
algorithms. For the three datasets with transaction
sizes of 20, SETM took too long to execute and
we aborted those runs as the trends were clear.
Clearly, Apriori beats SETM by more than an order
of magnitude for large datasets.

493

T5.12.DlOOK T10.12.DlOOK

E
E
F

m

60

50

I I

T10.14.DlOOK
3501 I

AIS --

300-

250 -

200 -

150 -

loo.

50-

or--
-Y

-
2 1.5 1 0.33 0.25

T20.14.DlOOK

“2 1.5 1 0.75 0.5 0.33 0.25
Minimum Support

IV I I
140~

ii~/~.yq

2 1.5 1 0.75
Minimum

supporlo.’ 0.33 0.25

T20.12.DlOOK

‘.ig

-2 1.5 1 0.75
Minimum SqporloB

0.33 0.25

T20.16.DlOOK
3500

AIS *
3om-

2500-

2 1.5 1 0.33 0.25
Minimum

0.75 S@pot5

Figure 4: Execution times

494

Table 4: Execution times in seconds for SETM

Algorithm Minimum Support
2.0% 1 1.5% 1 1.0% 1 0.75% J 0.5%

Dataset T10.12.DlOOK

SETM 74 161 838 1262 1878
Apriori 4.4 5.3 11.0 14.5 15.3

Dataset T10.14.DlOOK

SETM 41 91 659 929 1639
Apriori 3.8 4.8 11.2 17.4 19.3

Apriori beats AIS for all problem sizes, by factors
ranging from 2 for high minimum support to more
than an order of magnitude for low levels of support.
AIS always did considerably better than SETM. For
small problems, AprioriTid did about as well as
Apriori, but performance degraded to about twice as
slow for large problems.

3.5 Explanation of the Relative Performance

To explain these performance trends, we show in
Figure 5 the sizes of the large and candidate sets in
different passes for the T10.14.DlOOK dataset for the
minimum support of 0.75%. Note that the Y-axis in
this graph has a log scale.

l&o7

1 2 3 F%SSti”mber 5 6 7
Figure 5: Sizes of the large and candidate sets
(T10.14.DlOOK, minsup = 0.75%)

The fundamental problem with the SETM algo
rithm is the size of its i!?k sets. Recall that the size of
the set ??k is given by

c support-count(c),
candidate itemsets c

Thus, the sets ck are roughly S times bigger than the
corresponding ck sets, where S is the average support
count of the candidate itemsets. Unless the problem
size is very small, the i?k sets have to be written
to disk, and externally sorted twice, causing the

SETM algorithm to perform poorly.’ This explains
the jump in time for SETM in Table 4 when going
from 1.5% support to 1.0% support for datasets with
transaction size 10. The largest dataset in the scale-
up experimegs for SETM in [13] was still small
enough that CI: could fit in memory; hence they did
not encounter this jump in execution time. Note that
for the same minimum support, the support count for
candidate itemsets increases linearly with the number
of transactions. Thus, as we increase the number of
transactions for the same values of 12’1 and 111, though
the size of Ck does not change, the size of ck goes up
linearly. Thus, for,datas& with more transactions,
the performance gap between SETM and the other
algorithms will become even larger.

The problem with AIS is that it generates too many
candidates that later turn out to be small, causing
it to waste too much effort. Apriori also counts too
many small sets in the second pass (recall that C’s is
really a cross-product of Lr with Li). However, this
wastage decreases dramatically from the third pass
onward. Note that for the example in Figure 5, after
pass 3, almost every candidate itemset counted by
Apriori turns out to be a large set.

AprioriTid also has the problem of SETM that ck
tends to be large. However, the apriori candidate
generation used by AprioriTid generates significantly
fewer candidates than the transaction-baaed candi-
date generation used by SETM. As a result, the ??k of
AprioriTid has fewer entries than that of SETM. Apri-
oriTid is also able to use a single word (ID) to store
a candidate rather than requiring as many words as
the number of items in the candidate.3 In addition,
unlike SETM, AprioriTid does not have to sort i?‘,.
Thus, AprioriTid does not suffer as much as SETM
from maintaining Gk.

AprioriTid has the nice feature that it replaces a
pass over the original dataset by a pass over the set
??k. Hence, AprioriTid is very effective in later passes
when the size of ??a becomes small compared to the

2The cost of external sorting in SETM can be reduced
somewhat as follows. Before writing out entries in Ek to
dish, we can sort them on itemsets using an internal sorting
procedure, and write them as sorted runs. These sorted NOB
can then be merged to obtain support counts. However,
given the poor performance of SETM, we do not expect this
optimization to aRect the algorithm choice.

3For SETM to use IDS, it would have to maintain two
additional in-memory data structures: a hash table to 6nd
out whether .a candidate has been generated previousIy, and
a mapping from the IDS to candidates. However, this would
destroy the set-oriented nature of the algorithm. Aiso, once we
have the hash table which gives us the IDS of candidates, we
might as weil count them at the same time and avoid the two
externsl sorts. We experimented with this variant of SETM and
found that, while it did better than SETM, it stiil performed
much worse than Apriori or AprioriTid.

495

size of the database. Thus, we find that AprioriTid
beats Apriori when its ck sets can fit in memory and
the distribution of the large itemsets has a long tail.
When ck doesn’t fit in memory, there is a jump in
the execution time for AprioriTid, such as when going
from 0.75% to 0.5% for datasets with transaction size
10 in Figure 4. In this region, Apriori starts beating
AprioriTid.

3.6 Algorithm AprioriHybrid

It is not necessary to use the same algorithm in all the
passes over data. Figure 6 shows the execution times
for Apriori and AprioriTid for different passes over the
dataset T10.14.DlOOK. In the earlier passes, Apriori
does better than AprioriTid. However, AprioriTid
beats Apriori in later passes. We observed similar
relative behavior for the other datasets, the reason
for which is as follows. Apriori and AprioriTid
use the same candidate generation procedure and
therefore count the same itemsets. In the later
passes, the number of candidate itemsets reduces
(see the size of ck for Apriori and AprioriTid in
Figure 5). However, Apriori still examines every
transaction in the database. On the other hand,
rather than scanning the database, AprioriTid scans
ck for obtaining support counts, and the size of ck
has become smaller than the size of the database.
When the ??k sets can fit in memory, we do not even
incur the cost of writing them to disk.

0'
\

1 2 3 4 5 6 7

Figure 6: Per pass executiy times of Apriori and
AprioriTid (T10.14.DlOOK, minsup = 0.75%)

Based on these observations, we can design a
hybrid algorithm, which we call AprioriHybrid, that
uses Apriori in the initial passes and switches to
AprioriTid when it expects that the set ck at the
end of the pass will fit in memory. We use the
following heuristic to estimate if ck would fit in
memory in the next pass. At the end of the
current pass, we have the counts of the candidates

in ck. From this, we estimate what the size of ??k
would have been if it had been generated. This
Size, in words, is (Ccandidates c E ck Support(C) -!-
number of transactions). If ck in this pass was small
enough to fit in memory, and there were fewer large
candidates in the current pass than the previous pass,
we switch to AprioriTid. The latter condition is added
to avoid switching when ck in the current pass fits in
memory but ??k in the next pass may not.

Switching from Apriori to AprioriTid does involve
a cost. Assume that we decide to switch from Apriori
to AprioriTid at the end of the lath pass. In the
(Ic + 1)th pass, after finding the candidate itemsets
contained in a transaction, we will also have to add
their IDS to ck+i (see the description of AprioriTid
in Section 2.2). Thus there is an extra cost incurred
in this pass relative to just running Apriori. It is only
in the (k+2)th pass that we actually start running
AprioriTid. Thus, if there are no large (&l)-itemsets,
or no (h + 2)-candidates, we will incur the cost of
switching without getting any of the savings of using
AprioriTid.

Figure 7 shows the performance of AprioriHybrid
relative to Apriori and AprioriTid for three data&s.
AprioriHybrid performs better than Apriori in almost
all cases. For T10.12.DlOOK with 1.5% support,
AprioriHybrid does a little worse than Apriori since
the pass in which the switch occurred was the
last pass; AprioriHybrid thus incurred the cost of
switching without realizing the benefits. In general,
the advantage of AprioriHybrid over Apriori depends
on how the size of the Ck set decline in the later
passes. If ck remains large until nearly the end and
then has an abrupt drop, we will not gain much by
using AprioriHybrid since we can use AprioriTid only
for a short period of time after the switch. This is
what happened with the T20.16.DlOOK dataset. On
the other hand, if there is a gradual decline in the
size Of ck, AprioriTid can be used for a while after the
switch, and a significant improvement can be obtained
in the execution time.

3.7 Scale-up Experiment

Figure 8 shows how AprioriHybrid scales up as the
number of transactions is increased from 100,000 to
10 million transactions. We used the combinations
(T5.12) (T10.14), and (T20.16) for the average sizes
of transactions and itemsets respectively. All other
parameters were the same as for the data in Table 3.
The sizes of these datasets for 10 million transactions
were 239MB, 439MB and 838MB respectively. The
minimum support level was set to 0.75%. The
execution times are normalized with respect to the
times for the 100,000 transaction datasets in the first

496

T10.12.DlOOK
40

35-

30.

0
2 1.5 1 MlninwmSlpportO*5 0.75 0.33 0.25

T10.14.DlOOK
551 I

0' I

T20.16.DlOOK

1
E
F

"2 1.5 1 0.75
Minimum Sqqmt5

0.33 0.25

Figure 7: Execution times: AprioriHybrid

graph and with respect to the 1 million transaction
dataset in the second. As shown, the execution times
scale quite linearly.

0' 1
1 2.5

kmberofTraktbw(n&~~
10

Figure 8: Number of transactions scale-up

Next, we examined how AprioriHybrid scaled up
with the number of items. We increased the num-
ber of items from 1000 to 10,000 for the three pa-
rameter settings T5.12.DlOOK, T10.14.DlOOK and
T20.16.DlOOK. All other parameters were the same
as for the data in Table 3. We ran experiments for a
minimum support at 0.7556, and obtained the results
shown in Figure 9. The execution times decreased a
little since the average support for an item decreased
as we increased the number of items. This resulted
in fewer large itemsets and, hence, faster execution
times.

Finally, we investigated the scale-up as we increased
the average transaction size. The aim of this
experiment was to see how our data structures scaled
with the transaction size, independent of other factors
like the physical database size and the number of
large itemsets. We kept the physical size of the

497

T20.16 -
T10.14 -+--- -
T5.12 -a..--

Figure 9: Number of items scale-up

database roughly constant by keeping the product
of the average transaction size and the number of
transactions constant. The number of transactions
ranged from 200,000 for the database with an average
transaction size of 5 to 20,000 for the database with
an average transaction size 50. Fixing the minimum
support as a percentage would have led to large
increases in the number of large itemsets as the
transaction size increased, since the probability of
a itemset being present in a transaction is roughly
proportional to the transaction size. We therefore
fixed the minimum support level in terms of the
number of transactions. The results are shown in
Figure 10. The numbers in the key (e.g. 500) refer
to this minimum support. As shown, the execution
times increase with the transaction size, but only
gradually. The main reason for the increase was that
in spite of setting the minimum support in terms
of the number of transactions, the number of large
itemsets increased with increasing transaction length.
A secondary reason was that finding the candidates
present in a transaction took a little longer time.

4 Conclusions and Future Work
We presented two new algorithms, Apriori and Apri-
oriTid, for discovering all significant association rules
between items in a large database of transactions.
We compared these algorithms to the previously
known algorithms, the AIS [4] and SETM [13] algo
rithms. We presented experimental results, showing
that the proposed algorithms always outperform AIS
and SETM. The performance gap increased with the
problem size, and ranged from a factor of three for
small problems to more than an order of magnitude
for large problems.

We showed how the best features of the two pro-

OL ’ I
5 10 20 30 40 50

TransactionSize

Figure 10: Transaction size scale-up

posed algorithms can be combined into a hybrid al-
gorithm, called AprioriHybrid, which then becomes
the algorithm of choice for this problem. Scale-up ex-
periments showed that AprioriHybrid scales linearly
with the number of transactions. In addition, the ex-
ecution time decreases a little as the number of items
in the database increases. As the average transaction
size increases (while keeping the database size con-
stant), the execution time increases only gradually.
These experiments demonstrate the feasibility of u&
ing AprioriHybrid in real applications involving very
large databases.

The algorithms presented in this paper have been
implemented on several data repositories, including
the AIX file system, DBS/MVS, and DB2/6000.
We have also tested these algorithms against real
customer data, the details of which can be found in
[5]. In the future, we plan to extend this work along
the following dimensions:

l Multiple taxonomies (is-a hierarchies) over items
are often available. An example of such a
hierarchy is that a dish washer is a kitchen
appliance is a heavy electric appliance, etc. We
would like to be able to find association rules that
use such hierarchies.

l We did not consider the quantities of the items
bought in a transaction, which are useful for some
applications. Finding such rules needs further
work.

The work reported in this paper has been done
in the context of the Quest project at the IBM Al-
maden Research Center. In Quest, we are exploring
the various aspects of the database mining problem.
Besides the problem of discovering association rules,
some other problems that we have looked into include

498

the enhancement of the database capability with clas-
sification queries [2] and similarity queries over time
sequences [l]. We believe that database mining is an
important new application area for databases, com-
bining commercial interest with intriguing research
questions.

Acknowledgment We wish to thank Mike Carey
for his insightful comments and suggestions.

References

[l] R. Agrawal, C. Faloutsos, and A. Swami. Ef-
ficient similarity search in sequence databases.
In Proc. of the Fourth International Conference
on Foundations of Data Organization and Algo-
rithms, Chicago, October 1993.

[2] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and
A. Swami. An interval classifier for database
mining applications. In Proc. of the VLDB
Conference, pages 560-573, Vancouver, British
Columbia, Canada, 1992.

[3] R. Agrawal, T. Imielinski, and A. Swami.
Database mining: A performance perspective.
IEEE Bansactions on Knowledge and Data En-
gineering, 5(6):914-925, December 1993. Special
Issue on Learning and Discovery in Knowledge-
Based Databases.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proc. of the ACM SIGMOD Con-
ference on Management of Data, Washington,
D.C., May 1993.

[5] R. Agrawal and R. Srikant. Fast, algorithms for
mining association rules in large databases. Re-
search Report RJ 9839, IBM Almaden Research
Center, San Jose, California, June 1994.

[6] D. S. Associates. The new direct marketing.
Business One Irwin, Illinois, 1990.

[7] R. Brachman et al. Integrated support for data
archeology. In AAAI-93 Workshop on Knowledge
Discovery in Databases, July 1993.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, 1984.

[9] P. Cheeseman et al. Autoclass: A bayesian
classification system. In 5th Int’l Conf. on
Machine Learning. Morgan Kaufman, June 1988.

[lo] D. H. Fisher. Knowledge acquisition via incre-
mental conceptual clustering. Machine Learning,
2(2), 1987.

[ll] J. Han, Y. Cai, and N. Cercone. Knowledge
discovery in databases: An attribute oriented
approach. In Proc. of the VLDB Conference,
pages 547-559, Vancouver, British Columbia,
Canada, 1992.

[12] M. Holsheimer and A. Siebes. Data mining: The
search for knowledge in databases. Technical
Report CS-R9406, CWI, Netherlands, 1994.

[13] M. Ho&ma and A. Swami. Set-oriented mining
of association rules. Research Report RJ 9567,
IBM Almaden Research Center, San Jose, Cali-
fornia, October 1993.

[14] R. Krishnamurthy and T. Imielinski. Practi-
tioner problems in need of database research: Re-
search directions in knowledge discovery. SIG-
MOD RECORD, 20(3):76-78, September 1991.

[15] P. Langley, H. Simon, G. Bradshaw, and
J. Zytkow. Scientific Discovery: Computational
Explorations of the Creative Process. MIT Press,
1987.

[16] H. Mannila and K.-J. Raiha. Dependency
inference. In Proc. of the VLDB Conference,
pages 155-158, Brighton, England, 1987.

[17] H. Mannila, H. Toivonen, and A. I. Verkamo.
Efficient algorithms for discovering association
rules. In KDD-94: AAAI Workshop on Knowl-
edge Discovery in Databases, July 1994.

[18] S. Muggleton and C. Feng. Efficient induction
of logic programs. In S. Muggleton, editor,
Inductive Logic Programming. Academic Press,
1992.

[19] J. Pearl. Probabilistic reasoning in intelligent
systems: Networks of plausible inference, 1992.

[20] G. Piatestsky-Shapiro. Discovery, analy-
sis, and presentation of strong rules. In
G. Piatestsky-Shapiro, editor, Knowledge Dis-
covey in Databases. AAAI/MIT Press, 1991.

[21] G. Piatestsky-Shapiro, editor. Knowledge Dis-
covey in Databases. AAAI/MIT Press, 1991.

[22] J. R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufman, 1993.

499

