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Abstract 
We consider the problem of discovering association rules 
between items in a large database of sales transactions. 
We present two new algorithms for solving thii problem 
that are fundamentally different from the known algo- 
rithms. Empirical evaluation shows that these algorithms 
outperform the known algorithms by factors ranging from 
three for small problems to more than an order of mag- 
nitude for large problems. We also show how the best 
features of the two proposed algorithms can be combined 
into a hybrid algorithm, called AprioriHybrid. Scale-up 
experiments show that AprioriHybrid scales linearly with 
the number of transactions. AprioriHybrid also has ex- 
cellent scale-up properties with respect to the transaction 
size and the number of items in the database. 

1 Introduction 

Progress in bar-code technology has made it possi- 
ble for retail organizations to collect and store mas- 
sive amounts of sales data, referred to as the basket 
data. A record in such data typically consists of the 
transaction date and the items bought in the trans- 
action. Successful organizations view such databases 
as important pieces of the marketing infrastructure. 
They are interested in instituting information-driven 
marketing processes, managed by database technol- 
ogy, that enable marketers to develop and implement 
customized marketing programs and strategies [S]. 

The problem of mining association rules over basket 
data was introduced in [4]. An example of such a 
rule might be that 98% of customers that purchase 
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tires and auto accessories also get automotive services 
done. Finding all such rules is valuable for cross- 
marketing and attached mailing applications. Other 
applications include catalog design, add-on sales, 
store layout, and customer segmentation based on 
buying patterns. The databases involved in these 
applications are very large. It is imperative, therefore, 
to have fast algorithms for this task. 

The following is a formal statement of the problem 
[4]: Let Z = {ir,iz, . . . , im} be a set of literals, 
called items. Let 2) be a set of transactions, where 
each transaction T is a set of items such that T c 
Z. Associated with each transaction is a unique 
identifier, called its TID. We say that a transaction 
T contains X, a set of some items in Z, if X c T. 
An association rzle is an implication of the form 
X q Y, where X C Z, Y c 2, and X rl Y = 0. 
The rule X a Y holds in the transaction set ‘D with 
confidence c if c% of transactions in D that contain 
X also contain Y. The rule X _ Y has support s 
in the transaction set V if s% of transactions in V 
contain X U Y. Our rules are somewhat more general 
than in [4] in that we allow a consequent to have more 
than one item. 

Given a set of transactions ‘D, the problem of min- 
ing association rules is to generate all association rules 
that have support and confidence greater than the 
user-specified minimum support (called minsup) and 
minimum confidence (called minconf) respectively. 
Our discussion is neutral with respect to the repre- 
sentation of V. For example, V could be a data file, 
a relational table, or the result of a relational expres- 
sion. 

An algorithm for finding all association rules, 
henceforth referred to as the AIS algorithm, was pre- 
sented in [4]. Another algorithm for this task, called 
the SETM algorithm, has been proposed in [13]. In 
this paper, we present two new algorithms, Apriori 
and AprioriTid, that differ fundamentally from these 
algorithms. We present experimental results showing 
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that the proposed algorithms always outperform the 
earlier algorithms. The performance gap is shown to 
increase with problem size, and ranges from a fac- 
tor of three for small problems to more than an or- 
der of magnitude for large problems. We then dis- 
cuss how the best features of Apriori and Apriori- 
Tid can be combined into a hybrid algorithm, called 
AprioriHybrid. Experiments show that the Apriori- 
Hybrid has excellent scale-up properties, opening up 
the feasibility of mining association rules over very 
large databases. 

The problem of finding association rules falls within 
the purview of database mining [3] [12], also called 
knowledge discovery in databases [21]. Related, but 
not directly applicable, work includes the induction 
of classification rules [S] [ll] [22], discovery of causal 
rules [19], learning of logical definitions [18], fitting 
of functions to data [15], and clustering [9] [lo]. The 
closest work in the machine learning literature is the 
KID3 algorithm presented in [20]. If used for finding 
all association rules, this algorithm will make as many 
passes over the data as the number of combinations 
of items in the antecedent, which is exponentially 
large. Related work in the database literature is 
the work on inferring functional dependencies from 
data [16]. Functional dependencies are rules requiring 
strict satisfaction. Consequently, having determined 
a dependency X + A, the algorithms in [16] consider 
any other dependency of the form X + Y + A 
redundant and do not generate it. The association 
rules we consider are probabilistic in nature. The 
presence of a rule X + A does not necessarily mean 
that X + Y + A also holds because the latter may 
not have minimumsupport. Similarly, the presence of 
rules X -+ Y and Y + Z does not necessarily mean 
that X -+ Z holds because the latter may not have 
minimum confidence. 

There has been work on quantifying the “useful- 
ness” or “interestingness” of a rule [20]. What is use- 
ful or interesting is often application-dependent. The 
need for a human in the loop and providing tools to 
allow human guidance of the rule discovery $rocess 
has been articulated, for example, in [7] [14]. We do 
not discuss these issues in this paper, except to point 
out that these are necessary features of a rule discov- 
ery system that may use our algorithms as the engine 
of the discovery process. 

1.1 Problem Decomposition and Paper 
Organization 

The problem of discovering all association rules can 
be decomposed into two subproblems [4]: 

1. Find all sets of items (itemseis) that have transac- 
tion support above minimum support. The support 

2. 

for an itemset is the number of transactions that 
contain the itemset. Itemsets with minimum sup- 
port are called large itemsets, and all others small 
itemsets. In Section 2, we give new algorithms, 
Apriori and AprioriTid, for solving this problem. 

Use the large itemsets to generate the desired rules. 
Here is a straightforward algorithm for this task. 
For every large itemset 1, find all non-empty subsets 
of 1. For every such subset a, output a rule of 
the form a =+ (1 - a) if the ratio of support(l) 
to support(a) is at least minconf We need to 
consider all subsets of 1 to generate rules with 
multiple consequents. Due to lack of space, we do 
not discuss this subproblem further, but refer the 
reader to [5] for a fast algorithm. 

In Section 3, we show the relative performance 
of the proposed Apriori and AprioriTid algorithms 
against the AIS [4] and SETM [13] algorithms. 
To make the paper self-contained, we include an 
overview of the AIS and SETM algorithms in this 
section. We also describe how the Apriori and 
AprioriTid algorithms can be combined into a hybrid 
algorithm, AprioriHybrid, and demonstrate the scale- 
up properties of this algorithm. We conclude by 
pointing out some related open problems in Section 4. 

2 Discovering Large Itemsets 

Algorithms for discovering large itemsets make mul- 
tiple passes over the data. In the first pass, we count 
the support of individual items and determine which 
of them are large, i.e. have minimumsupport. In each 
subsequent pass, we start with a seed set of itemsets 
found to be large in the previous pass. We use this 
seed set for generating new potentially large itemsets, 
called candidate itemsets, and count the actual sup 
port for these candidate itemsets during the pass over 
the data. At the end of the pass, we determine which 
of the candidate itemsets are actually large, and they 
become the seed for the next pass. This process con- 
tinues until no new large itemsets are found. 

The Apriori and AprioriTid algorithms we propose 
differ fundamentally from the AIS [4] and SETM [13] 
algorithms in terms of which candidate itemsets are 
counted in a pass and in the way that those candidates 
are generated. In both the AIS and SETM algorithms, 
candidate itemsets are generated on-the-fly during the 
pass as data is being read. Specifically, after reading 
a transaction, it is determined which of the itemsets 
found large in the previous pass are present in the 
transaction. New candidate itemsets are generated by 
extending these large itemsets with other items in the 
transaction. However, as we will see, the disadvantage 
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is that this results in unnecessarily generating and 
counting too many candidate itemsets that turn out 
to be small. 

The Apriori and AprioriTid algorithms generate 
the candidate itemsets to be counted in a pass by 
using only the itemsets found large in the previous 
pass - without considering the transactions in the 
database. The basic intuition is that any subset 
of a large itemset must be large. Therefore, the 
candidate itemsets having k items can be generated 
by joining large itemsets having k - 1 items, and 
deleting those that contain any subset that is not 
large. This procedure results in generation of a much 
smaller number of candidate itemsets. 

The AprioriTid algorithm has the additional prop- 
erty that the database is not used at all for count- 
ing the support of candidate itemsets after the first 
pass. Rather, an encoding of the candidate itemsets 
used in the previous pass is employed for this purpose. 
In later passes, the size of this encoding can become 
much smaller than the database, thus saving much 
reading effort. We will explain these points in more 
detail when we describe the algorithms. 

Notation We assume that items in each transaction 
are kept sorted in their lexicographic order. It is 
straightforward to adapt these algorithms to the case 
where the database 2, is kept normalized and each 
database record is a <TID, item> pair, where TID is 
the identifier of the corresponding transaction. 

We call the number of items in an itemset its size, 
and call an itemset of size k a k-itemset. Items within 
an itemset are kept in lexicographic order. We use 
the notation c[l] . c[2] . . . . . c[k] to represent a k- 
itemset c consisting of items c[l], c[2], . . .c[k], where 
c[l] < c[2] < . . . < c[k]. If c = X + Y and Y 
is an m-itemset, we also call Y an m-eziension of 
X. Associated with each itemset is a count field to 
store the support for this itemset. The count field is 
initialized to zero when the itemset is first created. 

We summarize in Table 1 the notation used in the 
algorithms. The set i?k is used by AprioriTid and will 
be further discussed when we describe this algorithm. 

2.1 Algorithm Apriori 

Figure 1 gives the Apriori algorithm. The first pass 
of the algorithm simply counts item occurrences to 
determine the large l-item&s. A subsequent pass, 
say pass k, consists of two phases. First, the large 
itemsets Lk-i found in the (k-1)th pass are used to 
generate the candidate itemsets ck, using the apriori- 
gen function described in Section 2.1.1. Next, the 
database is scanned and the support of candidates in 
ck is counted. For fast counting, we need to efficiently 
determine the candidates in ck that are contained in a 

Table 1: Notation 

k-item& An itemset having k items. 
Set of large k-items& 

Lk (those with miniium support). 
Each member of this set haa two fields: 
i) itemset and ii) support count. 
Set of candidate k-item&s 

ck (potentiahy large itemsets). 
Each member of this set has two fields: 
i) itemset and ii) support count. 

1 Set of candidate k-itemsets when the TIDs 
of the generating transactions are kept 
associated with the candidates. 

given transaction t. Section 2.1.2 describes the subset 
function used for this purpose. See [5] for a discussion 
of buffer management. 

1) L1 = {large 1-itemsets}; 
2) for ( k = 2; Lk-1 # 0; k++ ) do begin 

3) ck = apIiO&geu(&l); // New candidates 
4) forall transactions 1 E 2) do begin 
5) C* = S&S&(&, t); // Candidatea COntahd in t 

6) forall candidates c E Cr do 

7) c.count++; 

8) end 

9) Lk = {C E ck 1 C.count 2 minsup} 
10) end 
11) Answer = Uk Lk; 

Figure 1: Algorithm Apriori 

2.1.1 Apriori Candidate Generation 
The apriori-gen function takes as argument Lk-1, 
the set of all large (k - 1)-itemsets. It returns a 
superset of the set of all large k-item&s. The 
function works as follows. ’ First, in the join step, 
we join Lk-1 with Lk-1: 

S&!Ct p.iteml, p.item2, . . . . p.iteIUk-1, q.itemk-1 

from Lk-1 PI Lk-1 !I 

where p.iteml = q.iteml, . . ., phemk-2 = q.iteXUk-2, 

phmk-1 < q.iteIIIk-1; 

Next, in the prune step, we delete all itemsets c E ck 
such that some (k-1)-subset of c is not in Lk-1: 

‘Concurrent to our work, the following two-step candidate 
generation procedure has been proposed in [17) 

C~={XuX’IX,X’~Lk-l,(XnX’(=k-2} 

ck = {x E CL Ix COntdM k membm of &-I} 

These two steps are similar to our join and pruue steps 
respectively. However, in general, step 1 would produce a 
supemet of the candidates produced by our join step. 
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forall itemsets c E Ck do 
forall (k-l)-subsets s of c do 

if (s fZ LI-1) then 
delete c from ck; 

Example Let Ls be ((1 2 31, (1 2 4}, (1 3 4}, (1 
3 5}, (2 3 4)). After the join step, Cd will be { { 1 2 3 
4}, (13 4 5) }. Th e p rune step will delete the itemset 
(1 3 4 5) because the itemset (1 4 5) is not in LB. 
We will then be left with only (1 2 3 4) in Cd. 

Contrast this candidate generation with the one 
used in the AIS and SETM algorithms. In pass k 
of these algorithms, a database transaction t is read 
and it is determined which of the large itemsets in 
Lk-i are present in t. Each of these large itemsets 
I is then extended with all those large items that 
are present in t and occur later in the lexicographic 
ordering than any of the items in 1. Continuing with 
the previous example, consider a transaction (1 2 
3 4 5). In the fourth pass, AIS and SETM will 
generate two candidates, { 1 2 3 4) and { 1 2 3 5}, 
by extending the large itemset (1 2 3). Similarly, an 
additional three candidate itemsets will be generated 
by extending the other large itemsets in LB, leading 
to a total of 5 candidates for consideration in the 
fourth pass. Apriori, on the other hand, generates 
and counts only one itemset, { 1 3 4 5}, because it 
concludes a priori that the other combinations cannot 
possibly have minimum support. 

Correctness We need to show that Ck _> Lk. 
Clearly, any subset of a large itemset must also 
have minimum support. Hence, if we extended each 
itemset in Lk-i with all possible items and then 
deleted all those whose (k - 1)-subsets were not in 
Lk-1, we would be left with a superset of the itemsets 
in Lk. 

The join is equivalent to extending Lk-1 with each 
item in the database and then deleting those itemsets 
for which the (k-1)-itemset obtained by deleting the 
(h-1)th item is not in L&l. The condition p.itemk.,i 
< q.itemk-i simply ensures that no duplicates are 
generated. Thus, after the join step, ck _> Lk. By 
similar reasoning, the prune step, where we delete 
from CA! all itemsets whose (k- 1)-subsets are not in 
Lk-1, also does not delete any itemset that could be 
in Lk. 

Variation: Counting Candidates of Multiple 
Sizes in One Pass Rather than counting only 
candidates of size k in the kth paas, we can also 
count the candidates Ci+i, where Ci,, is generated 
from Ck, etc. Note that CL,, > ck+r since ck+i is 
generated from La. This variation can pay off in the 

later passes when the cost of counting and keeping in 
memory additional Ci+r - ck+r candidates becomes 
less than the cost of scanning the database. 
2.1.2 Subset Function 

Candidate itemsets Ck are stored in a hash-tree. A 
node of the hash-tree either contains a list of itemsets 
(a leaf node) or a hash table (an interior node). In an 
interior node, each bucket of the hash table points to 
another node. The root of the hash-tree is defined to 
be at depth 1. An interior node at depth d points to 
nodes at depth d+ 1. Itemsets are stored in the leaves. 
When we add an itemset c, we start from the root and 
go down the tree until we reach a leaf. At an interior 
node at depth d, we decide which branch to follow 
by applying a hash function to the dth item of the 
itemset. All nodes are initially created as leaf nodes. 
When the number of itemsets in a leaf node exceeds 
a specified threshold, the leaf node is converted to an 
interior node. 

Starting from the root node, the subset function 
finds all the candidates contained in a transaction 
t aa follows. If we are at a leaf, we find which of 
the itemsets in the leaf are contained in t and add 
references to them to the answer set. If we are at an 
interior node and we have reached it by hashing the 
item i, we hash on each item that comes after i in t 
and recursively apply this procedure to the node in 
the corresponding bucket. For the root node, we hash 
on every item in t. 

To see why the subset function returns the desired 
set of references, consider what happens at the root 
node. For any itemset c contained in transaction t, the 
first item of c must be in t. At the root, by hashing on 
every item in t, we ensure that we only ignore itemsets 
that start with an item not in t. Similar arguments 
apply at lower depths. The only additional factor is 
that, since the items in any itemset are ordered, if we 
reach the current node by hashing the item i, we only 
need to consider the items in t that occur after i. 

2.2 Algorithm AprioriTid 

The AprioriTid algorithm, shown in Figure 2, also 
uses the apriori-gen function (given in Section 2.1.1) 
to determine the candidate itemaets before the pass 
begins. The interesting feature of this algorithm is 
that the database V is not used for counting support 
after the first pass. Rather, the set ck is used 
for this purpose. Each member of the set ck is 
of the form < TID, {&} >, where each x1; is a 
potentially large k-item& present in the transaction 
with identifier TID. For k = 1, ??r corresponds to 
the database V, although conceptually each item i 
is replaced by the itemset (i}. For k > 1, ck is 
generated by the algorithm (step 10). The member 
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of ck corresponding to transaction t is <t.TID, 
{c E Ck IC contained in t)>. If a transaction does 
not contain any candidate Ic-itemset, then ??k will 
not have an entry for this transaction. Thus, the 
number of entries in Ek may be smaller than the 
number of transactions in the database, especially for 
large values of k. In addition, for large values of Ic, 
each entry may be smaller than the corresponding 
transaction because very few candidates may be 
contained in the transaction. However, for small 
values for L, each entry may be larger than the 
corresponding transaction because an entry in Ck 
includes all candidate k-itemsets contained in the 
transaction. 

In Section 2.2.1, we give the data structures used 
to implement the algorithm. See [5] for a proof of 
correctness and a discussion of buffer management. 

1) L1 = {large l-item&s}; 

2) G = database V; 
3) for ( k = 2; Lkel # 8; k++ ) do begin 
4) Ck = apriori-gen(Lk-1); // New candidates 
5) Ek = B; 

6) forall entries t E Ek-1 do begin 
7) // determine candidate itemsets in Ck contained 

// in the transaction with identifier L.TID 
Ct = {c E Ck 1 (c - c[k]) E ‘kset-of-itemsets A 

(c - c[k - 11) E &set-of-itemsets}; 

8) forall candidates c E Ct do 
9) c.count++; 
10) if (C, # 0) then ck += < t.TID, Ct >; 
11) end 
12) Lk = {c E ck 1 c.count 2 minsup} 
13) end 
14) Answer = uk Lk; 

Figure 2: Algorithm AprioriTid 

Example Consider the database in Figure 3 and 
assume that minimum support is 2 transactions. 
Calling apriori-gen with L1 at step 4 gives the 
candidate itemsets Cs. In steps 6 through 10, we 
count the support of candidates in Cz by iterating over 
the entries in cl and generate ea. The first entry in 
Cl is { (11 (31 (41 1, corresponding to transaction 
100. The Ct at step 7 corresponding to this entry t 
is { { 1 3) }, because { 1 3) is a member of C2 and 
both ((1 3) - (1)) and ((1 3) - (3)) are members of 
t.set-of-item&s. 

Calling apriori-gen with Lp gives C3. Making a pass 
over the data with c2 and C3 generates Es. Note that 
there is no entry in Es for the transactions with TIDs 
100 and 400, since they do not contain any of the 
itemsets in Cs. The candidate (2 3 5) in C3 turns 
out to be large and is the only member of LB. When 

we generate C4 using L3, it turns out to be empty, 
and we terminate. 

Database 

Ll 
Itemset Support 

(11 2 

77 

I:; 3 3 

(5) 3 

1 

pjjpri& , , 

1 I , 

1 
2 
Support 

1 
2 
1 
2 
3 
2 

*, 

Figure 3: Example 
2.2.1 Data Structures 

We assign each candidate itemset a unique number, 
called its ID. Each set of candidate itemsets Ck is kept 
in an array indexed by the IDS of the itemsets in CA?. 
A member of Ek is now of the form < TID, {ID} >. 
Each i?‘, is stored in a sequential structure. 

The apriori-gen function generates a candidate k- 
itemset Ck by joining two large (k - I)-itemsets. We 
maintain two additional fields for each candidate 
itemset: i) generators and ii) edensions. The 
generators field of a candidate itemset Ck stores the 
IDS of the two large (k - 1)-itemsets whose join 
generated CI: . The extensions field of an itemset 
Cg stores the IDS of all the (6 + 1)-candidates that 
are extensions of ck. Thus, when a candidate ck is 
generated by joining Ii-1 and Ziel, we save the IDS 
of I:-1 and IiD1 in the generators field for ck. At the 
same time, the ID of ck is added to the extensions 
field of Zisl. 
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We now describe how Step 7 of Figure 2 is 
implemented using the above data structures. Recall 
that the t.set-of-itemsets field of an entry t in ck-1 
gives the IDS of all (k - 1)-candidates contained in 
transaction t.TID. For each such candidate ck-i the 
extensions field gives Tk, the set of IDS of all the 
candidate b-item&s that are extensions of c&i. For 
each Ck in Tk, the generators field gives the IDS of 
the two itemsets that generated ck. If these itemsets 
are present in the entry for t.set-of-itemsets, we can 
conclude that ck is present in transaction t.TID, and 
add c) to Ct. 

3 Performance 
To assess the relative performance of the algorithms 
for discovering large sets, we performed several 
experiments on an IBM RS/SOOO 530H workstation 
with a CPU clock rate of 33 MHz, 64 MB of main 
memory, and running AIX 3.2. The data resided in 
the AIX file system and was stored on a 2GB SCSI 
3.5” drive, with measured sequential throughput of 
about 2 MB/second. 

We first give an overview of the AIS [4] and SETM 
[13] algorithms against which we compare the per- 
formance of the Apriori and AprioriTid algorithms. 
We then describe the synthetic datasets used in the 
performance evaluation and show the performance re- 
sults. Finally, we describe how the best performance 
features of Apriori and AprioriTid can be combined 
into an AprioriHybrid algorithm and demonstrate its 
scale-up properties. 

3.1 The AIS Algorithm 

Candidate itemsets are generated and counted on- 
the-fly as the database is scanned. After reading a 
transaction, it is determined which of the itemsets 
that were found to be large in the previous pass are 
contained in this transaction. New candidate itemsets 
are generated by extending these large itemsets with 
other items in the transaction. A large itemset 1 is 
extended with only those items that are large and 
occur later in the lexicographic ordering of items than 
any of the items in 1. The candidates generated 
from a transaction are added to the set of candidate 
itemsets maintained for the pass, or the counts of 
the corresponding entries are increased if they were 
created by an earlier transaction. See [4] for further 
details of the AIS algorithm. 

3.2 The SETM Algorithm 

The SETM algorithm [13] was motivated by the desire 
to use SQL to compute large itemsets. Like AIS, 
the SETM algorithm also generates candidates on- 
the-fly based on transactions read from the database. 

It thus generates and counts every candidate itemset 
that the AIS algorithm generates. However, to use the 
standard SQL join operation for candidate generation, 
SETM separates candidate generation from counting. 
It saves a copy of the candidate itemset together with 
the TID of the generating transaction in a sequential 
structure. At the end of the pass, the support count 
of candidate itemsets is determined by sorting and 
aggregating this sequential structure. 

SETM remembers the TIDs of the generating 
transactions with the candidate itemsets. To avoid 
needing a subset operation, it uses this information 
to determine the large itemsets contained in the 
transaction read. zk s ??k and is obtained by deleting 
those candidates that do not have minimum support. 
Assuming that the database is sorted in TID order, 
SETM can easily find the large itemsets contained in a 
transaction in the next pass by sorting & on TID. In 
fact, it needs to visit every member of & only once in 
the TID order, and the candidate generation can be 
performed using the relational merge-join operation 
[131* 

The disadvantage of this approach is mainly due 
to the size of candidate sets ck. For each candidate 
itemset, the candidate set now has as many entries 
as the number of transactions in which the candidate 
itemset is present. Moreover, when we are ready to 
count the support for candidate itemsets at the end 
of the pass, i?k is in the wrong order and needs to be 
sorted on itemsets. After counting and pruning out 
small candidate itemsets that do not have minimum 
support, the resulting set &! needs another sort on 
TID before it can be used for generating candidates 
in the next pass. 

3.3 Generation of Synthetic Data 

We generated synthetic transactions to evaluate the 
performance of the algorithms over a large range of 
data characteristics. These transactions mimic the 
transactions in the retailing environment. Our model 
of the “real” world is that people tend to buy sets 
of items together. Each such set is potentially a 
maximal large itemset. An example of such a set 
might be sheets, pillow case, comforter, and ruffles. 
However, some people may buy only some of the 
items from such a set. For instance, some people 
might buy only sheets and pillow case, and some only 
sheets. A transaction may contain more than one 
large itemset. For example, a customer might place an 
order for a dress and jacket when ordering sheets and 
pillow cases, where the dress and jacket together form 
another large itemset. Transaction sizes are typically 
clustered around a mean and a few transactions have 
many items. Typical sizes of large itemsets are also 
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clustered around a mean, with a few large itemsets 
having a large number of items, 

To create a dataset, our synthetic data generation 
program takes the parameters shown in Table 2. 

Table 2: Parameters 

ITI Average size of the transactions 
111 Average size of the maximal potentially 

I,1 
IL1 Number of maximal potentially large itemsets 

We first determine the size of the next transaction. 
The size is picked from a Poisson distribution with 
mean p equal to ITI. Note that if each item is chosen 
with the same probability p, and there are N items, 
the expected number of items in a transaction is given 
by a binomial distribution with parameters N and p, 
and is approximated by a Poisson distribution with 
mean Np. 

We then assign items to the transaction. Each 
transaction is assigned a series of potentially large 
itemsets. If the large itemset on hand does not fit in 
the transaction, the itemset is put in the transaction 
anyway in half the cases, and the itemset is moved to 
the next transaction the rest of the cases. 

Large itemsets are chosen from a set I of such 
itemsets. The number of itemsets in ‘T is set to 
ILj. There is an inverse relationship between IL1 and 
the average support for potentially large itemsets. 
An itemset in T is generated by first picking the 
size of the itemset from a Poisson distribution with 
mean ~1 equal to III. Items in the first itemset 
are chosen randomly. To model the phenomenon 
that large itemsets often have common items, some 
fraction of items in subsequent itemsets are chosen 
from the previous itemset generated. We use an 
exponentially distributed random variable with mean 
equal to the correlation level to decide this fraction 
for each itemset. The remaining items are picked at 
random. In the datasets used in the experiments, 
the correlation level was set to 0.5. We ran some 
experiments with the correlation level set to 0.25 and 
0.75 but did not find much difference in the nature of 
our performance results. 

Each itemset in 1 has a weight associated with 
it, which corresponds to the probability that this 
itemset will be picked. This weight is picked from 
an exponential distribution with unit mean, and is 
then normalized so that the sum of the weights for all 
the itemsets in 7 is 1. The next itemset to be put 
in the transaction is chosen from 7 by tossing an ILI- 
sided weighted coin, where the weight for a side is the 

probability of picking the associated itemset. 
To model the phenomenon that all the items in 

a large itemset are not always bought together, we 
assign each itemset in I a corruption level c. When 
adding an itemset to a transaction, we keep dropping 
an item from the itemset as long as a uniformly 
distributed random number between 0 and 1 is less 
than c. Thus for an itemset of size 1, we will add 1 
items to the transaction 1 - c of the time, I- 1 items 
c(1 - c) of the time, I- 2 items c2(1 - c) of the time, 
etc. The corruption level for an itemset is fixed and 
is obtained from a normal distribution with mean 0.5 
and variance 0.1. 

We generated datasets by setting N = 1000 and IL] 
= 2000. We chose 3 values for ITI: 5, 10, and 20. We 
also chose 3 values for 111: 2,4, and 6. The number of 
transactions was to set to 100,000 because, as we will 
see in Section 3.4, SETM could not be run for larger 
values. However, for our scale-up experiments, we 
generated datasets with up to 10 million transactions 
(838MB for T20). Table 3 summarizes the dataset 
parameter settings. For the same ITI and 101 values, 
the size of datasets in megabytes were roughly equal 
for the different values of 111. 

Table 3: Parameter settings 

Name I ITI 1 111 I 101 1 Size in Megabytes 
T5.12.DlOOK 1 5 1 2 1 1OOK 1 2.4 

3.4 Relative Performance 

Figure 4 shows the execution times for the six 
synthetic datasets given in Table 3 for decreasing 
values of minimum support. As the minimum support 
decreases, the execution times of all the algorithms 
increase because of increases in the total number of 
candidate and large itemsets. 

For SETM, we have only plotted the execution 
times for the dataset T5.12.DlOOK in Figure 4. The 
execution times for SETM for the two datasets with 
an average transaction size of 10 are given in Table 4. 
We did not plot the execution times in Table 4 
on the corresponding graphs because they are too 
large compared to the execution times of the other 
algorithms. For the three datasets with transaction 
sizes of 20, SETM took too long to execute and 
we aborted those runs as the trends were clear. 
Clearly, Apriori beats SETM by more than an order 
of magnitude for large datasets. 
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Table 4: Execution times in seconds for SETM 

Algorithm Minimum Support 
2.0% 1 1.5% 1 1.0% 1 0.75% J 0.5% 

Dataset T10.12.DlOOK 

SETM 74 161 838 1262 1878 
Apriori 4.4 5.3 11.0 14.5 15.3 

Dataset T10.14.DlOOK 

SETM 41 91 659 929 1639 
Apriori 3.8 4.8 11.2 17.4 19.3 

Apriori beats AIS for all problem sizes, by factors 
ranging from 2 for high minimum support to more 
than an order of magnitude for low levels of support. 
AIS always did considerably better than SETM. For 
small problems, AprioriTid did about as well as 
Apriori, but performance degraded to about twice as 
slow for large problems. 

3.5 Explanation of the Relative Performance 

To explain these performance trends, we show in 
Figure 5 the sizes of the large and candidate sets in 
different passes for the T10.14.DlOOK dataset for the 
minimum support of 0.75%. Note that the Y-axis in 
this graph has a log scale. 

l&o7 

1 2 3 F%SSti”mber 5 6 7 
Figure 5: Sizes of the large and candidate sets 
(T10.14.DlOOK, minsup = 0.75%) 

The fundamental problem with the SETM algo 
rithm is the size of its i!?k sets. Recall that the size of 
the set ??k is given by 

c support-count(c), 
candidate itemsets c 

Thus, the sets ck are roughly S times bigger than the 
corresponding ck sets, where S is the average support 
count of the candidate itemsets. Unless the problem 
size is very small, the i?k sets have to be written 
to disk, and externally sorted twice, causing the 

SETM algorithm to perform poorly.’ This explains 
the jump in time for SETM in Table 4 when going 
from 1.5% support to 1.0% support for datasets with 
transaction size 10. The largest dataset in the scale- 
up experimegs for SETM in [13] was still small 
enough that CI: could fit in memory; hence they did 
not encounter this jump in execution time. Note that 
for the same minimum support, the support count for 
candidate itemsets increases linearly with the number 
of transactions. Thus, as we increase the number of 
transactions for the same values of 12’1 and 111, though 
the size of Ck does not change, the size of ck goes up 
linearly. Thus, for,datas& with more transactions, 
the performance gap between SETM and the other 
algorithms will become even larger. 

The problem with AIS is that it generates too many 
candidates that later turn out to be small, causing 
it to waste too much effort. Apriori also counts too 
many small sets in the second pass (recall that C’s is 
really a cross-product of Lr with Li). However, this 
wastage decreases dramatically from the third pass 
onward. Note that for the example in Figure 5, after 
pass 3, almost every candidate itemset counted by 
Apriori turns out to be a large set. 

AprioriTid also has the problem of SETM that ck 
tends to be large. However, the apriori candidate 
generation used by AprioriTid generates significantly 
fewer candidates than the transaction-baaed candi- 
date generation used by SETM. As a result, the ??k of 
AprioriTid has fewer entries than that of SETM. Apri- 
oriTid is also able to use a single word (ID) to store 
a candidate rather than requiring as many words as 
the number of items in the candidate.3 In addition, 
unlike SETM, AprioriTid does not have to sort i?‘,. 
Thus, AprioriTid does not suffer as much as SETM 
from maintaining Gk. 

AprioriTid has the nice feature that it replaces a 
pass over the original dataset by a pass over the set 
??k. Hence, AprioriTid is very effective in later passes 
when the size of ??a becomes small compared to the 

2The cost of external sorting in SETM can be reduced 
somewhat as follows. Before writing out entries in Ek to 
dish, we can sort them on itemsets using an internal sorting 
procedure, and write them as sorted runs. These sorted NOB 
can then be merged to obtain support counts. However, 
given the poor performance of SETM, we do not expect this 
optimization to aRect the algorithm choice. 

3For SETM to use IDS, it would have to maintain two 
additional in-memory data structures: a hash table to 6nd 
out whether .a candidate has been generated previousIy, and 
a mapping from the IDS to candidates. However, this would 
destroy the set-oriented nature of the algorithm. Aiso, once we 
have the hash table which gives us the IDS of candidates, we 
might as weil count them at the same time and avoid the two 
externsl sorts. We experimented with this variant of SETM and 
found that, while it did better than SETM, it stiil performed 
much worse than Apriori or AprioriTid. 
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size of the database. Thus, we find that AprioriTid 
beats Apriori when its ck sets can fit in memory and 
the distribution of the large itemsets has a long tail. 
When ck doesn’t fit in memory, there is a jump in 
the execution time for AprioriTid, such as when going 
from 0.75% to 0.5% for datasets with transaction size 
10 in Figure 4. In this region, Apriori starts beating 
AprioriTid. 

3.6 Algorithm AprioriHybrid 

It is not necessary to use the same algorithm in all the 
passes over data. Figure 6 shows the execution times 
for Apriori and AprioriTid for different passes over the 
dataset T10.14.DlOOK. In the earlier passes, Apriori 
does better than AprioriTid. However, AprioriTid 
beats Apriori in later passes. We observed similar 
relative behavior for the other datasets, the reason 
for which is as follows. Apriori and AprioriTid 
use the same candidate generation procedure and 
therefore count the same itemsets. In the later 
passes, the number of candidate itemsets reduces 
(see the size of ck for Apriori and AprioriTid in 
Figure 5). However, Apriori still examines every 
transaction in the database. On the other hand, 
rather than scanning the database, AprioriTid scans 
ck for obtaining support counts, and the size of ck 
has become smaller than the size of the database. 
When the ??k sets can fit in memory, we do not even 
incur the cost of writing them to disk. 

0' 
\ 

1 2 3 4 5 6 7 

Figure 6: Per pass executiy times of Apriori and 
AprioriTid (T10.14.DlOOK, minsup = 0.75%) 

Based on these observations, we can design a 
hybrid algorithm, which we call AprioriHybrid, that 
uses Apriori in the initial passes and switches to 
AprioriTid when it expects that the set ck at the 
end of the pass will fit in memory. We use the 
following heuristic to estimate if ck would fit in 
memory in the next pass. At the end of the 
current pass, we have the counts of the candidates 

in ck. From this, we estimate what the size of ??k 
would have been if it had been generated. This 
Size, in words, is (Ccandidates c E ck Support(C) -!- 
number of transactions). If ck in this pass was small 
enough to fit in memory, and there were fewer large 
candidates in the current pass than the previous pass, 
we switch to AprioriTid. The latter condition is added 
to avoid switching when ck in the current pass fits in 
memory but ??k in the next pass may not. 

Switching from Apriori to AprioriTid does involve 
a cost. Assume that we decide to switch from Apriori 
to AprioriTid at the end of the lath pass. In the 
(Ic + 1)th pass, after finding the candidate itemsets 
contained in a transaction, we will also have to add 
their IDS to ck+i (see the description of AprioriTid 
in Section 2.2). Thus there is an extra cost incurred 
in this pass relative to just running Apriori. It is only 
in the (k+2)th pass that we actually start running 
AprioriTid. Thus, if there are no large (&l)-itemsets, 
or no (h + 2)-candidates, we will incur the cost of 
switching without getting any of the savings of using 
AprioriTid. 

Figure 7 shows the performance of AprioriHybrid 
relative to Apriori and AprioriTid for three data&s. 
AprioriHybrid performs better than Apriori in almost 
all cases. For T10.12.DlOOK with 1.5% support, 
AprioriHybrid does a little worse than Apriori since 
the pass in which the switch occurred was the 
last pass; AprioriHybrid thus incurred the cost of 
switching without realizing the benefits. In general, 
the advantage of AprioriHybrid over Apriori depends 
on how the size of the Ck set decline in the later 
passes. If ck remains large until nearly the end and 
then has an abrupt drop, we will not gain much by 
using AprioriHybrid since we can use AprioriTid only 
for a short period of time after the switch. This is 
what happened with the T20.16.DlOOK dataset. On 
the other hand, if there is a gradual decline in the 
size Of ck, AprioriTid can be used for a while after the 
switch, and a significant improvement can be obtained 
in the execution time. 

3.7 Scale-up Experiment 

Figure 8 shows how AprioriHybrid scales up as the 
number of transactions is increased from 100,000 to 
10 million transactions. We used the combinations 
(T5.12) (T10.14), and (T20.16) for the average sizes 
of transactions and itemsets respectively. All other 
parameters were the same as for the data in Table 3. 
The sizes of these datasets for 10 million transactions 
were 239MB, 439MB and 838MB respectively. The 
minimum support level was set to 0.75%. The 
execution times are normalized with respect to the 
times for the 100,000 transaction datasets in the first 
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Figure 7: Execution times: AprioriHybrid 

graph and with respect to the 1 million transaction 
dataset in the second. As shown, the execution times 
scale quite linearly. 
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Figure 8: Number of transactions scale-up 

Next, we examined how AprioriHybrid scaled up 
with the number of items. We increased the num- 
ber of items from 1000 to 10,000 for the three pa- 
rameter settings T5.12.DlOOK, T10.14.DlOOK and 
T20.16.DlOOK. All other parameters were the same 
as for the data in Table 3. We ran experiments for a 
minimum support at 0.7556, and obtained the results 
shown in Figure 9. The execution times decreased a 
little since the average support for an item decreased 
as we increased the number of items. This resulted 
in fewer large itemsets and, hence, faster execution 
times. 

Finally, we investigated the scale-up as we increased 
the average transaction size. The aim of this 
experiment was to see how our data structures scaled 
with the transaction size, independent of other factors 
like the physical database size and the number of 
large itemsets. We kept the physical size of the 
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Figure 9: Number of items scale-up 

database roughly constant by keeping the product 
of the average transaction size and the number of 
transactions constant. The number of transactions 
ranged from 200,000 for the database with an average 
transaction size of 5 to 20,000 for the database with 
an average transaction size 50. Fixing the minimum 
support as a percentage would have led to large 
increases in the number of large itemsets as the 
transaction size increased, since the probability of 
a itemset being present in a transaction is roughly 
proportional to the transaction size. We therefore 
fixed the minimum support level in terms of the 
number of transactions. The results are shown in 
Figure 10. The numbers in the key (e.g. 500) refer 
to this minimum support. As shown, the execution 
times increase with the transaction size, but only 
gradually. The main reason for the increase was that 
in spite of setting the minimum support in terms 
of the number of transactions, the number of large 
itemsets increased with increasing transaction length. 
A secondary reason was that finding the candidates 
present in a transaction took a little longer time. 

4 Conclusions and Future Work 
We presented two new algorithms, Apriori and Apri- 
oriTid, for discovering all significant association rules 
between items in a large database of transactions. 
We compared these algorithms to the previously 
known algorithms, the AIS [4] and SETM [13] algo 
rithms. We presented experimental results, showing 
that the proposed algorithms always outperform AIS 
and SETM. The performance gap increased with the 
problem size, and ranged from a factor of three for 
small problems to more than an order of magnitude 
for large problems. 

We showed how the best features of the two pro- 
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Figure 10: Transaction size scale-up 

posed algorithms can be combined into a hybrid al- 
gorithm, called AprioriHybrid, which then becomes 
the algorithm of choice for this problem. Scale-up ex- 
periments showed that AprioriHybrid scales linearly 
with the number of transactions. In addition, the ex- 
ecution time decreases a little as the number of items 
in the database increases. As the average transaction 
size increases (while keeping the database size con- 
stant), the execution time increases only gradually. 
These experiments demonstrate the feasibility of u& 
ing AprioriHybrid in real applications involving very 
large databases. 

The algorithms presented in this paper have been 
implemented on several data repositories, including 
the AIX file system, DBS/MVS, and DB2/6000. 
We have also tested these algorithms against real 
customer data, the details of which can be found in 
[5]. In the future, we plan to extend this work along 
the following dimensions: 

l Multiple taxonomies (is-a hierarchies) over items 
are often available. An example of such a 
hierarchy is that a dish washer is a kitchen 
appliance is a heavy electric appliance, etc. We 
would like to be able to find association rules that 
use such hierarchies. 

l We did not consider the quantities of the items 
bought in a transaction, which are useful for some 
applications. Finding such rules needs further 
work. 

The work reported in this paper has been done 
in the context of the Quest project at the IBM Al- 
maden Research Center. In Quest, we are exploring 
the various aspects of the database mining problem. 
Besides the problem of discovering association rules, 
some other problems that we have looked into include 
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the enhancement of the database capability with clas- 
sification queries [2] and similarity queries over time 
sequences [l]. We believe that database mining is an 
important new application area for databases, com- 
bining commercial interest with intriguing research 
questions. 
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