BIRCH: An Efficient Data Clustering Method For Very Large Databases

Tian Zhang, Raghu Ramakrishnan, Miron Livny

CPSC 504
Presenter: Kendric Wang
Discussion Leader: Sophia (Xueyao) Liang
Outline

- What is Data Clustering?
- Advantages of BIRCH Algorithm
- Clustering Feature (CF) and CF Tree
- BIRCH Clustering Algorithm
- Applications of BIRCH
- Conclusion
What is Data Clustering?

- Given a large set of multi-dimensional data points
 - data space is usually not uniformly occupied
- Can group closely related points into a “cluster”
 - points are similar according to some distance-based measurement f’n
 - choose desired number of clusters, K
- discover distribution patterns in the dataset
- help visualize data and guide data analysis
What is Data Clustering?

- Popular data mining problem in
 - Machine Learning -- probability-based
 - Statistics -- distance-based
 - Database -- limited memory

- Define problem as:
 - Partitioning dataset to minimize “size” of cluster
 - Data set size may be larger than memory
 - Minimize I/O costs
Advantages of BIRCH vs. Other Clustering Algorithms

- BIRCH is “local”
 - clusters a point without having to check against all other data points or clusters
- Can remove outliers ("noise")
- Produce good clusters with a single scan of dataset
- Linearly scalable
 - minimizes running time
 - adjusts quality of result with regard to available memory
Clustering Feature (CF)

- Compact - no need to store individual pts belonging to a cluster

- Three parts: $\text{CF}_i = (N_i, LS_i, SS_i)$, $i = 1, 2, \ldots, M$ (no. of clusters)
 - N_i → number of data pts in cluster
 - LS_i → linear sum of N data pts
 - SS_i → square sum of N data pts

- Sufficient to compute distance between two clusters

- When merging two clusters, add the CFs
CF Tree

Entry: [CF, child]

Root

CF1 CF2 ... CFB
child1 child2 ... childB

Non-leaf node

CF1 CF2 ... CFB
child1 child2 ... childB

Leaf node

prev CF1 CF2 ... CFB next
prev CF1 CF2 ... CFB next

Branching Factor
B = max no. of CF in non-leaf node
L = max no. of CF in leaf node

Threshold requirement:
T = max radius/diameter of CF (in leaf)
CF Tree

- Tree size is a function of T
 - larger T, more points in each cluster, smaller tree
- good choice reduces number of rebuilds
 - if T too low, can be increased dynamically
 - if T too high, less detailed CF tree
- heuristic approach used to estimate next threshold value
- CF tree built dynamically as data is scanned and inserted
CF Tree Insertion

- Identify the appropriate leaf:
 - Start with CF list at root node, find the closest cluster (by using CF values)
 - Look at all the children of the cluster, find the closest
 - And so on, until you reach a leaf node

- Modify the leaf:
 - Find closest leaf entry and test whether it can absorb new entry without violating threshold condition
 - If not, add new entry to leaf
 - Leaves have a max size; may need to be split

- Modifying the path:
 - Once the point has been added, must update the CF of all ancestors
BIRCH Clustering Algorithm

- Phase 1: Load data into memory by building a CF tree
- Phase 2 (optional): Condense into desirable range by building smaller CF trees
- Phase 3: Global Clustering
- Phase 4 (optional): Cluster Refining
Phase I: BIRCH

- Start with initial threshold T and insert points into tree
- If we run out of memory, increase T and rebuild
 - Re-insert leaf entries from old tree into new tree
 - remove outliers
- Methods for initializing and adjusting T are adhoc
- After phase I:
 - data “reduced” to fit in memory
 - subsequent processing occurs entirely in memory (no I/O)
Phase 2 BIRCH

- Optional
- No. of clusters produced in Phase 1 may be not suitable for algorithms used in Phase 3
- Shrink tree as necessary
 - remove more outliers
 - crowded subclusters are merged
Phase 3

BIRCH

- Problems after Phase 1:
 - input order affect results
 - splitting triggered
- Use leaf nodes of CF tree as input to a standard ("global") clustering algorithm
 - KMeans, HC
- Phase 1 has reduced the size of the input dataset enough so that the standard algorithm can work entirely in memory
Phase 4: BIRCH

- **Optional**
- Scan through data again and assign each data point to a cluster
 - choose cluster whose centroid is closest
- This redistributes data points amongst clusters in more accurate fashion than original CF cluster
- Can be repeated for improved refinement of clusters
Apps of Data Clustering

- Helps identify natural groupings that exist within a dataset
- Image processing
 - separate similar properties in an image
Apps of Data Clustering

- **Bioinformatics**
 - identifying genes that are regulated by common mechanisms

- **Market analysis**
 - distinguish groups of consumers with similar tastes
Conclusion

- BIRCH performs better than other existing algorithms on large datasets
 - reduces I/O
 - accounts for memory constraint
- Produces good clustering from only one scan of entire dataset: $O(n)$
- Handles outliers